1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/*
* This file was initially derived from the files
* `js/src/jit/BacktrackingAllocator.h` and
* `js/src/jit/BacktrackingAllocator.cpp` in Mozilla Firefox, and was
* originally licensed under the Mozilla Public License 2.0. We
* subsequently relicensed it to Apache-2.0 WITH LLVM-exception (see
* https://github.com/bytecodealliance/regalloc2/issues/7).
*
* Since the initial port, the design has been substantially evolved
* and optimized.
*/
//! Main allocation loop that processes bundles.
use super::{
spill_weight_from_constraint, Env, LiveBundleIndex, LiveBundleVec, LiveRangeFlag,
LiveRangeIndex, LiveRangeKey, LiveRangeList, LiveRangeListEntry, PRegIndex, RegTraversalIter,
Requirement, SpillWeight, UseList, VRegIndex,
};
use crate::{
ion::data_structures::{
CodeRange, BUNDLE_MAX_NORMAL_SPILL_WEIGHT, MAX_SPLITS_PER_SPILLSET,
MINIMAL_BUNDLE_SPILL_WEIGHT, MINIMAL_FIXED_BUNDLE_SPILL_WEIGHT,
},
Allocation, Function, Inst, InstPosition, OperandConstraint, OperandKind, PReg, ProgPoint,
RegAllocError,
};
use fxhash::FxHashSet;
use smallvec::{smallvec, SmallVec};
use std::fmt::Debug;
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum AllocRegResult {
Allocated(Allocation),
Conflict(LiveBundleVec, ProgPoint),
ConflictWithFixed(u32, ProgPoint),
ConflictHighCost,
}
impl<'a, F: Function> Env<'a, F> {
pub fn process_bundles(&mut self) -> Result<(), RegAllocError> {
while let Some((bundle, reg_hint)) = self.allocation_queue.pop() {
self.stats.process_bundle_count += 1;
self.process_bundle(bundle, reg_hint)?;
}
self.stats.final_liverange_count = self.ranges.len();
self.stats.final_bundle_count = self.bundles.len();
self.stats.spill_bundle_count = self.spilled_bundles.len();
Ok(())
}
pub fn try_to_allocate_bundle_to_reg(
&mut self,
bundle: LiveBundleIndex,
reg: PRegIndex,
// if the max bundle weight in the conflict set exceeds this
// cost (if provided), just return
// `AllocRegResult::ConflictHighCost`.
max_allowable_cost: Option<u32>,
) -> AllocRegResult {
trace!("try_to_allocate_bundle_to_reg: {:?} -> {:?}", bundle, reg);
let mut conflicts = smallvec![];
self.conflict_set.clear();
let mut max_conflict_weight = 0;
// Traverse the BTreeMap in order by requesting the whole
// range spanned by the bundle and iterating over that
// concurrently with our ranges. Because our ranges are in
// order, and the BTreeMap is as well, this allows us to have
// an overall O(n log n) + O(b) complexity, where the PReg has
// n current ranges and the bundle has b ranges, rather than
// O(b * n log n) with the simple probe-for-each-bundle-range
// approach.
//
// Note that the comparator function on a CodeRange tests for
// *overlap*, so we are checking whether the BTree contains
// any preg range that *overlaps* with range `range`, not
// literally the range `range`.
let bundle_ranges = &self.bundles[bundle.index()].ranges;
let from_key = LiveRangeKey::from_range(&CodeRange {
from: bundle_ranges.first().unwrap().range.from,
to: bundle_ranges.first().unwrap().range.from,
});
let mut preg_range_iter = self.pregs[reg.index()]
.allocations
.btree
.range(from_key..)
.peekable();
trace!(
"alloc map for {:?} in range {:?}..: {:?}",
reg,
from_key,
self.pregs[reg.index()].allocations.btree
);
let mut first_conflict: Option<ProgPoint> = None;
'ranges: for entry in bundle_ranges {
trace!(" -> range LR {:?}: {:?}", entry.index, entry.range);
let key = LiveRangeKey::from_range(&entry.range);
let mut skips = 0;
'alloc: loop {
trace!(" -> PReg range {:?}", preg_range_iter.peek());
// Advance our BTree traversal until it is >= this bundle
// range (i.e., skip PReg allocations in the BTree that
// are completely before this bundle range).
if preg_range_iter.peek().is_some() && *preg_range_iter.peek().unwrap().0 < key {
trace!(
"Skipping PReg range {:?}",
preg_range_iter.peek().unwrap().0
);
preg_range_iter.next();
skips += 1;
if skips >= 16 {
let from_pos = entry.range.from;
let from_key = LiveRangeKey::from_range(&CodeRange {
from: from_pos,
to: from_pos,
});
preg_range_iter = self.pregs[reg.index()]
.allocations
.btree
.range(from_key..)
.peekable();
skips = 0;
}
continue 'alloc;
}
skips = 0;
// If there are no more PReg allocations, we're done!
if preg_range_iter.peek().is_none() {
trace!(" -> no more PReg allocations; so no conflict possible!");
break 'ranges;
}
// If the current PReg range is beyond this range, there is no conflict; continue.
if *preg_range_iter.peek().unwrap().0 > key {
trace!(
" -> next PReg allocation is at {:?}; moving to next VReg range",
preg_range_iter.peek().unwrap().0
);
break 'alloc;
}
// Otherwise, there is a conflict.
let preg_key = *preg_range_iter.peek().unwrap().0;
debug_assert_eq!(preg_key, key); // Assert that this range overlaps.
