1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
// Copyright 2014 The Prometheus Authors
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.

use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::From;
use std::sync::{
    atomic::{AtomicU64 as StdAtomicU64, Ordering},
    Arc, Mutex,
};
use std::time::{Duration, Instant as StdInstant};

use crate::atomic64::{Atomic, AtomicF64, AtomicU64};
use crate::desc::{Desc, Describer};
use crate::errors::{Error, Result};
use crate::metrics::{Collector, LocalMetric, Metric, Opts};
use crate::proto;
use crate::value::make_label_pairs;
use crate::vec::{MetricVec, MetricVecBuilder};

/// The default [`Histogram`] buckets. The default buckets are
/// tailored to broadly measure the response time (in seconds) of a
/// network service. Most likely, however, you will be required to define
/// buckets customized to your use case.
pub const DEFAULT_BUCKETS: &[f64; 11] = &[
    0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0,
];

/// Used for the label that defines the upper bound of a
/// bucket of a histogram ("le" -> "less or equal").
pub const BUCKET_LABEL: &str = "le";

#[inline]
fn check_bucket_label(label: &str) -> Result<()> {
    if label == BUCKET_LABEL {
        return Err(Error::Msg(
            "`le` is not allowed as label name in histograms".to_owned(),
        ));
    }

    Ok(())
}

fn check_and_adjust_buckets(mut buckets: Vec<f64>) -> Result<Vec<f64>> {
    if buckets.is_empty() {
        buckets = Vec::from(DEFAULT_BUCKETS as &'static [f64]);
    }

    for (i, upper_bound) in buckets.iter().enumerate() {
        if i < (buckets.len() - 1) && *upper_bound >= buckets[i + 1] {
            return Err(Error::Msg(format!(
                "histogram buckets must be in increasing \
                 order: {} >= {}",
                upper_bound,
                buckets[i + 1]
            )));
        }
    }

    let tail = *buckets.last().unwrap();
    if tail.is_sign_positive() && tail.is_infinite() {
        // The +Inf bucket is implicit. Remove it here.
        buckets.pop();
    }

    Ok(buckets)
}

/// A struct that bundles the options for creating a [`Histogram`] metric. It is
/// mandatory to set Name and Help to a non-empty string. All other fields are
/// optional and can safely be left at their zero value.
#[derive(Clone, Debug)]
pub struct HistogramOpts {
    /// A container holding various options.
    pub common_opts: Opts,

    /// Defines the buckets into which observations are counted. Each
    /// element in the slice is the upper inclusive bound of a bucket. The
    /// values must be sorted in strictly increasing order. There is no need
    /// to add a highest bucket with +Inf bound, it will be added
    /// implicitly. The default value is DefBuckets.
    pub buckets: Vec<f64>,
}

impl HistogramOpts {
    /// Create a [`HistogramOpts`] with the `name` and `help` arguments.
    pub fn new<S1: Into<String>, S2: Into<String>>(name: S1, help: S2) -> HistogramOpts {
        HistogramOpts {
            common_opts: Opts::new(name, help),
            buckets: Vec::from(DEFAULT_BUCKETS as &'static [f64]),
        }
    }

    /// `namespace` sets the namespace.
    pub fn namespace<S: Into<String>>(mut self, namespace: S) -> Self {
        self.common_opts.namespace = namespace.into();
        self
    }

    /// `subsystem` sets the sub system.
    pub fn subsystem<S: Into<String>>(mut self, subsystem: S) -> Self {
        self.common_opts.subsystem = subsystem.into();
        self
    }

    /// `const_labels` sets the const labels.
    pub fn const_labels(mut self, const_labels: HashMap<String, String>) -> Self {
        self.common_opts = self.common_opts.const_labels(const_labels);
        self
    }

    /// `const_label` adds a const label.
    pub fn const_label<S1: Into<String>, S2: Into<String>>(mut self, name: S1, value: S2) -> Self {
        self.common_opts = self.common_opts.const_label(name, value);
        self
    }

    /// `variable_labels` sets the variable labels.
    pub fn variable_labels(mut self, variable_labels: Vec<String>) -> Self {
        self.common_opts = self.common_opts.variable_labels(variable_labels);
        self
    }

    /// `variable_label` adds a variable label.
    pub fn variable_label<S: Into<String>>(mut self, name: S) -> Self {
        self.common_opts = self.common_opts.variable_label(name);
        self
    }

    /// `fq_name` returns the fq_name.
    pub fn fq_name(&self) -> String {
        self.common_opts.fq_name()
    }

    /// `buckets` set the buckets.
    pub fn buckets(mut self, buckets: Vec<f64>) -> Self {
        self.buckets = buckets;
        self
    }
}

impl Describer for HistogramOpts {
    fn describe(&self) -> Result<Desc> {
        self.common_opts.describe()
    }
}

impl From<Opts> for HistogramOpts {
    fn from(opts: Opts) -> HistogramOpts {
        HistogramOpts {
            common_opts: opts,
            buckets: Vec::from(DEFAULT_BUCKETS as &'static [f64]),
        }
    }
}

/// Representation of a hot or cold shard.
///
/// See [`HistogramCore`] for details.
#[derive(Debug)]
struct Shard {
    sum: AtomicF64,
    count: AtomicU64,
    buckets: Vec<AtomicU64>,
}

impl Shard {
    fn new(num_buckets: usize) -> Self {
        let mut buckets = Vec::new();
        for _ in 0..num_buckets {
            buckets.push(AtomicU64::new(0));
        }

        Shard {
            sum: AtomicF64::new(0.0),
            count: AtomicU64::new(0),
            buckets,
        }
    }
}

