rand_pcg/
pcg128.rs

1// Copyright 2018 Developers of the Rand project.
2// Copyright 2017 Paul Dicker.
3// Copyright 2014-2017 Melissa O'Neill and PCG Project contributors
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! PCG random number generators
12
13// This is the default multiplier used by PCG for 128-bit state.
14const MULTIPLIER: u128 = 0x2360_ED05_1FC6_5DA4_4385_DF64_9FCC_F645;
15
16use core::fmt;
17use rand_core::{le, Error, RngCore, SeedableRng};
18#[cfg(feature = "serde1")] use serde::{Deserialize, Serialize};
19
20/// A PCG random number generator (XSL RR 128/64 (LCG) variant).
21///
22/// Permuted Congruential Generator with 128-bit state, internal Linear
23/// Congruential Generator, and 64-bit output via "xorshift low (bits),
24/// random rotation" output function.
25///
26/// This is a 128-bit LCG with explicitly chosen stream with the PCG-XSL-RR
27/// output function. This combination is the standard `pcg64`.
28///
29/// Despite the name, this implementation uses 32 bytes (256 bit) space
30/// comprising 128 bits of state and 128 bits stream selector. These are both
31/// set by `SeedableRng`, using a 256-bit seed.
32///
33/// Note that two generators with different stream parameters may be closely
34/// correlated.
35#[derive(Clone, PartialEq, Eq)]
36#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
37pub struct Lcg128Xsl64 {
38    state: u128,
39    increment: u128,
40}
41
42/// [`Lcg128Xsl64`] is also officially known as `pcg64`.
43pub type Pcg64 = Lcg128Xsl64;
44
45impl Lcg128Xsl64 {
46    /// Multi-step advance functions (jump-ahead, jump-back)
47    ///
48    /// The method used here is based on Brown, "Random Number Generation
49    /// with Arbitrary Stride,", Transactions of the American Nuclear
50    /// Society (Nov. 1994).  The algorithm is very similar to fast
51    /// exponentiation.
52    ///
53    /// Even though delta is an unsigned integer, we can pass a
54    /// signed integer to go backwards, it just goes "the long way round".
55    ///
56    /// Using this function is equivalent to calling `next_64()` `delta`
57    /// number of times.
58    #[inline]
59    pub fn advance(&mut self, delta: u128) {
60        let mut acc_mult: u128 = 1;
61        let mut acc_plus: u128 = 0;
62        let mut cur_mult = MULTIPLIER;
63        let mut cur_plus = self.increment;
64        let mut mdelta = delta;
65
66        while mdelta > 0 {
67            if (mdelta & 1) != 0 {
68                acc_mult = acc_mult.wrapping_mul(cur_mult);
69                acc_plus = acc_plus.wrapping_mul(cur_mult).wrapping_add(cur_plus);
70            }
71            cur_plus = cur_mult.wrapping_add(1).wrapping_mul(cur_plus);
72            cur_mult = cur_mult.wrapping_mul(cur_mult);
73            mdelta /= 2;
74        }
75        self.state = acc_mult.wrapping_mul(self.state).wrapping_add(acc_plus);
76    }
77
78    /// Construct an instance compatible with PCG seed and stream.
79    ///
80    /// Note that two generators with different stream parameters may be closely
81    /// correlated.
82    ///
83    /// PCG specifies the following default values for both parameters:
84    ///
85    /// - `state = 0xcafef00dd15ea5e5`
86    /// - `stream = 0xa02bdbf7bb3c0a7ac28fa16a64abf96`
87    pub fn new(state: u128, stream: u128) -> Self {
88        // The increment must be odd, hence we discard one bit:
89        let increment = (stream << 1) | 1;
90        Lcg128Xsl64::from_state_incr(state, increment)
91    }
92
93    #[inline]
94    fn from_state_incr(state: u128, increment: u128) -> Self {
95        let mut pcg = Lcg128Xsl64 { state, increment };
96        // Move away from inital value:
97        pcg.state = pcg.state.wrapping_add(pcg.increment);
98        pcg.step();
99        pcg
100    }
101
102    #[inline]
103    fn step(&mut self) {
104        // prepare the LCG for the next round
105        self.state = self
106            .state
107            .wrapping_mul(MULTIPLIER)
108            .wrapping_add(self.increment);
109    }
110}
111
112// Custom Debug implementation that does not expose the internal state
113impl fmt::Debug for Lcg128Xsl64 {
114    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
115        write!(f, "Lcg128Xsl64 {{}}")
116    }
117}
118
119/// We use a single 255-bit seed to initialise the state and select a stream.
120/// One `seed` bit (lowest bit of `seed[8]`) is ignored.
121impl SeedableRng for Lcg128Xsl64 {
122    type Seed = [u8; 32];
123
124    fn from_seed(seed: Self::Seed) -> Self {
125        let mut seed_u64 = [0u64; 4];
126        le::read_u64_into(&seed, &mut seed_u64);
127        let state = u128::from(seed_u64[0]) | (u128::from(seed_u64[1]) << 64);
128        let incr = u128::from(seed_u64[2]) | (u128::from(seed_u64[3]) << 64);
129
130        // The increment must be odd, hence we discard one bit:
131        Lcg128Xsl64::from_state_incr(state, incr | 1)
132    }
133}
134
135impl RngCore for Lcg128Xsl64 {
136    #[inline]
137    fn next_u32(&mut self) -> u32 {
138        self.next_u64() as u32
139    }
140
141    #[inline]
142    fn next_u64(&mut self) -> u64 {
143        self.step();
144        output_xsl_rr(self.state)
145    }
146
147    #[inline]
148    fn fill_bytes(&mut self, dest: &mut [u8]) {
149        fill_bytes_impl(self, dest)
150    }
151
152    #[inline]
153    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
154        self.fill_bytes(dest);
155        Ok(())
156    }
157}
158
159
160/// A PCG random number generator (XSL 128/64 (MCG) variant).