let preg_range = preg_range_iter.next().unwrap().1;
trace!(" -> btree contains range {:?} that overlaps", preg_range);
if preg_range.is_valid() {
trace!(" -> from vreg {:?}", self.ranges[preg_range.index()].vreg);
// range from an allocated bundle: find the bundle and add to
// conflicts list.
let conflict_bundle = self.ranges[preg_range.index()].bundle;
trace!(" -> conflict bundle {:?}", conflict_bundle);
if self.conflict_set.insert(conflict_bundle) {
conflicts.push(conflict_bundle);
max_conflict_weight = std::cmp::max(
max_conflict_weight,
self.bundles[conflict_bundle.index()].cached_spill_weight(),
);
if max_allowable_cost.is_some()
&& max_conflict_weight > max_allowable_cost.unwrap()
{
trace!(" -> reached high cost, retrying early");
return AllocRegResult::ConflictHighCost;
}
}
if first_conflict.is_none() {
first_conflict = Some(ProgPoint::from_index(std::cmp::max(
preg_key.from,
key.from,
)));
}
} else {
trace!(" -> conflict with fixed reservation");
// range from a direct use of the PReg (due to clobber).
return AllocRegResult::ConflictWithFixed(
max_conflict_weight,
ProgPoint::from_index(preg_key.from),
);
}
}
}
if conflicts.len() > 0 {
return AllocRegResult::Conflict(conflicts, first_conflict.unwrap());
}
// We can allocate! Add our ranges to the preg's BTree.
let preg = PReg::from_index(reg.index());
trace!(" -> bundle {:?} assigned to preg {:?}", bundle, preg);
self.bundles[bundle.index()].allocation = Allocation::reg(preg);
for entry in &self.bundles[bundle.index()].ranges {
self.pregs[reg.index()]
.allocations
.btree
.insert(LiveRangeKey::from_range(&entry.range), entry.index);
}
AllocRegResult::Allocated(Allocation::reg(preg))
}
pub fn evict_bundle(&mut self, bundle: LiveBundleIndex) {
trace!(
"evicting bundle {:?}: alloc {:?}",
bundle,
self.bundles[bundle.index()].allocation
);
let preg = match self.bundles[bundle.index()].allocation.as_reg() {
Some(preg) => preg,
None => {
trace!(
" -> has no allocation! {:?}",
self.bundles[bundle.index()].allocation
);
return;
}
};
let preg_idx = PRegIndex::new(preg.index());
self.bundles[bundle.index()].allocation = Allocation::none();
for entry in &self.bundles[bundle.index()].ranges {
trace!(" -> removing LR {:?} from reg {:?}", entry.index, preg_idx);
self.pregs[preg_idx.index()]
.allocations
.btree
.remove(&LiveRangeKey::from_range(&entry.range));
}
let prio = self.bundles[bundle.index()].prio;
trace!(" -> prio {}; back into queue", prio);
self.allocation_queue
.insert(bundle, prio as usize, PReg::invalid());
}
pub fn bundle_spill_weight(&self, bundle: LiveBundleIndex) -> u32 {
self.bundles[bundle.index()].cached_spill_weight()
}
pub fn maximum_spill_weight_in_bundle_set(&self, bundles: &LiveBundleVec) -> u32 {
trace!("maximum_spill_weight_in_bundle_set: {:?}", bundles);
let m = bundles
.iter()
.map(|&b| {
let w = self.bundles[b.index()].cached_spill_weight();
trace!("bundle{}: {}", b.index(), w);
w
})
.max()
.unwrap_or(0);
trace!(" -> max: {}", m);
m
}
pub fn recompute_bundle_properties(&mut self, bundle: LiveBundleIndex) {
trace!("recompute bundle properties: bundle {:?}", bundle);
let minimal;
let mut fixed = false;
let mut fixed_def = false;
let mut stack = false;
let bundledata = &self.bundles[bundle.index()];
let first_range = bundledata.ranges[0].index;
let first_range_data = &self.ranges[first_range.index()];
self.bundles[bundle.index()].prio = self.compute_bundle_prio(bundle);
if first_range_data.vreg.is_invalid() {
trace!(" -> no vreg; minimal and fixed");
minimal = true;
fixed = true;
} else {
for u in &first_range_data.uses {
trace!(" -> use: {:?}", u);
if let OperandConstraint::FixedReg(_) = u.operand.constraint() {
trace!(" -> fixed operand at {:?}: {:?}", u.pos, u.operand);
fixed = true;
if u.operand.kind() == OperandKind::Def {
trace!(" -> is fixed def");
fixed_def = true;
}
}
if let OperandConstraint::Stack = u.operand.constraint() {
trace!(" -> stack operand at {:?}: {:?}", u.pos, u.operand);
stack = true;
}
if stack && fixed {
break;
}
}
// Minimal if the range covers only one instruction. Note
// that it could cover just one ProgPoint,
// i.e. X.Before..X.After, or two ProgPoints,
// i.e. X.Before..X+1.Before.