/// Index into an array of [`Shard`]s.
///
/// Used in conjunction with [`ShardAndCount`] below.
#[derive(Debug, Clone, Copy)]
enum ShardIndex {
    /// First index. Corresponds to 0.
    First,
    /// Second index. Corresponds to 1.
    Second,
}

impl ShardIndex {
    /// Inverse the given [`ShardIndex`].
    fn inverse(self) -> ShardIndex {
        match self {
            ShardIndex::First => ShardIndex::Second,
            ShardIndex::Second => ShardIndex::First,
        }
    }
}

impl From<u64> for ShardIndex {
    fn from(index: u64) -> Self {
        match index {
            0 => ShardIndex::First,
            1 => ShardIndex::Second,
            _ => panic!(
                "Invalid shard index {:?}. A histogram only has two shards.",
                index
            ),
        }
    }
}

impl From<ShardIndex> for usize {
    fn from(index: ShardIndex) -> Self {
        match index {
            ShardIndex::First => 0,
            ShardIndex::Second => 1,
        }
    }
}

/// An atomic u64 with the most significant used as a [`ShardIndex`] and the
/// remaining 63 bits used to count [`Histogram`] observations.
#[derive(Debug)]
struct ShardAndCount {
    inner: StdAtomicU64,
}

impl ShardAndCount {
    /// Return a new [`ShardAndCount`] with both the most significant bit
    /// i.e. the `ShardIndex` and the remaining 63 bit i.e. the observation
    /// count set to 0.
    fn new() -> Self {
        ShardAndCount {
            inner: StdAtomicU64::new(0),
        }
    }

    /// Flip the most significant bit i.e. the [`ShardIndex`] leaving the
    /// remaining 63 bits unchanged.
    fn flip(&self, ordering: Ordering) -> (ShardIndex, u64) {
        let n = self.inner.fetch_add(1 << 63, ordering);

        ShardAndCount::split_shard_index_and_count(n)
    }

    /// Get the most significant bit i.e. the [`ShardIndex`] as well as the
    /// remaining 63 bits i.e. the observation count.
    fn get(&self) -> (ShardIndex, u64) {
        let n = self.inner.load(Ordering::Relaxed);

        ShardAndCount::split_shard_index_and_count(n)
    }

    /// Increment the observation count leaving the most significant bit i.e.
    /// the [`ShardIndex`] untouched.
    fn inc_by(&self, delta: u64, ordering: Ordering) -> (ShardIndex, u64) {
        let n = self.inner.fetch_add(delta, ordering);

        ShardAndCount::split_shard_index_and_count(n)
    }

    /// Increment the observation count by one leaving the most significant bit
    /// i.e. the [`ShardIndex`] untouched.
    fn inc(&self, ordering: Ordering) -> (ShardIndex, u64) {
        self.inc_by(1, ordering)
    }

    fn split_shard_index_and_count(n: u64) -> (ShardIndex, u64) {
        let shard = n >> 63;
        let count = n & ((1 << 63) - 1);

        (shard.into(), count)
    }
}

/// Core datastructure of a Prometheus histogram
///
/// # Atomicity across collects
///
/// A histogram supports two main execution paths:
///
/// 1. `observe` which increases the overall observation counter, updates the
/// observation sum and increases a single bucket counter.
///
/// 2. `proto` (aka. collecting the metric, from now on referred to as the
/// collect operation) which snapshots the state of the histogram and exposes it
/// as a Protobuf struct.
///
/// If an observe and a collect operation interleave, the latter could be
/// exposing a snapshot of the histogram that does not uphold all histogram
/// invariants. For example for the invariant that the overall observation
/// counter should equal the sum of all bucket counters: Say that an `observe`
/// increases the overall counter but before updating a specific bucket counter
/// a collect operation snapshots the histogram.
///
/// The below implementation of `HistogramCore` prevents such race conditions by
/// using two shards, one hot shard for `observe` operations to record their
/// observation and one cold shard for collect operations to collect a
/// consistent snapshot of the histogram.
///
/// `observe` operations hit the hot shard and record their observation. Collect
/// operations switch hot and cold, wait for all `observe` calls to finish on
/// the previously hot now cold shard and then expose the consistent snapshot.
#[derive(Debug)]
pub struct HistogramCore {
    desc: Desc,
    label_pairs: Vec<proto::LabelPair>,

    /// Mutual exclusion to serialize collect operations. No two collect
    /// operations should operate on this datastructure at the same time. (See
    /// struct documentation for details.) `observe` operations can operate in
    /// parallel without holding this lock.
    collect_lock: Mutex<()>,

    /// An atomic u64 where the first bit determines the currently hot shard and
    /// the remaining 63 bits determine the overall count.
    shard_and_count: ShardAndCount,
    /// The two shards where `shard_and_count` determines which one is the hot
    /// and which one the cold at any given point in time.
    shards: [Shard; 2],

    upper_bounds: Vec<f64>,
}

impl HistogramCore {
    pub fn new(opts: &HistogramOpts, label_values: &[&str]) -> Result<HistogramCore> {
        let desc = opts.describe()?;

        for name in &desc.variable_labels {
            check_bucket_label(name)?;
        }
        for pair in &desc.const_label_pairs {
            check_bucket_label(pair.get_name())?;
        }

        let label_pairs = make_label_pairs(&desc, label_values)?;

        let buckets = check_and_adjust_buckets(opts.buckets.clone())?;

        Ok(HistogramCore {
            desc,
            label_pairs,

            collect_lock: Mutex::new(()),

            shard_and_count: ShardAndCount::new(),
            shards: [Shard::new(buckets.len()), Shard::new(buckets.len())],

            upper_bounds: buckets,
        })
    }

    /// Record a given observation (f64) in the histogram.
    //
    // First increase the overall observation counter and thus learn which shard
    // is the current hot shard. Subsequently on the hot shard update the
    // corresponding bucket count, adjust the shard's sum and finally increase
    // the shard's count.
    pub fn observe(&self, v: f64) {
        // The collect code path uses `self.shard_and_count` and
        // `self.shards[x].count` to ensure not to collect data from a shard
        // while observe calls are still operating on it.
        //
        // To ensure the above, this `inc` needs to use `Acquire` ordering to
        // force anything below this line to stay below it.
        let (shard_index, _count) = self.shard_and_count.inc(Ordering::Acquire);

        let shard: &Shard = &self.shards[usize::from(shard_index)];

