rand_pcg/pcg64.rs
1// Copyright 2018 Developers of the Rand project.
2// Copyright 2017 Paul Dicker.
3// Copyright 2014-2017 Melissa O'Neill and PCG Project contributors
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! PCG random number generators
12
13use core::fmt;
14use rand_core::{impls, le, Error, RngCore, SeedableRng};
15#[cfg(feature = "serde1")] use serde::{Deserialize, Serialize};
16
17// This is the default multiplier used by PCG for 64-bit state.
18const MULTIPLIER: u64 = 6364136223846793005;
19
20/// A PCG random number generator (XSH RR 64/32 (LCG) variant).
21///
22/// Permuted Congruential Generator with 64-bit state, internal Linear
23/// Congruential Generator, and 32-bit output via "xorshift high (bits),
24/// random rotation" output function.
25///
26/// This is a 64-bit LCG with explicitly chosen stream with the PCG-XSH-RR
27/// output function. This combination is the standard `pcg32`.
28///
29/// Despite the name, this implementation uses 16 bytes (128 bit) space
30/// comprising 64 bits of state and 64 bits stream selector. These are both set
31/// by `SeedableRng`, using a 128-bit seed.
32///
33/// Note that two generators with different stream parameter may be closely
34/// correlated.
35#[derive(Clone, PartialEq, Eq)]
36#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
37pub struct Lcg64Xsh32 {
38 state: u64,
39 increment: u64,
40}
41
42/// [`Lcg64Xsh32`] is also officially known as `pcg32`.
43pub type Pcg32 = Lcg64Xsh32;
44
45impl Lcg64Xsh32 {
46 /// Multi-step advance functions (jump-ahead, jump-back)
47 ///
48 /// The method used here is based on Brown, "Random Number Generation
49 /// with Arbitrary Stride,", Transactions of the American Nuclear
50 /// Society (Nov. 1994). The algorithm is very similar to fast
51 /// exponentiation.
52 ///
53 /// Even though delta is an unsigned integer, we can pass a
54 /// signed integer to go backwards, it just goes "the long way round".
55 ///
56 /// Using this function is equivalent to calling `next_32()` `delta`
57 /// number of times.
58 #[inline]
59 pub fn advance(&mut self, delta: u64) {
60 let mut acc_mult: u64 = 1;
61 let mut acc_plus: u64 = 0;
62 let mut cur_mult = MULTIPLIER;
63 let mut cur_plus = self.increment;
64 let mut mdelta = delta;
65
66 while mdelta > 0 {
67 if (mdelta & 1) != 0 {
68 acc_mult = acc_mult.wrapping_mul(cur_mult);
69 acc_plus = acc_plus.wrapping_mul(cur_mult).wrapping_add(cur_plus);
70 }
71 cur_plus = cur_mult.wrapping_add(1).wrapping_mul(cur_plus);
72 cur_mult = cur_mult.wrapping_mul(cur_mult);
73 mdelta /= 2;
74 }
75 self.state = acc_mult.wrapping_mul(self.state).wrapping_add(acc_plus);
76 }
77
78 /// Construct an instance compatible with PCG seed and stream.
79 ///
80 /// Note that two generators with different stream parameters may be closely
81 /// correlated.
82 ///
83 /// PCG specifies the following default values for both parameters:
84 ///
85 /// - `state = 0xcafef00dd15ea5e5`
86 /// - `stream = 0xa02bdbf7bb3c0a7`
87 // Note: stream is 1442695040888963407u64 >> 1
88 pub fn new(state: u64, stream: u64) -> Self {
89 // The increment must be odd, hence we discard one bit:
90 let increment = (stream << 1) | 1;
91 Lcg64Xsh32::from_state_incr(state, increment)
92 }
93
94 #[inline]
95 fn from_state_incr(state: u64, increment: u64) -> Self {
96 let mut pcg = Lcg64Xsh32 { state, increment };
97 // Move away from inital value:
98 pcg.state = pcg.state.wrapping_add(pcg.increment);
99 pcg.step();
100 pcg
101 }
102
103 #[inline]
104 fn step(&mut self) {
105 // prepare the LCG for the next round
106 self.state = self
107 .state
108 .wrapping_mul(MULTIPLIER)
109 .wrapping_add(self.increment);
110 }
111}
112
113// Custom Debug implementation that does not expose the internal state
114impl fmt::Debug for Lcg64Xsh32 {
115 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
116 write!(f, "Lcg64Xsh32 {{}}")
117 }
118}
119
120/// We use a single 127-bit seed to initialise the state and select a stream.
121/// One `seed` bit (lowest bit of `seed[8]`) is ignored.
122impl SeedableRng for Lcg64Xsh32 {
123 type Seed = [u8; 16];
124
125 fn from_seed(seed: Self::Seed) -> Self {
126 let mut seed_u64 = [0u64; 2];
127 le::read_u64_into(&seed, &mut seed_u64);
128
129 // The increment must be odd, hence we discard one bit:
130 Lcg64Xsh32::from_state_incr(seed_u64[0], seed_u64[1] | 1)
131 }
132}
133
134impl RngCore for Lcg64Xsh32 {
135 #[inline]
136 fn next_u32(&mut self) -> u32 {
137 let state = self.state;
138 self.step();
139
140 // Output function XSH RR: xorshift high (bits), followed by a random rotate
141 // Constants are for 64-bit state, 32-bit output
142 const ROTATE: u32 = 59; // 64 - 5
143 const XSHIFT: u32 = 18; // (5 + 32) / 2
144 const SPARE: u32 = 27; // 64 - 32 - 5
145
146 let rot = (state >> ROTATE) as u32;
147 let xsh = (((state >> XSHIFT) ^ state) >> SPARE) as u32;
148 xsh.rotate_right(rot)
149 }
150
151 #[inline]
152 fn next_u64(&mut self) -> u64 {
153 impls::next_u64_via_u32(self)
154 }
155
156 #[inline]
157 fn fill_bytes(&mut self, dest: &mut [u8]) {
158 impls::fill_bytes_via_next(self, dest)
159 }
160
161 #[inline]
162 fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
163 self.fill_bytes(dest);
164 Ok(())
165 }
166}