trace!(" -> first range has range {:?}", first_range_data.range);
let bundle_start = self.bundles[bundle.index()]
.ranges
.first()
.unwrap()
.range
.from;
let bundle_end = self.bundles[bundle.index()].ranges.last().unwrap().range.to;
minimal = bundle_start.inst() == bundle_end.prev().inst();
trace!(" -> minimal: {}", minimal);
}
let spill_weight = if minimal {
if fixed {
trace!(" -> fixed and minimal");
MINIMAL_FIXED_BUNDLE_SPILL_WEIGHT
} else {
trace!(" -> non-fixed and minimal");
MINIMAL_BUNDLE_SPILL_WEIGHT
}
} else {
let mut total = SpillWeight::zero();
for entry in &self.bundles[bundle.index()].ranges {
let range_data = &self.ranges[entry.index.index()];
trace!(
" -> uses spill weight: +{:?}",
range_data.uses_spill_weight()
);
total = total + range_data.uses_spill_weight();
}
if self.bundles[bundle.index()].prio > 0 {
let final_weight = (total.to_f32() as u32) / self.bundles[bundle.index()].prio;
trace!(
" -> dividing by prio {}; final weight {}",
self.bundles[bundle.index()].prio,
final_weight
);
std::cmp::min(BUNDLE_MAX_NORMAL_SPILL_WEIGHT, final_weight)
} else {
0
}
};
self.bundles[bundle.index()].set_cached_spill_weight_and_props(
spill_weight,
minimal,
fixed,
fixed_def,
stack,
);
}
pub fn minimal_bundle(&self, bundle: LiveBundleIndex) -> bool {
self.bundles[bundle.index()].cached_minimal()
}
pub fn recompute_range_properties(&mut self, range: LiveRangeIndex) {
let rangedata = &mut self.ranges[range.index()];
let mut w = SpillWeight::zero();
for u in &rangedata.uses {
w = w + SpillWeight::from_bits(u.weight);
trace!("range{}: use {:?}", range.index(), u);
}
rangedata.set_uses_spill_weight(w);
if rangedata.uses.len() > 0 && rangedata.uses[0].operand.kind() == OperandKind::Def {
// Note that we *set* the flag here, but we never *clear*
// it: it may be set by a progmove as well (which does not
// create an explicit use or def), and we want to preserve
// that. We will never split or trim ranges in a way that
// removes a def at the front and requires the flag to be
// cleared.
rangedata.set_flag(LiveRangeFlag::StartsAtDef);
}
}
pub fn get_or_create_spill_bundle(
&mut self,
bundle: LiveBundleIndex,
create_if_absent: bool,
) -> Option<LiveBundleIndex> {
let ssidx = self.bundles[bundle.index()].spillset;
let idx = self.spillsets[ssidx.index()].spill_bundle;
if idx.is_valid() {
Some(idx)
} else if create_if_absent {
let idx = self.create_bundle();
self.spillsets[ssidx.index()].spill_bundle = idx;
self.bundles[idx.index()].spillset = ssidx;
self.spilled_bundles.push(idx);
Some(idx)
} else {
None
}
}
pub fn split_and_requeue_bundle(
&mut self,
bundle: LiveBundleIndex,
mut split_at: ProgPoint,
reg_hint: PReg,
// Do we trim the parts around the split and put them in the
// spill bundle?
trim_ends_into_spill_bundle: bool,
) {
self.stats.splits += 1;
trace!(
"split bundle {:?} at {:?} and requeue with reg hint (for first part) {:?}",
bundle,
split_at,
reg_hint,
);
// Split `bundle` at `split_at`, creating new LiveRanges and
// bundles (and updating vregs' linked lists appropriately),
// and enqueue the new bundles.
let spillset = self.bundles[bundle.index()].spillset;
// Have we reached the maximum split count? If so, fall back
// to a "minimal bundles and spill bundle" setup for this
// bundle. See the doc-comment on
// `split_into_minimal_bundles()` above for more.
if self.spillsets[spillset.index()].splits >= MAX_SPLITS_PER_SPILLSET {
self.split_into_minimal_bundles(bundle, reg_hint);
return;
}
self.spillsets[spillset.index()].splits += 1;
debug_assert!(!self.bundles[bundle.index()].ranges.is_empty());
// Split point *at* start is OK; this means we peel off
// exactly one use to create a minimal bundle.
let bundle_start = self.bundles[bundle.index()]
.ranges
.first()
.unwrap()
.range
.from;
debug_assert!(split_at >= bundle_start);
let bundle_end = self.bundles[bundle.index()].ranges.last().unwrap().range.to;
debug_assert!(split_at < bundle_end);
// Is the split point *at* the start? If so, peel off the
// first use: set the split point just after it, or just
// before it if it comes after the start of the bundle.
if split_at == bundle_start {
// Find any uses; if none, just chop off one instruction.
let mut first_use = None;
'outer: for entry in &self.bundles[bundle.index()].ranges {
for u in &self.ranges[entry.index.index()].uses {
first_use = Some(u.pos);
break 'outer;
}
}
trace!(" -> first use loc is {:?}", first_use);
split_at = match first_use {
Some(pos) => {
if pos.inst() == bundle_start.inst() {
ProgPoint::before(pos.inst().next())
} else {
ProgPoint::before(pos.inst())
}
}
None => ProgPoint::before(
self.bundles[bundle.index()]
.ranges
.first()
.unwrap()
.range
.from
.inst()
.next(),
),
};
trace!(
"split point is at bundle start; advancing to {:?}",
split_at
);
} else {
// Don't split in the middle of an instruction -- this could
// create impossible moves (we cannot insert a move between an
// instruction's uses and defs).
if split_at.pos() == InstPosition::After {
split_at = split_at.next();
}
if split_at >= bundle_end {
split_at = split_at.prev().prev();
}
}
debug_assert!(split_at > bundle_start && split_at < bundle_end);
// We need to find which LRs fall on each side of the split,
// which LR we need to split down the middle, then update the
// current bundle, create a new one, and (re)-queue both.