        // Try find the bucket.
        let mut iter = self
            .upper_bounds
            .iter()
            .enumerate()
            .filter(|&(_, f)| v <= *f);
        if let Some((i, _)) = iter.next() {
            shard.buckets[i].inc_by(1);
        }

        shard.sum.inc_by(v);
        // Use `Release` ordering to ensure all operations above stay above.
        shard.count.inc_by_with_ordering(1, Ordering::Release);
    }

    /// Make a snapshot of the current histogram state exposed as a Protobuf
    /// struct.
    //
    // Acquire the collect lock, switch the hot and the cold shard, wait for all
    // remaining `observe` calls to finish on the previously hot now cold shard,
    // snapshot the data, update the now hot shard and reset the cold shard.
    pub fn proto(&self) -> proto::Histogram {
        let collect_guard = self.collect_lock.lock().expect("Lock poisoned");

        // `flip` needs to use AcqRel ordering to ensure the lock operation
        // above stays above and the histogram operations (especially the shard
        // resets) below stay below.
        let (cold_shard_index, overall_count) = self.shard_and_count.flip(Ordering::AcqRel);

        let cold_shard = &self.shards[usize::from(cold_shard_index)];
        let hot_shard = &self.shards[usize::from(cold_shard_index.inverse())];

        // Wait for all currently active `observe` calls on the now cold shard
        // to finish. The above call to `flip` redirects all future `observe`
        // calls to the other previously cold, now hot, shard. Thus once the
        // cold shard counter equals the value of the global counter when the
        // shards were flipped, all in-progress `observe` calls are done. With
        // all of them done, the cold shard is now in a consistent state.
        //
        // `observe` uses `Release` ordering. `compare_exchange` needs to use
        // `Acquire` ordering to ensure that (1) one sees all the previous
        // `observe` stores to the counter and (2) to ensure the below shard
        // modifications happen after this point, thus the shard is not modified
        // by any `observe` operations.
        while cold_shard
            .count
            .compare_exchange_weak(
                overall_count,
                // While at it, reset cold shard count on success.
                0,
                Ordering::Acquire,
                Ordering::Acquire,
            )
            .is_err()
        {}

        // Get cold shard sum and reset to 0.
        //
        // Use `Acquire` for load and `Release` for store to ensure not to
        // interfere with previous or upcoming collect calls.
        let cold_shard_sum = cold_shard.sum.swap(0.0, Ordering::AcqRel);

        let mut h = proto::Histogram::default();
        h.set_sample_sum(cold_shard_sum);
        h.set_sample_count(overall_count);

        let mut cumulative_count = 0;
        let mut buckets = Vec::with_capacity(self.upper_bounds.len());
        for (i, upper_bound) in self.upper_bounds.iter().enumerate() {
            // Reset the cold shard and update the hot shard.
            //
            // Use `Acquire` for load and `Release` for store to ensure not to
            // interfere with previous or upcoming collect calls.
            let cold_bucket_count = cold_shard.buckets[i].swap(0, Ordering::AcqRel);
            hot_shard.buckets[i].inc_by(cold_bucket_count);

            cumulative_count += cold_bucket_count;
            let mut b = proto::Bucket::default();
            b.set_cumulative_count(cumulative_count);
            b.set_upper_bound(*upper_bound);
            buckets.push(b);
        }
        h.set_bucket(from_vec!(buckets));

        // Update the hot shard.
        hot_shard.count.inc_by(overall_count);
        hot_shard.sum.inc_by(cold_shard_sum);

        drop(collect_guard);

        h
    }

    fn sample_sum(&self) -> f64 {
        // Make sure to not overlap with any collect calls, as they might flip
        // the hot and cold shards.
        let _guard = self.collect_lock.lock().expect("Lock poisoned");

        let (shard_index, _count) = self.shard_and_count.get();
        self.shards[shard_index as usize].sum.get()
    }

    fn sample_count(&self) -> u64 {
        self.shard_and_count.get().1
    }
}

// We have to wrap libc::timespec in order to implement std::fmt::Debug.
#[cfg(all(feature = "nightly", target_os = "linux"))]
pub struct Timespec(libc::timespec);

#[cfg(all(feature = "nightly", target_os = "linux"))]
impl std::fmt::Debug for Timespec {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "Timespec {{ tv_sec: {}, tv_nsec: {} }}",
            self.0.tv_sec, self.0.tv_nsec
        )
    }
}

#[derive(Debug)]
pub enum Instant {
    Monotonic(StdInstant),
    #[cfg(all(feature = "nightly", target_os = "linux"))]
    MonotonicCoarse(Timespec),
}

impl Instant {
    pub fn now() -> Instant {
        Instant::Monotonic(StdInstant::now())
    }

    #[cfg(all(feature = "nightly", target_os = "linux"))]
    pub fn now_coarse() -> Instant {
        Instant::MonotonicCoarse(get_time_coarse())
    }

    #[cfg(all(feature = "nightly", not(target_os = "linux")))]
    pub fn now_coarse() -> Instant {
        Instant::Monotonic(StdInstant::now())
    }

    pub fn elapsed(&self) -> Duration {
        match self {
            // We use `saturating_duration_since` to avoid panics caused by non-monotonic clocks.
            Instant::Monotonic(i) => StdInstant::now().saturating_duration_since(*i),

            // It is different from `Instant::Monotonic`, the resolution here is millisecond.
            // The processors in an SMP system do not start all at exactly the same time
            // and therefore the timer registers are typically running at an offset.
            // Use millisecond resolution for ignoring the error.
            // See more: https://linux.die.net/man/2/clock_gettime
            #[cfg(all(feature = "nightly", target_os = "linux"))]
            Instant::MonotonicCoarse(t) => {
                let now = get_time_coarse();
                let now_ms = now.0.tv_sec * MILLIS_PER_SEC + now.0.tv_nsec / NANOS_PER_MILLI;
                let t_ms = t.0.tv_sec * MILLIS_PER_SEC + t.0.tv_nsec / NANOS_PER_MILLI;
                let dur = now_ms - t_ms;
                if dur >= 0 {
                    Duration::from_millis(dur as u64)
                } else {
                    Duration::from_millis(0)
                }
            }
        }
    }

