1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
// Copyright 2018 Developers of the Rand project.
// Copyright 2017 Paul Dicker.
// Copyright 2014-2017 Melissa O'Neill and PCG Project contributors
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! PCG random number generators
// This is the default multiplier used by PCG for 128-bit state.
const MULTIPLIER: u128 = 0x2360_ED05_1FC6_5DA4_4385_DF64_9FCC_F645;
use core::fmt;
use rand_core::{le, Error, RngCore, SeedableRng};
#[cfg(feature = "serde1")] use serde::{Deserialize, Serialize};
/// A PCG random number generator (XSL RR 128/64 (LCG) variant).
///
/// Permuted Congruential Generator with 128-bit state, internal Linear
/// Congruential Generator, and 64-bit output via "xorshift low (bits),
/// random rotation" output function.
///
/// This is a 128-bit LCG with explicitly chosen stream with the PCG-XSL-RR
/// output function. This combination is the standard `pcg64`.
///
/// Despite the name, this implementation uses 32 bytes (256 bit) space
/// comprising 128 bits of state and 128 bits stream selector. These are both
/// set by `SeedableRng`, using a 256-bit seed.
///
/// Note that two generators with different stream parameters may be closely
/// correlated.
#[derive(Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Lcg128Xsl64 {
state: u128,
increment: u128,
}
/// [`Lcg128Xsl64`] is also officially known as `pcg64`.
pub type Pcg64 = Lcg128Xsl64;
impl Lcg128Xsl64 {
/// Multi-step advance functions (jump-ahead, jump-back)
///
/// The method used here is based on Brown, "Random Number Generation
/// with Arbitrary Stride,", Transactions of the American Nuclear
/// Society (Nov. 1994). The algorithm is very similar to fast
/// exponentiation.
///
/// Even though delta is an unsigned integer, we can pass a
/// signed integer to go backwards, it just goes "the long way round".
///
/// Using this function is equivalent to calling `next_64()` `delta`
/// number of times.
#[inline]
pub fn advance(&mut self, delta: u128) {
let mut acc_mult: u128 = 1;
let mut acc_plus: u128 = 0;
let mut cur_mult = MULTIPLIER;
let mut cur_plus = self.increment;
let mut mdelta = delta;
while mdelta > 0 {
if (mdelta & 1) != 0 {
acc_mult = acc_mult.wrapping_mul(cur_mult);
acc_plus = acc_plus.wrapping_mul(cur_mult).wrapping_add(cur_plus);
}
cur_plus = cur_mult.wrapping_add(1).wrapping_mul(cur_plus);
cur_mult = cur_mult.wrapping_mul(cur_mult);
mdelta /= 2;
}
self.state = acc_mult.wrapping_mul(self.state).wrapping_add(acc_plus);
}
/// Construct an instance compatible with PCG seed and stream.
///
/// Note that two generators with different stream parameters may be closely
/// correlated.
///
/// PCG specifies the following default values for both parameters:
///
/// - `state = 0xcafef00dd15ea5e5`
/// - `stream = 0xa02bdbf7bb3c0a7ac28fa16a64abf96`
pub fn new(state: u128, stream: u128) -> Self {
// The increment must be odd, hence we discard one bit:
let increment = (stream << 1) | 1;
Lcg128Xsl64::from_state_incr(state, increment)
}
#[inline]
fn from_state_incr(state: u128, increment: u128) -> Self {
let mut pcg = Lcg128Xsl64 { state, increment };
// Move away from inital value:
pcg.state = pcg.state.wrapping_add(pcg.increment);
pcg.step();
pcg
}
#[inline]
fn step(&mut self) {
// prepare the LCG for the next round
self.state = self
.state
.wrapping_mul(MULTIPLIER)
.wrapping_add(self.increment);
}
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Lcg128Xsl64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Lcg128Xsl64 {{}}")
}
}
/// We use a single 255-bit seed to initialise the state and select a stream.
/// One `seed` bit (lowest bit of `seed[8]`) is ignored.
impl SeedableRng for Lcg128Xsl64 {
type Seed = [u8; 32];
fn from_seed(seed: Self::Seed) -> Self {
let mut seed_u64 = [0u64; 4];
le::read_u64_into(&seed, &mut seed_u64);
let state = u128::from(seed_u64[0]) | (u128::from(seed_u64[1]) << 64);
let incr = u128::from(seed_u64[2]) | (u128::from(seed_u64[3]) << 64);
// The increment must be odd, hence we discard one bit:
Lcg128Xsl64::from_state_incr(state, incr | 1)
}
}
impl RngCore for Lcg128Xsl64 {
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.step();
output_xsl_rr(self.state)
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
fill_bytes_impl(self, dest)
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
/// A PCG random number generator (XSL 128/64 (MCG) variant).