trace!(" -> LRs: {:?}", self.bundles[bundle.index()].ranges);
let mut last_lr_in_old_bundle_idx = 0; // last LR-list index in old bundle
let mut first_lr_in_new_bundle_idx = 0; // first LR-list index in new bundle
for (i, entry) in self.bundles[bundle.index()].ranges.iter().enumerate() {
if split_at > entry.range.from {
last_lr_in_old_bundle_idx = i;
first_lr_in_new_bundle_idx = i;
}
if split_at < entry.range.to {
first_lr_in_new_bundle_idx = i;
break;
}
}
trace!(
" -> last LR in old bundle: LR {:?}",
self.bundles[bundle.index()].ranges[last_lr_in_old_bundle_idx]
);
trace!(
" -> first LR in new bundle: LR {:?}",
self.bundles[bundle.index()].ranges[first_lr_in_new_bundle_idx]
);
// Take the sublist of LRs that will go in the new bundle.
let mut new_lr_list: LiveRangeList = self.bundles[bundle.index()]
.ranges
.iter()
.cloned()
.skip(first_lr_in_new_bundle_idx)
.collect();
self.bundles[bundle.index()]
.ranges
.truncate(last_lr_in_old_bundle_idx + 1);
self.bundles[bundle.index()].ranges.shrink_to_fit();
// If the first entry in `new_lr_list` is a LR that is split
// down the middle, replace it with a new LR and chop off the
// end of the same LR in the original list.
if split_at > new_lr_list[0].range.from {
debug_assert_eq!(last_lr_in_old_bundle_idx, first_lr_in_new_bundle_idx);
let orig_lr = new_lr_list[0].index;
let new_lr = self.create_liverange(CodeRange {
from: split_at,
to: new_lr_list[0].range.to,
});
self.ranges[new_lr.index()].vreg = self.ranges[orig_lr.index()].vreg;
trace!(" -> splitting LR {:?} into {:?}", orig_lr, new_lr);
let first_use = self.ranges[orig_lr.index()]
.uses
.iter()
.position(|u| u.pos >= split_at)
.unwrap_or(self.ranges[orig_lr.index()].uses.len());
let rest_uses: UseList = self.ranges[orig_lr.index()]
.uses
.iter()
.cloned()
.skip(first_use)
.collect();
self.ranges[new_lr.index()].uses = rest_uses;
self.ranges[orig_lr.index()].uses.truncate(first_use);
self.ranges[orig_lr.index()].uses.shrink_to_fit();
self.recompute_range_properties(orig_lr);
self.recompute_range_properties(new_lr);
new_lr_list[0].index = new_lr;
new_lr_list[0].range = self.ranges[new_lr.index()].range;
self.ranges[orig_lr.index()].range.to = split_at;
self.bundles[bundle.index()].ranges[last_lr_in_old_bundle_idx].range =
self.ranges[orig_lr.index()].range;
// Perform a lazy split in the VReg data. We just
// append the new LR and its range; we will sort by
// start of range, and fix up range ends, once when we
// iterate over the VReg's ranges after allocation
// completes (this is the only time when order
// matters).
self.vregs[self.ranges[new_lr.index()].vreg.index()]
.ranges
.push(LiveRangeListEntry {
range: self.ranges[new_lr.index()].range,
index: new_lr,
});
}
let new_bundle = self.create_bundle();
trace!(" -> creating new bundle {:?}", new_bundle);
self.bundles[new_bundle.index()].spillset = spillset;
for entry in &new_lr_list {
self.ranges[entry.index.index()].bundle = new_bundle;
}
self.bundles[new_bundle.index()].ranges = new_lr_list;
if trim_ends_into_spill_bundle {
// Finally, handle moving LRs to the spill bundle when
// appropriate: If the first range in `new_bundle` or last
// range in `bundle` has "empty space" beyond the first or
// last use (respectively), trim it and put an empty LR into
// the spill bundle. (We are careful to treat the "starts at
// def" flag as an implicit first def even if no def-type Use
// is present.)
while let Some(entry) = self.bundles[bundle.index()].ranges.last().cloned() {
let end = entry.range.to;
let vreg = self.ranges[entry.index.index()].vreg;
let last_use = self.ranges[entry.index.index()].uses.last().map(|u| u.pos);
if last_use.is_none() {
let spill = self
.get_or_create_spill_bundle(bundle, /* create_if_absent = */ true)
.unwrap();
trace!(
" -> bundle {:?} range {:?}: no uses; moving to spill bundle {:?}",
bundle,
entry.index,
spill
);
self.bundles[spill.index()].ranges.push(entry);
self.bundles[bundle.index()].ranges.pop();
self.ranges[entry.index.index()].bundle = spill;
continue;
}
let last_use = last_use.unwrap();
let split = ProgPoint::before(last_use.inst().next());
if split < end {
let spill = self
.get_or_create_spill_bundle(bundle, /* create_if_absent = */ true)
.unwrap();
self.bundles[bundle.index()]
.ranges
.last_mut()
.unwrap()
.range
.to = split;
self.ranges[self.bundles[bundle.index()]
.ranges
.last()
.unwrap()
.index
.index()]
.range
.to = split;
let range = CodeRange {
from: split,
to: end,
};
let empty_lr = self.create_liverange(range);
self.bundles[spill.index()].ranges.push(LiveRangeListEntry {
range,
index: empty_lr,
});
self.ranges[empty_lr.index()].bundle = spill;
self.vregs[vreg.index()].ranges.push(LiveRangeListEntry {
range,
index: empty_lr,
});
trace!(
" -> bundle {:?} range {:?}: last use implies split point {:?}",
bundle,
entry.index,
split
);
trace!(
" -> moving trailing empty region to new spill bundle {:?} with new LR {:?}",
spill,
empty_lr
);
}
break;
}
while let Some(entry) = self.bundles[new_bundle.index()].ranges.first().cloned() {
if self.ranges[entry.index.index()].has_flag(LiveRangeFlag::StartsAtDef) {
break;
}
let start = entry.range.from;
let vreg = self.ranges[entry.index.index()].vreg;