    #[inline]
    pub fn elapsed_sec(&self) -> f64 {
        duration_to_seconds(self.elapsed())
    }
}

#[cfg(all(feature = "nightly", target_os = "linux"))]
use self::coarse::*;

#[cfg(all(feature = "nightly", target_os = "linux"))]
mod coarse {
    use crate::histogram::Timespec;
    pub use libc::timespec;
    use libc::{clock_gettime, CLOCK_MONOTONIC_COARSE};

    pub const NANOS_PER_MILLI: i64 = 1_000_000;
    pub const MILLIS_PER_SEC: i64 = 1_000;

    pub fn get_time_coarse() -> Timespec {
        let mut t = Timespec(timespec {
            tv_sec: 0,
            tv_nsec: 0,
        });
        assert_eq!(
            unsafe { clock_gettime(CLOCK_MONOTONIC_COARSE, &mut t.0) },
            0
        );
        t
    }
}

/// Timer to measure and record the duration of an event.
///
/// This timer can be stopped and observed at most once, either automatically (when it
/// goes out of scope) or manually.
/// Alternatively, it can be manually stopped and discarded in order to not record its value.
#[must_use = "Timer should be kept in a variable otherwise it cannot observe duration"]
#[derive(Debug)]
pub struct HistogramTimer {
    /// A histogram for automatic recording of observations.
    histogram: Histogram,
    /// Whether the timer has already been observed once.
    observed: bool,
    /// Starting instant for the timer.
    start: Instant,
}

impl HistogramTimer {
    fn new(histogram: Histogram) -> Self {
        Self {
            histogram,
            observed: false,
            start: Instant::now(),
        }
    }

    #[cfg(feature = "nightly")]
    fn new_coarse(histogram: Histogram) -> Self {
        HistogramTimer {
            histogram,
            observed: false,
            start: Instant::now_coarse(),
        }
    }

    /// Observe and record timer duration (in seconds).
    ///
    /// It observes the floating-point number of seconds elapsed since the timer
    /// started, and it records that value to the attached histogram.
    pub fn observe_duration(self) {
        self.stop_and_record();
    }

    /// Observe, record and return timer duration (in seconds).
    ///
    /// It observes and returns a floating-point number for seconds elapsed since
    /// the timer started, recording that value to the attached histogram.
    pub fn stop_and_record(self) -> f64 {
        let mut timer = self;
        timer.observe(true)
    }

    /// Observe and return timer duration (in seconds).
    ///
    /// It returns a floating-point number of seconds elapsed since the timer started,
    /// without recording to any histogram.
    pub fn stop_and_discard(self) -> f64 {
        let mut timer = self;
        timer.observe(false)
    }

    fn observe(&mut self, record: bool) -> f64 {
        let v = self.start.elapsed_sec();
        self.observed = true;
        if record {
            self.histogram.observe(v);
        }
        v
    }
}

impl Drop for HistogramTimer {
    fn drop(&mut self) {
        if !self.observed {
            self.observe(true);
        }
    }
}

/// A [`Metric`] counts individual observations from an event or sample stream
/// in configurable buckets. Similar to a [`Summary`](crate::proto::Summary),
/// it also provides a sum of observations and an observation count.
///
/// On the Prometheus server, quantiles can be calculated from a [`Histogram`] using
/// the [`histogram_quantile`][1] function in the query language.
///
/// Note that Histograms, in contrast to Summaries, can be aggregated with the
/// Prometheus query language (see [the prometheus documentation][2] for
/// detailed procedures). However, Histograms require the user to pre-define
/// suitable buckets, (see [`linear_buckets`] and [`exponential_buckets`] for
/// some helper provided here) and they are in general less accurate. The
/// Observe method of a [`Histogram`] has a very low performance overhead in
/// comparison with the Observe method of a Summary.
///
/// [1]: https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile
/// [2]: https://prometheus.io/docs/practices/histograms/
#[derive(Clone, Debug)]
pub struct Histogram {
    core: Arc<HistogramCore>,
}

impl Histogram {
    /// `with_opts` creates a [`Histogram`] with the `opts` options.
    pub fn with_opts(opts: HistogramOpts) -> Result<Histogram> {
        Histogram::with_opts_and_label_values(&opts, &[])
    }

    fn with_opts_and_label_values(
        opts: &HistogramOpts,
        label_values: &[&str],
    ) -> Result<Histogram> {
        let core = HistogramCore::new(opts, label_values)?;

        Ok(Histogram {
            core: Arc::new(core),
        })
    }
}

impl Histogram {
    /// Add a single observation to the [`Histogram`].
    pub fn observe(&self, v: f64) {
        self.core.observe(v)
    }

    /// Return a [`HistogramTimer`] to track a duration.
    pub fn start_timer(&self) -> HistogramTimer {
        HistogramTimer::new(self.clone())
    }

    /// Return a [`HistogramTimer`] to track a duration.
    /// It is faster but less precise.
    #[cfg(feature = "nightly")]
    pub fn start_coarse_timer(&self) -> HistogramTimer {
        HistogramTimer::new_coarse(self.clone())
    }

    /// Observe execution time of a closure, in second.
    pub fn observe_closure_duration<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Observe execution time of a closure, in second.
    #[cfg(feature = "nightly")]
    pub fn observe_closure_duration_coarse<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now_coarse();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Return a [`LocalHistogram`] for single thread usage.
    pub fn local(&self) -> LocalHistogram {
        LocalHistogram::new(self.clone())
    }

    /// Return accumulated sum of all samples.
    pub fn get_sample_sum(&self) -> f64 {
        self.core.sample_sum()
    }