///
/// Permuted Congruential Generator with 128-bit state, internal Multiplicative
/// Congruential Generator, and 64-bit output via "xorshift low (bits),
/// random rotation" output function.
///
/// This is a 128-bit MCG with the PCG-XSL-RR output function, also known as
/// `pcg64_fast`.
/// Note that compared to the standard `pcg64` (128-bit LCG with PCG-XSL-RR
/// output function), this RNG is faster, also has a long cycle, and still has
/// good performance on statistical tests.
#[derive(Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Mcg128Xsl64 {
state: u128,
}
/// A friendly name for [`Mcg128Xsl64`] (also known as `pcg64_fast`).
pub type Pcg64Mcg = Mcg128Xsl64;
impl Mcg128Xsl64 {
/// Multi-step advance functions (jump-ahead, jump-back)
///
/// The method used here is based on Brown, "Random Number Generation
/// with Arbitrary Stride,", Transactions of the American Nuclear
/// Society (Nov. 1994). The algorithm is very similar to fast
/// exponentiation.
///
/// Even though delta is an unsigned integer, we can pass a
/// signed integer to go backwards, it just goes "the long way round".
///
/// Using this function is equivalent to calling `next_64()` `delta`
/// number of times.
#[inline]
pub fn advance(&mut self, delta: u128) {
let mut acc_mult: u128 = 1;
let mut acc_plus: u128 = 0;
let mut cur_mult = MULTIPLIER;
let mut cur_plus: u128 = 0;
let mut mdelta = delta;
while mdelta > 0 {
if (mdelta & 1) != 0 {
acc_mult = acc_mult.wrapping_mul(cur_mult);
acc_plus = acc_plus.wrapping_mul(cur_mult).wrapping_add(cur_plus);
}
cur_plus = cur_mult.wrapping_add(1).wrapping_mul(cur_plus);
cur_mult = cur_mult.wrapping_mul(cur_mult);
mdelta /= 2;
}
self.state = acc_mult.wrapping_mul(self.state).wrapping_add(acc_plus);
}
/// Construct an instance compatible with PCG seed.
///
/// Note that PCG specifies a default value for the parameter:
///
/// - `state = 0xcafef00dd15ea5e5`
pub fn new(state: u128) -> Self {
// Force low bit to 1, as in C version (C++ uses `state | 3` instead).
Mcg128Xsl64 { state: state | 1 }
}
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Mcg128Xsl64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Mcg128Xsl64 {{}}")
}
}
/// We use a single 126-bit seed to initialise the state and select a stream.
/// Two `seed` bits (lowest order of last byte) are ignored.
impl SeedableRng for Mcg128Xsl64 {
type Seed = [u8; 16];
fn from_seed(seed: Self::Seed) -> Self {
// Read as if a little-endian u128 value:
let mut seed_u64 = [0u64; 2];
le::read_u64_into(&seed, &mut seed_u64);
let state = u128::from(seed_u64[0]) |
u128::from(seed_u64[1]) << 64;
Mcg128Xsl64::new(state)
}
}
impl RngCore for Mcg128Xsl64 {
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.state = self.state.wrapping_mul(MULTIPLIER);
output_xsl_rr(self.state)
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
fill_bytes_impl(self, dest)
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.fill_bytes(dest);
Ok(())
}
}
#[inline(always)]
fn output_xsl_rr(state: u128) -> u64 {
// Output function XSL RR ("xorshift low (bits), random rotation")
// Constants are for 128-bit state, 64-bit output
const XSHIFT: u32 = 64; // (128 - 64 + 64) / 2
const ROTATE: u32 = 122; // 128 - 6
let rot = (state >> ROTATE) as u32;
let xsl = ((state >> XSHIFT) as u64) ^ (state as u64);
xsl.rotate_right(rot)
}
#[inline(always)]
fn fill_bytes_impl<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) {
let mut left = dest;
while left.len() >= 8 {
let (l, r) = { left }.split_at_mut(8);
left = r;
let chunk: [u8; 8] = rng.next_u64().to_le_bytes();
l.copy_from_slice(&chunk);
}
let n = left.len();
if n > 0 {
let chunk: [u8; 8] = rng.next_u64().to_le_bytes();
left.copy_from_slice(&chunk[..n]);
}
}