1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
* Derives from the dominator tree implementation in regalloc.rs, which is
* licensed under the Apache Public License 2.0 with LLVM Exception. See:
* https://github.com/bytecodealliance/regalloc.rs
*/
// This is an implementation of the algorithm described in
//
// A Simple, Fast Dominance Algorithm
// Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy
// Department of Computer Science, Rice University, Houston, Texas, USA
// TR-06-33870
// https://www.cs.rice.edu/~keith/EMBED/dom.pdf
use crate::Block;
// Helper
fn merge_sets(
idom: &[Block], // map from Block to Block
block_to_rpo: &[Option<u32>],
mut node1: Block,
mut node2: Block,
) -> Block {
while node1 != node2 {
if node1.is_invalid() || node2.is_invalid() {
return Block::invalid();
}
let rpo1 = block_to_rpo[node1.index()].unwrap();
let rpo2 = block_to_rpo[node2.index()].unwrap();
if rpo1 > rpo2 {
node1 = idom[node1.index()];
} else if rpo2 > rpo1 {
node2 = idom[node2.index()];
}
}
debug_assert!(node1 == node2);
node1
}
pub fn calculate<'a, PredFn: Fn(Block) -> &'a [Block]>(
num_blocks: usize,
preds: PredFn,
post_ord: &[Block],
start: Block,
) -> Vec<Block> {
// We have post_ord, which is the postorder sequence.
// Compute maps from RPO to block number and vice-versa.
let mut block_to_rpo = vec![None; num_blocks];
block_to_rpo.resize(num_blocks, None);
for (i, rpo_block) in post_ord.iter().rev().enumerate() {
block_to_rpo[rpo_block.index()] = Some(i as u32);
}
let mut idom = vec![Block::invalid(); num_blocks];
// The start node must have itself as a parent.
idom[start.index()] = start;
let mut changed = true;
while changed {
changed = false;
// Consider blocks in reverse postorder. Skip any that are unreachable.
for &node in post_ord.iter().rev() {
let rponum = block_to_rpo[node.index()].unwrap();
let mut parent = Block::invalid();
for &pred in preds(node).iter() {
let pred_rpo = match block_to_rpo[pred.index()] {
Some(r) => r,
None => {
// Skip unreachable preds.
continue;
}
};
if pred_rpo < rponum {
parent = pred;
break;
}
}
if parent.is_valid() {
for &pred in preds(node).iter() {
if pred == parent {
continue;
}
if idom[pred.index()].is_invalid() {
continue;
}
parent = merge_sets(&idom, &block_to_rpo[..], parent, pred);
}
}
if parent.is_valid() && parent != idom[node.index()] {
idom[node.index()] = parent;
changed = true;
}
}
}
// Now set the start node's dominator-tree parent to "invalid";
// this allows the loop in `dominates` to terminate.
idom[start.index()] = Block::invalid();
idom
}
pub fn dominates(idom: &[Block], a: Block, mut b: Block) -> bool {
loop {
if a == b {
return true;
}
if b.is_invalid() {
return false;
}
b = idom[b.index()];
}
}