    /// Return count of all samples.
    pub fn get_sample_count(&self) -> u64 {
        self.core.sample_count()
    }
}

impl Metric for Histogram {
    fn metric(&self) -> proto::Metric {
        let mut m = proto::Metric::default();
        m.set_label(from_vec!(self.core.label_pairs.clone()));

        let h = self.core.proto();
        m.set_histogram(h);

        m
    }
}

impl Collector for Histogram {
    fn desc(&self) -> Vec<&Desc> {
        vec![&self.core.desc]
    }

    fn collect(&self) -> Vec<proto::MetricFamily> {
        let mut m = proto::MetricFamily::default();
        m.set_name(self.core.desc.fq_name.clone());
        m.set_help(self.core.desc.help.clone());
        m.set_field_type(proto::MetricType::HISTOGRAM);
        m.set_metric(from_vec!(vec![self.metric()]));

        vec![m]
    }
}

#[derive(Clone, Debug)]
pub struct HistogramVecBuilder {}

impl MetricVecBuilder for HistogramVecBuilder {
    type M = Histogram;
    type P = HistogramOpts;

    fn build(&self, opts: &HistogramOpts, vals: &[&str]) -> Result<Histogram> {
        Histogram::with_opts_and_label_values(opts, vals)
    }
}

/// A [`Collector`] that bundles a set of Histograms that all share the
/// same [`Desc`], but have different values for their variable labels. This is used
/// if you want to count the same thing partitioned by various dimensions
/// (e.g. HTTP request latencies, partitioned by status code and method).
pub type HistogramVec = MetricVec<HistogramVecBuilder>;

impl HistogramVec {
    /// Create a new [`HistogramVec`] based on the provided
    /// [`HistogramOpts`] and partitioned by the given label names. At least
    /// one label name must be provided.
    pub fn new(opts: HistogramOpts, label_names: &[&str]) -> Result<HistogramVec> {
        let variable_names = label_names.iter().map(|s| (*s).to_owned()).collect();
        let opts = opts.variable_labels(variable_names);
        let metric_vec =
            MetricVec::create(proto::MetricType::HISTOGRAM, HistogramVecBuilder {}, opts)?;

        Ok(metric_vec as HistogramVec)
    }

    /// Return a `LocalHistogramVec` for single thread usage.
    pub fn local(&self) -> LocalHistogramVec {
        let vec = self.clone();
        LocalHistogramVec::new(vec)
    }
}

/// Create `count` buckets, each `width` wide, where the lowest
/// bucket has an upper bound of `start`. The final +Inf bucket is not counted
/// and not included in the returned slice. The returned slice is meant to be
/// used for the Buckets field of [`HistogramOpts`].
///
/// The function returns an error if `count` is zero or `width` is zero or
/// negative.
pub fn linear_buckets(start: f64, width: f64, count: usize) -> Result<Vec<f64>> {
    if count < 1 {
        return Err(Error::Msg(format!(
            "LinearBuckets needs a positive count, count: {}",
            count
        )));
    }
    if width <= 0.0 {
        return Err(Error::Msg(format!(
            "LinearBuckets needs a width greater then 0, width: {}",
            width
        )));
    }

    let buckets: Vec<_> = (0..count)
        .map(|step| start + width * (step as f64))
        .collect();

    Ok(buckets)
}

/// Create `count` buckets, where the lowest bucket has an
/// upper bound of `start` and each following bucket's upper bound is `factor`
/// times the previous bucket's upper bound. The final +Inf bucket is not counted
/// and not included in the returned slice. The returned slice is meant to be
/// used for the Buckets field of [`HistogramOpts`].
///
/// The function returns an error if `count` is zero, if `start` is zero or
/// negative, or if `factor` is less than or equal 1.
pub fn exponential_buckets(start: f64, factor: f64, count: usize) -> Result<Vec<f64>> {
    if count < 1 {
        return Err(Error::Msg(format!(
            "exponential_buckets needs a positive count, count: {}",
            count
        )));
    }
    if start <= 0.0 {
        return Err(Error::Msg(format!(
            "exponential_buckets needs a positive start value, \
             start: {}",
            start
        )));
    }
    if factor <= 1.0 {
        return Err(Error::Msg(format!(
            "exponential_buckets needs a factor greater than 1, \
             factor: {}",
            factor
        )));
    }

    let mut next = start;
    let mut buckets = Vec::with_capacity(count);
    for _ in 0..count {
        buckets.push(next);
        next *= factor;
    }

    Ok(buckets)
}

/// `duration_to_seconds` converts Duration to seconds.
#[inline]
pub fn duration_to_seconds(d: Duration) -> f64 {
    let nanos = f64::from(d.subsec_nanos()) / 1e9;
    d.as_secs() as f64 + nanos
}

#[derive(Clone, Debug)]
pub struct LocalHistogramCore {
    histogram: Histogram,
    counts: Vec<u64>,
    count: u64,
    sum: f64,
}

/// An unsync [`Histogram`].
#[derive(Debug)]
pub struct LocalHistogram {
    core: RefCell<LocalHistogramCore>,
}

impl Clone for LocalHistogram {
    fn clone(&self) -> LocalHistogram {
        let core = self.core.clone();
        let lh = LocalHistogram { core };
        lh.clear();
        lh
    }
}

/// An unsync [`HistogramTimer`].
#[must_use = "Timer should be kept in a variable otherwise it cannot observe duration"]
#[derive(Debug)]
pub struct LocalHistogramTimer {
    /// A local histogram for automatic recording of observations.
    local: LocalHistogram,
    /// Whether the timer has already been observed once.
    observed: bool,
    /// Starting instant for the timer.
    start: Instant,
}

impl LocalHistogramTimer {
    fn new(histogram: LocalHistogram) -> Self {
        Self {
            local: histogram,
            observed: false,
            start: Instant::now(),
        }
    }

    #[cfg(feature = "nightly")]
    fn new_coarse(histogram: LocalHistogram) -> Self {
        Self {
            local: histogram,
            observed: false,
            start: Instant::now_coarse(),
        }
    }

    /// Observe and record timer duration (in seconds).
    ///
    /// It observes the floating-point number of seconds elapsed since the timer
    /// started, and it records that value to the attached histogram.
    pub fn observe_duration(self) {
        self.stop_and_record();
    }

    /// Observe, record and return timer duration (in seconds).
    ///
    /// It observes and returns a floating-point number for seconds elapsed since
    /// the timer started, recording that value to the attached histogram.
    pub fn stop_and_record(self) -> f64 {
        let mut timer = self;
        timer.observe(true)
    }

