1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Time utilities for approval voting subsystems.

use futures::{
	future::BoxFuture,
	prelude::*,
	stream::{FusedStream, FuturesUnordered},
	Stream, StreamExt,
};

use crate::approval::v1::DelayTranche;
use sp_consensus_slots::Slot;
use std::{
	collections::HashSet,
	pin::Pin,
	task::Poll,
	time::{Duration, SystemTime},
};

use polkadot_primitives::{Hash, ValidatorIndex};
/// The duration of a single tick in milliseconds.
pub const TICK_DURATION_MILLIS: u64 = 500;

/// A base unit of time, starting from the Unix epoch, split into half-second intervals.
pub type Tick = u64;

/// How far in the future a tick can be accepted.
pub const TICK_TOO_FAR_IN_FUTURE: Tick = 20; // 10 seconds.

/// A clock which allows querying of the current tick as well as
/// waiting for a tick to be reached.
pub trait Clock {
	/// Yields the current tick.
	fn tick_now(&self) -> Tick;

	/// Yields a future which concludes when the given tick is reached.
	fn wait(&self, tick: Tick) -> Pin<Box<dyn Future<Output = ()> + Send + 'static>>;
}

/// Extension methods for clocks.
pub trait ClockExt {
	/// Returns the current tranche.
	fn tranche_now(&self, slot_duration_millis: u64, base_slot: Slot) -> DelayTranche;
}

impl<C: Clock + ?Sized> ClockExt for C {
	fn tranche_now(&self, slot_duration_millis: u64, base_slot: Slot) -> DelayTranche {
		self.tick_now()
			.saturating_sub(slot_number_to_tick(slot_duration_millis, base_slot)) as u32
	}
}

/// A clock which uses the actual underlying system clock.
#[derive(Clone)]
pub struct SystemClock;

impl Clock for SystemClock {
	/// Yields the current tick.
	fn tick_now(&self) -> Tick {
		match SystemTime::now().duration_since(SystemTime::UNIX_EPOCH) {
			Err(_) => 0,
			Ok(d) => d.as_millis() as u64 / TICK_DURATION_MILLIS,
		}
	}

	/// Yields a future which concludes when the given tick is reached.
	fn wait(&self, tick: Tick) -> Pin<Box<dyn Future<Output = ()> + Send>> {
		let fut = async move {
			let now = SystemTime::now();
			let tick_onset = tick_to_time(tick);
			if now < tick_onset {
				if let Some(until) = tick_onset.duration_since(now).ok() {
					futures_timer::Delay::new(until).await;
				}
			}
		};

		Box::pin(fut)
	}
}

fn tick_to_time(tick: Tick) -> SystemTime {
	SystemTime::UNIX_EPOCH + Duration::from_millis(TICK_DURATION_MILLIS * tick)
}

/// assumes `slot_duration_millis` evenly divided by tick duration.
pub fn slot_number_to_tick(slot_duration_millis: u64, slot: Slot) -> Tick {
	let ticks_per_slot = slot_duration_millis / TICK_DURATION_MILLIS;
	u64::from(slot) * ticks_per_slot
}

/// Converts a tick to the slot number.
pub fn tick_to_slot_number(slot_duration_millis: u64, tick: Tick) -> Slot {
	let ticks_per_slot = slot_duration_millis / TICK_DURATION_MILLIS;
	(tick / ticks_per_slot).into()
}

/// Converts a tranche from a slot to the tick number.
pub fn tranche_to_tick(slot_duration_millis: u64, slot: Slot, tranche: u32) -> Tick {
	slot_number_to_tick(slot_duration_millis, slot) + tranche as u64
}