let first_use = self.ranges[entry.index.index()].uses.first().map(|u| u.pos);
if first_use.is_none() {
let spill = self
.get_or_create_spill_bundle(new_bundle, /* create_if_absent = */ true)
.unwrap();
trace!(
" -> bundle {:?} range {:?}: no uses; moving to spill bundle {:?}",
new_bundle,
entry.index,
spill
);
self.bundles[spill.index()].ranges.push(entry);
self.bundles[new_bundle.index()].ranges.drain(..1);
self.ranges[entry.index.index()].bundle = spill;
continue;
}
let first_use = first_use.unwrap();
let split = ProgPoint::before(first_use.inst());
if split > start {
let spill = self
.get_or_create_spill_bundle(new_bundle, /* create_if_absent = */ true)
.unwrap();
self.bundles[new_bundle.index()]
.ranges
.first_mut()
.unwrap()
.range
.from = split;
self.ranges[self.bundles[new_bundle.index()]
.ranges
.first()
.unwrap()
.index
.index()]
.range
.from = split;
let range = CodeRange {
from: start,
to: split,
};
let empty_lr = self.create_liverange(range);
self.bundles[spill.index()].ranges.push(LiveRangeListEntry {
range,
index: empty_lr,
});
self.ranges[empty_lr.index()].bundle = spill;
self.vregs[vreg.index()].ranges.push(LiveRangeListEntry {
range,
index: empty_lr,
});
trace!(
" -> bundle {:?} range {:?}: first use implies split point {:?}",
bundle,
entry.index,
first_use,
);
trace!(
" -> moving leading empty region to new spill bundle {:?} with new LR {:?}",
spill,
empty_lr
);
}
break;
}
}
if self.bundles[bundle.index()].ranges.len() > 0 {
self.recompute_bundle_properties(bundle);
let prio = self.bundles[bundle.index()].prio;
self.allocation_queue
.insert(bundle, prio as usize, reg_hint);
}
if self.bundles[new_bundle.index()].ranges.len() > 0 {
self.recompute_bundle_properties(new_bundle);
let prio = self.bundles[new_bundle.index()].prio;
self.allocation_queue
.insert(new_bundle, prio as usize, reg_hint);
}
}
/// Splits the given bundle into minimal bundles per Use, falling
/// back onto the spill bundle. This must work for any bundle no
/// matter how many conflicts.
///
/// This is meant to solve a quadratic-cost problem that exists
/// with "normal" splitting as implemented above. With that
/// procedure, , splitting a bundle produces two
/// halves. Furthermore, it has cost linear in the length of the
/// bundle, because the resulting half-bundles have their
/// requirements recomputed with a new scan, and because we copy
/// half the use-list over to the tail end sub-bundle.
///
/// This works fine when a bundle has a handful of splits overall,
/// but not when an input has a systematic pattern of conflicts
/// that will require O(|bundle|) splits (e.g., every Use is
/// constrained to a different fixed register than the last
/// one). In such a case, we get quadratic behavior.
///
/// This method implements a direct split into minimal bundles
/// along the whole length of the bundle, putting the regions
/// without uses in the spill bundle. We do this once the number
/// of splits in an original bundle (tracked by spillset) reaches
/// a pre-determined limit.
///
/// This basically approximates what a non-splitting allocator
/// would do: it "spills" the whole bundle to possibly a
/// stackslot, or a second-chance register allocation at best, via
/// the spill bundle; and then does minimal reservations of
/// registers just at uses/defs and moves the "spilled" value
/// into/out of them immediately.
pub fn split_into_minimal_bundles(&mut self, bundle: LiveBundleIndex, reg_hint: PReg) {
let mut removed_lrs: FxHashSet<LiveRangeIndex> = FxHashSet::default();
let mut removed_lrs_vregs: FxHashSet<VRegIndex> = FxHashSet::default();
let mut new_lrs: SmallVec<[(VRegIndex, LiveRangeIndex); 16]> = smallvec![];
let mut new_bundles: SmallVec<[LiveBundleIndex; 16]> = smallvec![];
let spill = self
.get_or_create_spill_bundle(bundle, /* create_if_absent = */ true)
.unwrap();
trace!(
"Splitting bundle {:?} into minimal bundles with reg hint {}",
bundle,
reg_hint
);
let mut last_lr: Option<LiveRangeIndex> = None;
let mut last_bundle: Option<LiveBundleIndex> = None;
let mut last_inst: Option<Inst> = None;
let mut last_vreg: Option<VRegIndex> = None;
for entry_idx in 0..self.bundles[bundle.index()].ranges.len() {
// Iterate manually; don't borrow `self`.
let entry = self.bundles[bundle.index()].ranges[entry_idx];
let lr_from = entry.range.from;
let lr_to = entry.range.to;
removed_lrs.insert(entry.index);
let vreg = self.ranges[entry.index.index()].vreg;
removed_lrs_vregs.insert(vreg);
trace!(" -> removing old LR {:?} for vreg {:?}", entry.index, vreg);
let mut last_live_pos = entry.range.from;
for use_idx in 0..self.ranges[entry.index.index()].uses.len() {
let u = self.ranges[entry.index.index()].uses[use_idx];
trace!(" -> use {:?} (last_live_pos {:?})", u, last_live_pos);
// If we just created a LR for this inst at the last
// pos, add this use to the same LR.
if Some(u.pos.inst()) == last_inst && Some(vreg) == last_vreg {
self.ranges[last_lr.unwrap().index()].uses.push(u);
trace!(" -> appended to last LR {:?}", last_lr.unwrap());
continue;
}
// The minimal bundle runs through the whole inst
// (up to the Before of the next inst), *unless*
// the original LR was only over the Before (up to
// the After) of this inst.