161///
162/// Permuted Congruential Generator with 128-bit state, internal Multiplicative
163/// Congruential Generator, and 64-bit output via "xorshift low (bits),
164/// random rotation" output function.
165///
166/// This is a 128-bit MCG with the PCG-XSL-RR output function, also known as
167/// `pcg64_fast`.
168/// Note that compared to the standard `pcg64` (128-bit LCG with PCG-XSL-RR
169/// output function), this RNG is faster, also has a long cycle, and still has
170/// good performance on statistical tests.
171#[derive(Clone, PartialEq, Eq)]
172#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
173pub struct Mcg128Xsl64 {
174    state: u128,
175}
176
177/// A friendly name for [`Mcg128Xsl64`] (also known as `pcg64_fast`).
178pub type Pcg64Mcg = Mcg128Xsl64;
179
180impl Mcg128Xsl64 {
181    /// Multi-step advance functions (jump-ahead, jump-back)
182    ///
183    /// The method used here is based on Brown, "Random Number Generation
184    /// with Arbitrary Stride,", Transactions of the American Nuclear
185    /// Society (Nov. 1994).  The algorithm is very similar to fast
186    /// exponentiation.
187    ///
188    /// Even though delta is an unsigned integer, we can pass a
189    /// signed integer to go backwards, it just goes "the long way round".
190    ///
191    /// Using this function is equivalent to calling `next_64()` `delta`
192    /// number of times.
193    #[inline]
194    pub fn advance(&mut self, delta: u128) {
195        let mut acc_mult: u128 = 1;
196        let mut acc_plus: u128 = 0;
197        let mut cur_mult = MULTIPLIER;
198        let mut cur_plus: u128 = 0;
199        let mut mdelta = delta;
200
201        while mdelta > 0 {
202            if (mdelta & 1) != 0 {
203                acc_mult = acc_mult.wrapping_mul(cur_mult);
204                acc_plus = acc_plus.wrapping_mul(cur_mult).wrapping_add(cur_plus);
205            }
206            cur_plus = cur_mult.wrapping_add(1).wrapping_mul(cur_plus);
207            cur_mult = cur_mult.wrapping_mul(cur_mult);
208            mdelta /= 2;
209        }
210        self.state = acc_mult.wrapping_mul(self.state).wrapping_add(acc_plus);
211    }
212
213    /// Construct an instance compatible with PCG seed.
214    ///
215    /// Note that PCG specifies a default value for the parameter:
216    ///
217    /// - `state = 0xcafef00dd15ea5e5`
218    pub fn new(state: u128) -> Self {
219        // Force low bit to 1, as in C version (C++ uses `state | 3` instead).
220        Mcg128Xsl64 { state: state | 1 }
221    }
222}
223
224// Custom Debug implementation that does not expose the internal state
225impl fmt::Debug for Mcg128Xsl64 {
226    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
227        write!(f, "Mcg128Xsl64 {{}}")
228    }
229}
230
231/// We use a single 126-bit seed to initialise the state and select a stream.
232/// Two `seed` bits (lowest order of last byte) are ignored.
233impl SeedableRng for Mcg128Xsl64 {
234    type Seed = [u8; 16];
235
236    fn from_seed(seed: Self::Seed) -> Self {
237        // Read as if a little-endian u128 value:
238        let mut seed_u64 = [0u64; 2];
239        le::read_u64_into(&seed, &mut seed_u64);
240        let state = u128::from(seed_u64[0])  |
241                    u128::from(seed_u64[1]) << 64;
242        Mcg128Xsl64::new(state)
243    }
244}
245
246impl RngCore for Mcg128Xsl64 {
247    #[inline]
248    fn next_u32(&mut self) -> u32 {
249        self.next_u64() as u32
250    }
251
252    #[inline]
253    fn next_u64(&mut self) -> u64 {
254        self.state = self.state.wrapping_mul(MULTIPLIER);
255        output_xsl_rr(self.state)
256    }
257
258    #[inline]
259    fn fill_bytes(&mut self, dest: &mut [u8]) {
260        fill_bytes_impl(self, dest)
261    }
262
263    #[inline]
264    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
265        self.fill_bytes(dest);
266        Ok(())
267    }
268}
269
270#[inline(always)]
271fn output_xsl_rr(state: u128) -> u64 {
272    // Output function XSL RR ("xorshift low (bits), random rotation")
273    // Constants are for 128-bit state, 64-bit output
274    const XSHIFT: u32 = 64; // (128 - 64 + 64) / 2
275    const ROTATE: u32 = 122; // 128 - 6
276
277    let rot = (state >> ROTATE) as u32;
278    let xsl = ((state >> XSHIFT) as u64) ^ (state as u64);
279    xsl.rotate_right(rot)
280}
281
282#[inline(always)]
283fn fill_bytes_impl<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) {
284    let mut left = dest;
285    while left.len() >= 8 {
286        let (l, r) = { left }.split_at_mut(8);
287        left = r;
288        let chunk: [u8; 8] = rng.next_u64().to_le_bytes();
289        l.copy_from_slice(&chunk);
290    }
291    let n = left.len();
292    if n > 0 {
293        let chunk: [u8; 8] = rng.next_u64().to_le_bytes();
294        left.copy_from_slice(&chunk[..n]);
295    }
296}