    /// Observe and return timer duration (in seconds).
    ///
    /// It returns a floating-point number of seconds elapsed since the timer started,
    /// without recording to any histogram.
    pub fn stop_and_discard(self) -> f64 {
        let mut timer = self;
        timer.observe(false)
    }

    fn observe(&mut self, record: bool) -> f64 {
        let v = self.start.elapsed_sec();
        self.observed = true;
        if record {
            self.local.observe(v);
        }
        v
    }
}

impl Drop for LocalHistogramTimer {
    fn drop(&mut self) {
        if !self.observed {
            self.observe(true);
        }
    }
}

impl LocalHistogramCore {
    fn new(histogram: Histogram) -> LocalHistogramCore {
        let counts = vec![0; histogram.core.upper_bounds.len()];

        LocalHistogramCore {
            histogram,
            counts,
            count: 0,
            sum: 0.0,
        }
    }

    pub fn observe(&mut self, v: f64) {
        // Try find the bucket.
        let mut iter = self
            .histogram
            .core
            .upper_bounds
            .iter()
            .enumerate()
            .filter(|&(_, f)| v <= *f);
        if let Some((i, _)) = iter.next() {
            self.counts[i] += 1;
        }

        self.count += 1;
        self.sum += v;
    }

    pub fn clear(&mut self) {
        for v in &mut self.counts {
            *v = 0
        }

        self.count = 0;
        self.sum = 0.0;
    }

    pub fn flush(&mut self) {
        // No cached metric, return.
        if self.count == 0 {
            return;
        }

        {
            // The collect code path uses `self.shard_and_count` and
            // `self.shards[x].count` to ensure not to collect data from a shard
            // while observe calls are still operating on it.
            //
            // To ensure the above, this `inc` needs to use `Acquire` ordering
            // to force anything below this line to stay below it.
            let (shard_index, _count) = self
                .histogram
                .core
                .shard_and_count
                .inc_by(self.count, Ordering::Acquire);
            let shard = &self.histogram.core.shards[shard_index as usize];

            for (i, v) in self.counts.iter().enumerate() {
                if *v > 0 {
                    shard.buckets[i].inc_by(*v);
                }
            }

            shard.sum.inc_by(self.sum);
            // Use `Release` ordering to ensure all operations above stay above.
            shard
                .count
                .inc_by_with_ordering(self.count, Ordering::Release);
        }

        self.clear()
    }

    fn sample_sum(&self) -> f64 {
        self.sum
    }

    fn sample_count(&self) -> u64 {
        self.count
    }
}

impl LocalHistogram {
    fn new(histogram: Histogram) -> LocalHistogram {
        let core = LocalHistogramCore::new(histogram);
        LocalHistogram {
            core: RefCell::new(core),
        }
    }

    /// Add a single observation to the [`Histogram`].
    pub fn observe(&self, v: f64) {
        self.core.borrow_mut().observe(v);
    }

    /// Return a `LocalHistogramTimer` to track a duration.
    pub fn start_timer(&self) -> LocalHistogramTimer {
        LocalHistogramTimer::new(self.clone())
    }

    /// Return a `LocalHistogramTimer` to track a duration.
    /// It is faster but less precise.
    #[cfg(feature = "nightly")]
    pub fn start_coarse_timer(&self) -> LocalHistogramTimer {
        LocalHistogramTimer::new_coarse(self.clone())
    }

    /// Observe execution time of a closure, in second.
    pub fn observe_closure_duration<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Observe execution time of a closure, in second.
    #[cfg(feature = "nightly")]
    pub fn observe_closure_duration_coarse<F, T>(&self, f: F) -> T
    where
        F: FnOnce() -> T,
    {
        let instant = Instant::now_coarse();
        let res = f();
        let elapsed = instant.elapsed_sec();
        self.observe(elapsed);
        res
    }

    /// Clear the local metric.
    pub fn clear(&self) {
        self.core.borrow_mut().clear();
    }

    /// Flush the local metrics to the [`Histogram`] metric.
    pub fn flush(&self) {
        self.core.borrow_mut().flush();
    }

    /// Return accumulated sum of local samples.
    pub fn get_sample_sum(&self) -> f64 {
        self.core.borrow().sample_sum()
    }

    /// Return count of local samples.
    pub fn get_sample_count(&self) -> u64 {
        self.core.borrow().sample_count()
    }
}

impl LocalMetric for LocalHistogram {
    /// Flush the local metrics to the [`Histogram`] metric.
    fn flush(&self) {
        LocalHistogram::flush(self);
    }
}

impl Drop for LocalHistogram {
    fn drop(&mut self) {
        self.flush()
    }
}

/// An unsync [`HistogramVec`].
#[derive(Debug)]
pub struct LocalHistogramVec {
    vec: HistogramVec,
    local: HashMap<u64, LocalHistogram>,
}

impl LocalHistogramVec {
    fn new(vec: HistogramVec) -> LocalHistogramVec {
        let local = HashMap::with_capacity(vec.v.children.read().len());
        LocalHistogramVec { vec, local }
    }

    /// Get a [`LocalHistogram`] by label values.
    /// See more [`MetricVec::with_label_values`].
    pub fn with_label_values<'a>(&'a mut self, vals: &[&str]) -> &'a LocalHistogram {
        let hash = self.vec.v.hash_label_values(vals).unwrap();
        let vec = &self.vec;
        self.local
            .entry(hash)
            .or_insert_with(|| vec.with_label_values(vals).local())
    }

    /// Remove a [`LocalHistogram`] by label values.
    /// See more [`MetricVec::remove_label_values`].
    pub fn remove_label_values(&mut self, vals: &[&str]) -> Result<()> {
        let hash = self.vec.v.hash_label_values(vals)?;
        self.local.remove(&hash);
        self.vec.v.delete_label_values(vals)
    }

    /// Flush the local metrics to the [`HistogramVec`] metric.
    pub fn flush(&self) {
        for h in self.local.values() {
            h.flush();
        }
    }
}

impl LocalMetric for LocalHistogramVec {
    /// Flush the local metrics to the [`HistogramVec`] metric.
    fn flush(&self) {
        LocalHistogramVec::flush(self)
    }
}

impl Clone for LocalHistogramVec {
    fn clone(&self) -> LocalHistogramVec {
        LocalHistogramVec::new(self.vec.clone())
    }
}

