1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use core::mem::MaybeUninit;

#[cfg(feature = "alloc")]
use alloc::{borrow::Cow, vec::Vec};

use crate::program::Reg;

/// A replacement for `alloc::borrow::Cow<[u8]>` which also works in pure no_std.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
#[repr(transparent)]
pub struct CowBytes<'a>(CowBytesImpl<'a>);

#[cfg(feature = "alloc")]
type CowBytesImpl<'a> = Cow<'a, [u8]>;

#[cfg(not(feature = "alloc"))]
type CowBytesImpl<'a> = &'a [u8];

impl<'a> CowBytes<'a> {
    #[cfg(feature = "alloc")]
    pub fn into_owned(self) -> CowBytes<'static> {
        match self.0 {
            Cow::Borrowed(data) => CowBytes(Cow::Owned(data.into())),
            Cow::Owned(data) => CowBytes(Cow::Owned(data)),
        }
    }
}

impl<'a> core::ops::Deref for CowBytes<'a> {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<'a> From<&'a [u8]> for CowBytes<'a> {
    fn from(slice: &'a [u8]) -> Self {
        CowBytes(slice.into())
    }
}

impl<'a> From<&'a str> for CowBytes<'a> {
    fn from(slice: &'a str) -> Self {
        CowBytes(slice.as_bytes().into())
    }
}

#[cfg(feature = "alloc")]
impl<'a> From<Vec<u8>> for CowBytes<'a> {
    fn from(vec: Vec<u8>) -> Self {
        CowBytes(vec.into())
    }
}

#[cfg(feature = "alloc")]
impl<'a> From<Cow<'a, [u8]>> for CowBytes<'a> {
    fn from(cow: Cow<'a, [u8]>) -> Self {
        CowBytes(cow)
    }
}

macro_rules! define_align_to_next_page {
    ($name:ident, $type:ty) => {
        /// Aligns the `value` to the next `page_size`, or returns the `value` as-is if it's already aligned.
        #[inline]
        pub const fn $name(page_size: $type, value: $type) -> Option<$type> {
            assert!(
                page_size != 0 && (page_size & (page_size - 1)) == 0,
                "page size is not a power of two"
            );
            if value & page_size - 1 == 0 {
                Some(value)
            } else {
                if value <= <$type>::MAX - page_size {
                    Some((value + page_size) & !(page_size - 1))
                } else {
                    None
                }
            }
        }
    };
}

define_align_to_next_page!(align_to_next_page_u32, u32);
define_align_to_next_page!(align_to_next_page_u64, u64);
define_align_to_next_page!(align_to_next_page_usize, usize);

#[test]
fn test_align_to_next_page() {
    assert_eq!(align_to_next_page_u64(4096, 0), Some(0));
    assert_eq!(align_to_next_page_u64(4096, 1), Some(4096));
    assert_eq!(align_to_next_page_u64(4096, 4095), Some(4096));
    assert_eq!(align_to_next_page_u64(4096, 4096), Some(4096));
    assert_eq!(align_to_next_page_u64(4096, 4097), Some(8192));
    let max = (0x10000000000000000_u128 - 4096) as u64;
    assert_eq!(align_to_next_page_u64(4096, max), Some(max));
    assert_eq!(align_to_next_page_u64(4096, max + 1), None);
}

pub trait AsUninitSliceMut {
    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<u8>];
}

impl AsUninitSliceMut for [MaybeUninit<u8>] {
    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<u8>] {
        self
    }
}

impl AsUninitSliceMut for [u8] {
    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<u8>] {
        #[allow(unsafe_code)]
        // SAFETY: `MaybeUnunit<T>` is guaranteed to have the same representation as `T`,
        //         so casting `[T]` into `[MaybeUninit<T>]` is safe.
        unsafe {
            core::slice::from_raw_parts_mut(self.as_mut_ptr().cast(), self.len())
        }
    }
}

impl<const N: usize> AsUninitSliceMut for MaybeUninit<[u8; N]> {
    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<u8>] {
        #[allow(unsafe_code)]
        // SAFETY: `MaybeUnunit<T>` is guaranteed to have the same representation as `T`,
        //         so casting `[T; N]` into `[MaybeUninit<T>]` is safe.
        unsafe {
            core::slice::from_raw_parts_mut(self.as_mut_ptr().cast(), N)
        }
    }
}

impl<const N: usize> AsUninitSliceMut for [u8; N] {
    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<u8>] {
        let slice: &mut [u8] = &mut self[..];
        slice.as_uninit_slice_mut()
    }
}

/// A gas value used for gas metering.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Default)]
#[repr(transparent)]
pub struct Gas(u64);

impl core::fmt::Display for Gas {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        self.0.fmt(fmt)
    }
}

impl Gas {
    /// The maximum possible available gas.
    pub const MAX: Self = Gas(i64::MAX as u64);