/// A list of delayed futures that gets triggered when the waiting time has expired and it is
/// time to sign the candidate.
/// We have a timer per relay-chain block.
#[derive(Default)]
pub struct DelayedApprovalTimer {
	timers: FuturesUnordered<BoxFuture<'static, (Hash, ValidatorIndex)>>,
	blocks: HashSet<Hash>,
}

impl DelayedApprovalTimer {
	/// Starts a single timer per block hash
	///
	/// Guarantees that if a timer already exits for the give block hash,
	/// no additional timer is started.
	pub fn maybe_arm_timer(
		&mut self,
		wait_until: Tick,
		clock: &dyn Clock,
		block_hash: Hash,
		validator_index: ValidatorIndex,
	) {
		if self.blocks.insert(block_hash) {
			let clock_wait = clock.wait(wait_until);
			self.timers.push(Box::pin(async move {
				clock_wait.await;
				(block_hash, validator_index)
			}));
		}
	}
}

impl Stream for DelayedApprovalTimer {
	type Item = (Hash, ValidatorIndex);

	fn poll_next(
		mut self: std::pin::Pin<&mut Self>,
		cx: &mut std::task::Context<'_>,
	) -> std::task::Poll<Option<Self::Item>> {
		let poll_result = self.timers.poll_next_unpin(cx);
		match poll_result {
			Poll::Ready(Some(result)) => {
				self.blocks.remove(&result.0);
				Poll::Ready(Some(result))
			},
			_ => poll_result,
		}
	}
}

impl FusedStream for DelayedApprovalTimer {
	fn is_terminated(&self) -> bool {
		self.timers.is_terminated()
	}
}

#[cfg(test)]
mod tests {
	use std::time::Duration;

	use futures::{executor::block_on, FutureExt, StreamExt};
	use futures_timer::Delay;
	use polkadot_primitives::{Hash, ValidatorIndex};

	use crate::approval::time::{Clock, SystemClock};

	use super::DelayedApprovalTimer;

	#[test]
	fn test_select_empty_timer() {
		block_on(async move {
			let mut timer = DelayedApprovalTimer::default();

			for _ in 1..10 {
				let result = futures::select!(
					_ = timer.select_next_some() => {
						0
					}
					// Only this arm should fire
					_ = Delay::new(Duration::from_millis(100)).fuse() => {
						1
					}
				);

				assert_eq!(result, 1);
			}
		});
	}

	#[test]
	fn test_timer_functionality() {
		block_on(async move {
			let mut timer = DelayedApprovalTimer::default();
			let test_hashes =
				vec![Hash::repeat_byte(0x01), Hash::repeat_byte(0x02), Hash::repeat_byte(0x03)];
			for (index, hash) in test_hashes.iter().enumerate() {
				timer.maybe_arm_timer(
					SystemClock.tick_now() + index as u64,
					&SystemClock,
					*hash,
					ValidatorIndex::from(2),
				);
				timer.maybe_arm_timer(
					SystemClock.tick_now() + index as u64,
					&SystemClock,
					*hash,
					ValidatorIndex::from(2),
				);
			}
			let timeout_hash = Hash::repeat_byte(0x02);
			for i in 0..test_hashes.len() * 2 {
				let result = futures::select!(
					(hash, _) = timer.select_next_some() => {
						hash
					}
					// Timers should fire only once, so for the rest of the iterations we should timeout through here.
					_ = Delay::new(Duration::from_secs(2)).fuse() => {
						timeout_hash
					}
				);
				assert_eq!(test_hashes.get(i).cloned().unwrap_or(timeout_hash), result);
			}

			// Now check timer can be restarted if already fired
			for (index, hash) in test_hashes.iter().enumerate() {
				timer.maybe_arm_timer(
					SystemClock.tick_now() + index as u64,
					&SystemClock,
					*hash,
					ValidatorIndex::from(2),
				);
				timer.maybe_arm_timer(
					SystemClock.tick_now() + index as u64,
					&SystemClock,
					*hash,
					ValidatorIndex::from(2),
				);
			}

			for i in 0..test_hashes.len() * 2 {
				let result = futures::select!(
					(hash, _) = timer.select_next_some() => {
						hash
					}
					// Timers should fire only once, so for the rest of the iterations we should timeout through here.
					_ = Delay::new(Duration::from_secs(2)).fuse() => {
						timeout_hash
					}
				);
				assert_eq!(test_hashes.get(i).cloned().unwrap_or(timeout_hash), result);
			}
		});
	}
}