#[cfg(test)]
mod tests {
    use std::f64::{EPSILON, INFINITY};
    use std::thread;
    use std::time::Duration;

    use super::*;
    use crate::metrics::{Collector, Metric};

    #[test]
    fn test_histogram() {
        let opts = HistogramOpts::new("test1", "test help")
            .const_label("a", "1")
            .const_label("b", "2");
        let histogram = Histogram::with_opts(opts).unwrap();
        histogram.observe(1.0);

        let timer = histogram.start_timer();
        thread::sleep(Duration::from_millis(100));
        timer.observe_duration();

        let timer = histogram.start_timer();
        let handler = thread::spawn(move || {
            let _timer = timer;
            thread::sleep(Duration::from_millis(400));
        });
        assert!(handler.join().is_ok());

        let mut mfs = histogram.collect();
        assert_eq!(mfs.len(), 1);

        let mf = mfs.pop().unwrap();
        let m = mf.get_metric().get(0).unwrap();
        assert_eq!(m.get_label().len(), 2);
        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 3);
        assert!(proto_histogram.get_sample_sum() >= 1.5);
        assert_eq!(proto_histogram.get_bucket().len(), DEFAULT_BUCKETS.len());

        let buckets = vec![1.0, 2.0, 3.0];
        let opts = HistogramOpts::new("test2", "test help").buckets(buckets.clone());
        let histogram = Histogram::with_opts(opts).unwrap();
        let mut mfs = histogram.collect();
        assert_eq!(mfs.len(), 1);

        let mf = mfs.pop().unwrap();
        let m = mf.get_metric().get(0).unwrap();
        assert_eq!(m.get_label().len(), 0);
        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 0);
        assert!((proto_histogram.get_sample_sum() - 0.0) < EPSILON);
        assert_eq!(proto_histogram.get_bucket().len(), buckets.len())
    }

    #[test]
    #[cfg(feature = "nightly")]
    fn test_histogram_coarse_timer() {
        let opts = HistogramOpts::new("test1", "test help");
        let histogram = Histogram::with_opts(opts).unwrap();

        let timer = histogram.start_coarse_timer();
        thread::sleep(Duration::from_millis(100));
        timer.observe_duration();

        let timer = histogram.start_coarse_timer();
        let handler = thread::spawn(move || {
            let _timer = timer;
            thread::sleep(Duration::from_millis(400));
        });
        assert!(handler.join().is_ok());

        histogram.observe_closure_duration(|| {
            thread::sleep(Duration::from_millis(400));
        });

        let mut mfs = histogram.collect();
        assert_eq!(mfs.len(), 1);

        let mf = mfs.pop().unwrap();
        let m = mf.get_metric().get(0).unwrap();
        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 3);
        assert!((proto_histogram.get_sample_sum() - 0.0) > EPSILON);
    }

    #[test]
    #[cfg(feature = "nightly")]
    fn test_instant_on_smp() {
        let zero = Duration::from_millis(0);
        for i in 0..100_000 {
            let now = Instant::now();
            let now_coarse = Instant::now_coarse();
            if i % 100 == 0 {
                thread::yield_now();
            }
            assert!(now.elapsed() >= zero);
            assert!(now_coarse.elapsed() >= zero);
        }
    }

    #[test]
    fn test_buckets_invalidation() {
        let table = vec![
            (vec![], true, DEFAULT_BUCKETS.len()),
            (vec![-2.0, -1.0, -0.5, 0.0, 0.5, 1.0, 2.0], true, 7),
            (vec![-2.0, -1.0, -0.5, 10.0, 0.5, 1.0, 2.0], false, 7),
            (vec![-2.0, -1.0, -0.5, 0.0, 0.5, 1.0, INFINITY], true, 6),
        ];

        for (buckets, is_ok, length) in table {
            let got = check_and_adjust_buckets(buckets);
            assert_eq!(got.is_ok(), is_ok);
            if is_ok {
                assert_eq!(got.unwrap().len(), length);
            }
        }
    }

    #[test]
    fn test_buckets_functions() {
        let linear_table = vec![
            (
                -15.0,
                5.0,
                6,
                true,
                vec![-15.0, -10.0, -5.0, 0.0, 5.0, 10.0],
            ),
            (-15.0, 0.0, 6, false, vec![]),
            (-15.0, 5.0, 0, false, vec![]),
        ];

        for (param1, param2, param3, is_ok, vec) in linear_table {
            let got = linear_buckets(param1, param2, param3);
            assert_eq!(got.is_ok(), is_ok);
            if got.is_ok() {
                assert_eq!(got.unwrap(), vec);
            }
        }

        let exponential_table = vec![
            (100.0, 1.2, 3, true, vec![100.0, 120.0, 144.0]),
            (100.0, 0.5, 3, false, vec![]),
            (100.0, 1.2, 0, false, vec![]),
        ];

        for (param1, param2, param3, is_ok, vec) in exponential_table {
            let got = exponential_buckets(param1, param2, param3);
            assert_eq!(got.is_ok(), is_ok);
            if got.is_ok() {
                assert_eq!(got.unwrap(), vec);
            }
        }
    }

    #[test]
    fn test_duration_to_seconds() {
        let tbls = vec![(1000, 1.0), (1100, 1.1), (100_111, 100.111)];
        for (millis, seconds) in tbls {
            let d = Duration::from_millis(millis);
            let v = duration_to_seconds(d);
            assert!((v - seconds).abs() < EPSILON);
        }
    }

    #[test]
    fn test_histogram_vec_with_label_values() {
        let vec = HistogramVec::new(
            HistogramOpts::new("test_histogram_vec", "test histogram vec help"),
            &["l1", "l2"],
        )
        .unwrap();

        assert!(vec.remove_label_values(&["v1", "v2"]).is_err());
        vec.with_label_values(&["v1", "v2"]).observe(1.0);
        assert!(vec.remove_label_values(&["v1", "v2"]).is_ok());

        assert!(vec.remove_label_values(&["v1"]).is_err());
        assert!(vec.remove_label_values(&["v1", "v3"]).is_err());
    }