    /// The minimum possible available gas.
    pub const MIN: Self = Gas(0);

    /// Constructs a new gas value. Alias for [`Gas::from_u64`].
    pub const fn new(gas: u64) -> Option<Self> {
        Self::from_u64(gas)
    }

    /// Constructs a new gas value from an `u64`, checking whether it's in range between [`Gas::MIN`] and [`Gas::MAX`].
    pub const fn from_u64(gas: u64) -> Option<Self> {
        let gas = Self(gas);
        if gas.0 > Self::MAX.0 {
            None
        } else {
            Some(gas)
        }
    }

    /// Constructs a new gas value from an `i64`, checking whether it's in range between [`Gas::MIN`] and [`Gas::MAX`].
    pub const fn from_i64(gas: i64) -> Option<Self> {
        Self::from_u64(gas as u64)
    }

    /// Gets the raw gas value.
    pub const fn get(self) -> u64 {
        self.0
    }

    /// Checks whether there is no gas remaining.
    pub const fn is_empty(self) -> bool {
        self.0 == 0
    }
}

impl From<u32> for Gas {
    fn from(gas: u32) -> Self {
        Gas(u64::from(gas))
    }
}

impl TryFrom<u64> for Gas {
    type Error = &'static str;
    fn try_from(gas: u64) -> Result<Self, Self::Error> {
        Self::from_u64(gas).ok_or("out of range gas")
    }
}

impl TryFrom<i64> for Gas {
    type Error = &'static str;
    fn try_from(gas: i64) -> Result<Self, Self::Error> {
        Self::from_i64(gas).ok_or("out of range gas")
    }
}

pub trait Access<'a> {
    type Error: core::fmt::Display;

    fn get_reg(&self, reg: Reg) -> u32;
    fn set_reg(&mut self, reg: Reg, value: u32);
    fn read_memory_into_slice<'slice, T>(&self, address: u32, buffer: &'slice mut T) -> Result<&'slice mut [u8], Self::Error>
    where
        T: ?Sized + AsUninitSliceMut;
    fn write_memory(&mut self, address: u32, data: &[u8]) -> Result<(), Self::Error>;

    fn sbrk(&mut self, size: u32) -> Option<u32>;

    /// Returns the current size of the program's heap.
    fn heap_size(&self) -> u32;

    fn program_counter(&self) -> Option<u32>;
    fn native_program_counter(&self) -> Option<u64>;

    /// Gets the amount of gas remaining, or `None` if gas metering is not enabled for this instance.
    ///
    /// Note that this being zero doesn't necessarily mean that the execution ran out of gas,
    /// if the program ended up consuming *exactly* the amount of gas that it was provided with!
    fn gas_remaining(&self) -> Option<Gas>;

    fn consume_gas(&mut self, gas: u64);

    #[cfg(feature = "alloc")]
    fn read_memory_into_vec(&self, address: u32, length: u32) -> Result<Vec<u8>, Self::Error> {
        let mut buffer = Vec::new();
        buffer.reserve_exact(length as usize);

        let pointer = buffer.as_ptr();
        let slice = self.read_memory_into_slice(address, buffer.spare_capacity_mut())?;

        // Since `read_memory_into_slice` returns a `&mut [u8]` we can be sure it initialized the buffer
        // we've passed to it, as long as it's actually the same buffer we gave it.
        assert_eq!(slice.as_ptr(), pointer);
        assert_eq!(slice.len(), length as usize);

        #[allow(unsafe_code)]
        // SAFETY: `read_memory_into_slice` initialized this buffer, and we've verified this with `assert`s.
        unsafe {
            buffer.set_len(length as usize);
        }

        Ok(buffer)
    }
}

// Copied from `MaybeUninit::slice_assume_init_mut`.
// TODO: Remove this once this API is stabilized.
#[allow(clippy::missing_safety_doc)]
#[allow(unsafe_code)]
pub unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] {
    // SAFETY: The caller is responsible for making sure the `slice` was properly initialized.
    unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) }
}

#[allow(unsafe_code)]
pub fn byte_slice_init<'dst>(dst: &'dst mut [MaybeUninit<u8>], src: &[u8]) -> &'dst mut [u8] {
    assert_eq!(dst.len(), src.len());

    let length = dst.len();
    let src_ptr: *const u8 = src.as_ptr();
    let dst_ptr: *mut u8 = dst.as_mut_ptr().cast::<u8>();

    // SAFETY: Both pointers are valid and are guaranteed to point to a region of memory
    // at least `length` bytes big.
    unsafe {
        core::ptr::copy_nonoverlapping(src_ptr, dst_ptr, length);
    }

    // SAFETY: We've just initialized this slice.
    unsafe { slice_assume_init_mut(dst) }
}