let to = std::cmp::min(ProgPoint::before(u.pos.inst().next()), lr_to);
// If the last bundle was at the same inst, add a new
// LR to the same bundle; otherwise, create a LR and a
// new bundle.
if Some(u.pos.inst()) == last_inst {
let cr = CodeRange { from: u.pos, to };
let lr = self.create_liverange(cr);
new_lrs.push((vreg, lr));
self.ranges[lr.index()].uses.push(u);
self.ranges[lr.index()].vreg = vreg;
trace!(
" -> created new LR {:?} but adding to existing bundle {:?}",
lr,
last_bundle.unwrap()
);
// Edit the previous LR to end mid-inst.
self.bundles[last_bundle.unwrap().index()]
.ranges
.last_mut()
.unwrap()
.range
.to = u.pos;
self.ranges[last_lr.unwrap().index()].range.to = u.pos;
// Add this LR to the bundle.
self.bundles[last_bundle.unwrap().index()]
.ranges
.push(LiveRangeListEntry {
range: cr,
index: lr,
});
self.ranges[lr.index()].bundle = last_bundle.unwrap();
last_live_pos = ProgPoint::before(u.pos.inst().next());
continue;
}
// Otherwise, create a new LR.
let pos = ProgPoint::before(u.pos.inst());
let pos = std::cmp::max(lr_from, pos);
let cr = CodeRange { from: pos, to };
let lr = self.create_liverange(cr);
new_lrs.push((vreg, lr));
self.ranges[lr.index()].uses.push(u);
self.ranges[lr.index()].vreg = vreg;
// Create a new bundle that contains only this LR.
let new_bundle = self.create_bundle();
self.ranges[lr.index()].bundle = new_bundle;
self.bundles[new_bundle.index()].spillset = self.bundles[bundle.index()].spillset;
self.bundles[new_bundle.index()]
.ranges
.push(LiveRangeListEntry {
range: cr,
index: lr,
});
new_bundles.push(new_bundle);
// If this use was a Def, set the StartsAtDef flag for
// the new LR. (N.B.: *not* Mod, only Def, because Mod
// needs an input. This flag specifically indicates
// that the LR does not require the value to be moved
// into location at start because it (re)defines the
// value.)
if u.operand.kind() == OperandKind::Def {
self.ranges[lr.index()].set_flag(LiveRangeFlag::StartsAtDef);
}
trace!(
" -> created new LR {:?} range {:?} with new bundle {:?} for this use",
lr,
cr,
new_bundle
);
// If there was any intervening range in the LR not
// covered by the minimal new LR above, add it to the
// spillset.
if pos > last_live_pos {
let cr = CodeRange {
from: last_live_pos,
to: pos,
};
let spill_lr = self.create_liverange(cr);
self.ranges[spill_lr.index()].vreg = vreg;
self.ranges[spill_lr.index()].bundle = spill;
new_lrs.push((vreg, spill_lr));
self.bundles[spill.index()].ranges.push(LiveRangeListEntry {
range: cr,
index: spill_lr,
});
self.ranges[spill_lr.index()].bundle = spill;
trace!(
" -> put intervening range {:?} in new LR {:?} in spill bundle {:?}",
cr,
spill_lr,
spill
);
}
last_live_pos = ProgPoint::before(u.pos.inst().next());
last_lr = Some(lr);
last_bundle = Some(new_bundle);
last_inst = Some(u.pos.inst());
last_vreg = Some(vreg);
}
// Clear the use-list from the original LR.
self.ranges[entry.index.index()].uses = Default::default();
// If there is space from the last use to the end of the
// LR, put that in the spill bundle too.
if entry.range.to > last_live_pos {
let cr = CodeRange {
from: last_live_pos,
to: entry.range.to,
};
let spill_lr = self.create_liverange(cr);
self.ranges[spill_lr.index()].vreg = vreg;
self.ranges[spill_lr.index()].bundle = spill;
new_lrs.push((vreg, spill_lr));
self.bundles[spill.index()].ranges.push(LiveRangeListEntry {
range: cr,
index: spill_lr,
});
self.ranges[spill_lr.index()].bundle = spill;
trace!(
" -> put trailing range {:?} in new LR {:?} in spill bundle {:?}",
cr,
spill_lr,
spill
);
}
}
// Clear the LR list in the original bundle.
self.bundles[bundle.index()].ranges.clear();
self.bundles[bundle.index()].ranges.shrink_to_fit();
// Remove all of the removed LRs from respective vregs' lists.
for vreg in removed_lrs_vregs {
self.vregs[vreg.index()]
.ranges
.retain(|entry| !removed_lrs.contains(&entry.index));
}
// Add the new LRs to their respective vreg lists.
for (vreg, lr) in new_lrs {
let range = self.ranges[lr.index()].range;
let entry = LiveRangeListEntry { range, index: lr };
self.vregs[vreg.index()].ranges.push(entry);
}
// Recompute bundle properties for all new bundles and enqueue
// them.
for bundle in new_bundles {
if self.bundles[bundle.index()].ranges.len() > 0 {
self.recompute_bundle_properties(bundle);
let prio = self.bundles[bundle.index()].prio;
self.allocation_queue
.insert(bundle, prio as usize, reg_hint);
}
}
}
pub fn process_bundle(
&mut self,
bundle: LiveBundleIndex,
reg_hint: PReg,
) -> Result<(), RegAllocError> {
let class = self.spillsets[self.bundles[bundle.index()].spillset.index()].class;
// Grab a hint from either the queue or our spillset, if any.
let mut hint_reg = if reg_hint != PReg::invalid() {
reg_hint
} else {
self.spillsets[self.bundles[bundle.index()].spillset.index()].reg_hint
};
if self.pregs[hint_reg.index()].is_stack {
hint_reg = PReg::invalid();
}
trace!("process_bundle: bundle {:?} hint {:?}", bundle, hint_reg,);
let req = match self.compute_requirement(bundle) {
Ok(req) => req,
Err(conflict) => {
// We have to split right away. We'll find a point to
// split that would allow at least the first half of the
// split to be conflict-free.
debug_assert!(
!self.minimal_bundle(bundle),
"Minimal bundle with conflict!"