    #[test]
    fn test_histogram_vec_with_opts_buckets() {
        let labels = ["l1", "l2"];
        let buckets = vec![1.0, 2.0, 3.0];
        let vec = HistogramVec::new(
            HistogramOpts::new("test_histogram_vec", "test histogram vec help")
                .buckets(buckets.clone()),
            &labels,
        )
        .unwrap();

        let histogram = vec.with_label_values(&["v1", "v2"]);
        histogram.observe(1.0);

        let m = histogram.metric();
        assert_eq!(m.get_label().len(), labels.len());

        let proto_histogram = m.get_histogram();
        assert_eq!(proto_histogram.get_sample_count(), 1);
        assert!((proto_histogram.get_sample_sum() - 1.0) < EPSILON);
        assert_eq!(proto_histogram.get_bucket().len(), buckets.len())
    }

    #[test]
    fn test_histogram_local() {
        let buckets = vec![1.0, 2.0, 3.0];
        let opts = HistogramOpts::new("test_histogram_local", "test histogram local help")
            .buckets(buckets.clone());
        let histogram = Histogram::with_opts(opts).unwrap();
        let local = histogram.local();

        let check = |count, sum| {
            let m = histogram.metric();
            let proto_histogram = m.get_histogram();
            assert_eq!(proto_histogram.get_sample_count(), count);
            assert!((proto_histogram.get_sample_sum() - sum) < EPSILON);
        };

        local.observe(1.0);
        local.observe(4.0);
        check(0, 0.0);

        local.flush();
        check(2, 5.0);

        local.observe(2.0);
        local.clear();
        check(2, 5.0);

        local.observe(2.0);
        drop(local);
        check(3, 7.0);
    }

    #[test]
    fn test_histogram_vec_local() {
        let vec = HistogramVec::new(
            HistogramOpts::new("test_histogram_vec_local", "test histogram vec help"),
            &["l1", "l2"],
        )
        .unwrap();
        let mut local_vec = vec.local();

        vec.remove_label_values(&["v1", "v2"]).unwrap_err();
        local_vec.remove_label_values(&["v1", "v2"]).unwrap_err();

        let check = |count, sum| {
            let ms = vec.collect()[0].take_metric();
            let proto_histogram = ms[0].get_histogram();
            assert_eq!(proto_histogram.get_sample_count(), count);
            assert!((proto_histogram.get_sample_sum() - sum) < EPSILON);
        };

        {
            // Flush LocalHistogram
            let h = local_vec.with_label_values(&["v1", "v2"]);
            h.observe(1.0);
            h.flush();
            check(1, 1.0);
        }

        {
            // Flush LocalHistogramVec
            local_vec.with_label_values(&["v1", "v2"]).observe(4.0);
            local_vec.flush();
            check(2, 5.0);
        }
        {
            // Reset ["v1", "v2"]
            local_vec.remove_label_values(&["v1", "v2"]).unwrap();

            // Flush on drop
            local_vec.with_label_values(&["v1", "v2"]).observe(2.0);
            drop(local_vec);
            check(1, 2.0);
        }
    }

    /// Ensure that when an observe and a collect operation interleave, the
    /// latter does not expose a snapshot of the histogram that does not uphold
    /// all histogram invariants.
    #[test]
    fn atomic_observe_across_collects() {
        let done = Arc::new(std::sync::atomic::AtomicBool::default());
        let histogram =
            Histogram::with_opts(HistogramOpts::new("test_name", "test help").buckets(vec![1.0]))
                .unwrap();

        let done_clone = done.clone();
        let histogram_clone = histogram.clone();
        let observing_thread = std::thread::spawn(move || loop {
            if done_clone.load(std::sync::atomic::Ordering::Relaxed) {
                break;
            }

            for _ in 0..1_000_000 {
                histogram_clone.observe(1.0);
            }
        });

        let mut sample_count = 0;
        let mut cumulative_count = 0;
        let mut sample_sum = 0;
        for _ in 0..1_000_000 {
            let metric = &histogram.collect()[0].take_metric()[0];
            let proto = metric.get_histogram();

            sample_count = proto.get_sample_count();
            sample_sum = proto.get_sample_sum() as u64;
            // There is only one bucket thus the `[0]`.
            cumulative_count = proto.get_bucket()[0].get_cumulative_count();

            if sample_count != cumulative_count {
                break;
            }

            // Observation value is always `1.0` thus count and sum should
            // always equal. The number of `observe` calls is limited to
            // 1_000_000, thus the sum is limited to 1_000_000. A float 64 is
            // able to represent the sum accurately up to 9_007_199_254_740_992.
            if sample_count != sample_sum {
                break;
            }
        }

        done.store(true, std::sync::atomic::Ordering::Relaxed);
        observing_thread.join().unwrap();

        if sample_count != cumulative_count {
            panic!(
                "Histogram invariant violated: For a histogram with a single \
                 bucket observing values below the bucket's upper bound only \
                 the histogram's count should always be equal to the buckets's \
                 cumulative count, got {:?} and {:?} instead.",
                sample_count, cumulative_count,
            );
        }

        if sample_count != sample_sum {
            panic!(
                "Histogram invariant violated: For a histogram which is only \
                 ever observing a value of `1.0` the sample count should equal \
                 the sum, instead got: {:?} and {:?}",
                sample_count, sample_sum,
            )
        }
    }

    #[test]
    fn test_error_on_inconsistent_label_cardinality() {
        let hist = Histogram::with_opts(
            histogram_opts!(
                "example_histogram",
                "Used as an example",
                vec![0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0, 5.0]
            )
            .variable_label("example_variable"),
        );

        if let Err(Error::InconsistentCardinality { expect, got }) = hist {
            assert_eq!(1, expect);
            assert_eq!(0, got);
        } else {
            panic!("Expected InconsistentCardinality error.")
        }
    }
}