);
self.split_and_requeue_bundle(
bundle,
/* split_at_point = */ conflict.suggested_split_point(),
reg_hint,
/* trim_ends_into_spill_bundle = */
conflict.should_trim_edges_around_split(),
);
return Ok(());
}
};
// If no requirement at all (because no uses), and *if* a
// spill bundle is already present, then move the LRs over to
// the spill bundle right away.
match req {
Requirement::Any => {
if let Some(spill) =
self.get_or_create_spill_bundle(bundle, /* create_if_absent = */ false)
{
let mut list =
std::mem::replace(&mut self.bundles[bundle.index()].ranges, smallvec![]);
for entry in &list {
self.ranges[entry.index.index()].bundle = spill;
}
self.bundles[spill.index()].ranges.extend(list.drain(..));
return Ok(());
}
}
_ => {}
}
// Try to allocate!
let mut attempts = 0;
loop {
attempts += 1;
trace!("attempt {}, req {:?}", attempts, req);
debug_assert!(attempts < 100 * self.func.num_insts());
let fixed_preg = match req {
Requirement::FixedReg(preg) | Requirement::FixedStack(preg) => Some(preg),
Requirement::Register => None,
Requirement::Stack => {
// If we must be on the stack, mark our spillset
// as required immediately.
self.spillsets[self.bundles[bundle.index()].spillset.index()].required = true;
return Ok(());
}
Requirement::Any => {
self.spilled_bundles.push(bundle);
return Ok(());
}
};
// Scan all pregs, or the one fixed preg, and attempt to allocate.
let mut lowest_cost_evict_conflict_set: Option<LiveBundleVec> = None;
let mut lowest_cost_evict_conflict_cost: Option<u32> = None;
let mut lowest_cost_split_conflict_cost: Option<u32> = None;
let mut lowest_cost_split_conflict_point = ProgPoint::before(Inst::new(0));
let mut lowest_cost_split_conflict_reg = PReg::invalid();
// Heuristic: start the scan for an available
// register at an offset influenced both by our
// location in the code and by the bundle we're
// considering. This has the effect of spreading
// demand more evenly across registers.
let scan_offset = self.ranges[self.bundles[bundle.index()].ranges[0].index.index()]
.range
.from
.inst()
.index()
+ bundle.index();
self.stats.process_bundle_reg_probe_start_any += 1;
for preg in RegTraversalIter::new(
self.env,
class,
hint_reg,
PReg::invalid(),
scan_offset,
fixed_preg,
) {
self.stats.process_bundle_reg_probes_any += 1;
let preg_idx = PRegIndex::new(preg.index());
trace!("trying preg {:?}", preg_idx);
let scan_limit_cost = match (
lowest_cost_evict_conflict_cost,
lowest_cost_split_conflict_cost,
) {
(Some(a), Some(b)) => Some(std::cmp::max(a, b)),
_ => None,
};
match self.try_to_allocate_bundle_to_reg(bundle, preg_idx, scan_limit_cost) {
AllocRegResult::Allocated(alloc) => {
self.stats.process_bundle_reg_success_any += 1;
trace!(" -> allocated to any {:?}", preg_idx);
self.spillsets[self.bundles[bundle.index()].spillset.index()].reg_hint =
alloc.as_reg().unwrap();
return Ok(());
}
AllocRegResult::Conflict(bundles, first_conflict_point) => {
trace!(
" -> conflict with bundles {:?}, first conflict at {:?}",
bundles,
first_conflict_point
);
let conflict_cost = self.maximum_spill_weight_in_bundle_set(&bundles);
if lowest_cost_evict_conflict_cost.is_none()
|| conflict_cost < lowest_cost_evict_conflict_cost.unwrap()
{
lowest_cost_evict_conflict_cost = Some(conflict_cost);
lowest_cost_evict_conflict_set = Some(bundles);
}
let loop_depth = self.cfginfo.approx_loop_depth
[self.cfginfo.insn_block[first_conflict_point.inst().index()].index()];
let move_cost = spill_weight_from_constraint(
OperandConstraint::Reg,
loop_depth as usize,
/* is_def = */ true,
)
.to_int();
if lowest_cost_split_conflict_cost.is_none()
|| (conflict_cost + move_cost)
< lowest_cost_split_conflict_cost.unwrap()
{
lowest_cost_split_conflict_cost = Some(conflict_cost + move_cost);
lowest_cost_split_conflict_point = first_conflict_point;
lowest_cost_split_conflict_reg = preg;
}
}
AllocRegResult::ConflictWithFixed(max_cost, point) => {
trace!(" -> conflict with fixed alloc; cost of other bundles up to point is {}, conflict at {:?}", max_cost, point);
let loop_depth = self.cfginfo.approx_loop_depth
[self.cfginfo.insn_block[point.inst().index()].index()];
let move_cost = spill_weight_from_constraint(
OperandConstraint::Reg,
loop_depth as usize,
/* is_def = */ true,
)
.to_int();
if lowest_cost_split_conflict_cost.is_none()
|| (max_cost + move_cost) < lowest_cost_split_conflict_cost.unwrap()
{
lowest_cost_split_conflict_cost = Some(max_cost + move_cost);
lowest_cost_split_conflict_point = point;
lowest_cost_split_conflict_reg = preg;
}
}
AllocRegResult::ConflictHighCost => {
// Simply don't consider -- we already have
// a lower-cost conflict bundle option
// to evict.
continue;
}
}
}
// Otherwise, we *require* a register, but didn't fit into
// any with current bundle assignments. Hence, we will need
// to either split or attempt to evict some bundles.
trace!(
" -> lowest cost evict: set {:?}, cost {:?}",
lowest_cost_evict_conflict_set,
lowest_cost_evict_conflict_cost,
);
trace!(
" -> lowest cost split: cost {:?}, point {:?}, reg {:?}",
lowest_cost_split_conflict_cost,
lowest_cost_split_conflict_point,
lowest_cost_split_conflict_reg
);
// If we reach here, we *must* have an option either to split or evict.
debug_assert!(
lowest_cost_split_conflict_cost.is_some()
|| lowest_cost_evict_conflict_cost.is_some()
);
let our_spill_weight = self.bundle_spill_weight(bundle);
trace!(" -> our spill weight: {}", our_spill_weight);
// We detect the "too-many-live-registers" case here and
// return an error cleanly, rather than panicking, because
// the regalloc.rs fuzzer depends on the register
// allocator to correctly reject impossible-to-allocate
// programs in order to discard invalid test cases.
if self.minimal_bundle(bundle)
&& (attempts >= 2
|| lowest_cost_evict_conflict_cost.is_none()
|| lowest_cost_evict_conflict_cost.unwrap() >= our_spill_weight)
{
if let Requirement::Register = req {
// Check if this is a too-many-live-registers situation.
let range = self.bundles[bundle.index()].ranges[0].range;
trace!("checking for too many live regs");
let mut min_bundles_assigned = 0;
let mut fixed_assigned = 0;
let mut total_regs = 0;
for preg in self.env.preferred_regs_by_class[class as u8 as usize]
.iter()
.chain(self.env.non_preferred_regs_by_class[class as u8 as usize].iter())
{
trace!(" -> PR {:?}", preg);
let start = LiveRangeKey::from_range(&CodeRange {
from: range.from.prev(),
to: range.from.prev(),
});
for (key, lr) in self.pregs[preg.index()].allocations.btree.range(start..) {
let preg_range = key.to_range();
if preg_range.to <= range.from {
continue;
}
if preg_range.from >= range.to {
break;
}
if lr.is_valid() {
if self.minimal_bundle(self.ranges[lr.index()].bundle) {
trace!(" -> min bundle {:?}", lr);
min_bundles_assigned += 1;
} else {
trace!(" -> non-min bundle {:?}", lr);
}
} else {
trace!(" -> fixed bundle");
fixed_assigned += 1;
}
}
total_regs += 1;
}
trace!(
" -> total {}, fixed {}, min {}",
total_regs,
fixed_assigned,
min_bundles_assigned
);
if min_bundles_assigned + fixed_assigned >= total_regs {
return Err(RegAllocError::TooManyLiveRegs);
}
}
panic!("Could not allocate minimal bundle, but the allocation problem should be possible to solve");
}
// If our bundle's weight is less than or equal to(*) the
// evict cost, choose to split. Also pick splitting if
// we're on our second or more attempt and we didn't
// allocate. Also pick splitting if the conflict set is
// empty, meaning a fixed conflict that can't be evicted.
//
// (*) the "equal to" part is very important: it prevents
// an infinite loop where two bundles with equal spill
// cost continually evict each other in an infinite
// allocation loop. In such a case, the first bundle in
// wins, and the other splits.
//
// Note that we don't split if the bundle is minimal.
if !self.minimal_bundle(bundle)
&& (attempts >= 2
|| lowest_cost_evict_conflict_cost.is_none()
|| our_spill_weight <= lowest_cost_evict_conflict_cost.unwrap())
{
trace!(
" -> deciding to split: our spill weight is {}",
self.bundle_spill_weight(bundle)
);
let bundle_start = self.bundles[bundle.index()].ranges[0].range.from;
let mut split_at_point =
std::cmp::max(lowest_cost_split_conflict_point, bundle_start);
let requeue_with_reg = lowest_cost_split_conflict_reg;
// Adjust `split_at_point` if it is within a deeper loop
// than the bundle start -- hoist it to just before the
// first loop header it encounters.
let bundle_start_depth = self.cfginfo.approx_loop_depth
[self.cfginfo.insn_block[bundle_start.inst().index()].index()];
let split_at_depth = self.cfginfo.approx_loop_depth
[self.cfginfo.insn_block[split_at_point.inst().index()].index()];
if split_at_depth > bundle_start_depth {
for block in (self.cfginfo.insn_block[bundle_start.inst().index()].index() + 1)
..=self.cfginfo.insn_block[split_at_point.inst().index()].index()
{
if self.cfginfo.approx_loop_depth[block] > bundle_start_depth {
split_at_point = self.cfginfo.block_entry[block];
break;
}
}
}
self.split_and_requeue_bundle(
bundle,
split_at_point,
requeue_with_reg,
/* should_trim = */ true,
);
return Ok(());
} else {
// Evict all bundles in `conflicting bundles` and try again.
self.stats.evict_bundle_event += 1;
for &bundle in &lowest_cost_evict_conflict_set.unwrap() {
trace!(" -> evicting {:?}", bundle);
self.evict_bundle(bundle);
self.stats.evict_bundle_count += 1;
}
}
}
}
}