1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
// Copyright 2016 Alex Regueiro
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
use crate::Error;
use libc::{self, c_char, c_void, size_t};
use std::ffi::{CStr, CString};
use std::path::Path;
use std::ptr;
pub(crate) unsafe fn from_cstr(ptr: *const c_char) -> String {
let cstr = CStr::from_ptr(ptr as *const _);
String::from_utf8_lossy(cstr.to_bytes()).into_owned()
}
pub(crate) unsafe fn raw_data(ptr: *const c_char, size: usize) -> Option<Vec<u8>> {
if ptr.is_null() {
None
} else {
let mut dst = vec![0; size];
ptr::copy_nonoverlapping(ptr as *const u8, dst.as_mut_ptr(), size);
Some(dst)
}
}
pub fn error_message(ptr: *const c_char) -> String {
unsafe {
let s = from_cstr(ptr);
libc::free(ptr as *mut c_void);
s
}
}
pub fn opt_bytes_to_ptr<T: AsRef<[u8]>>(opt: Option<T>) -> *const c_char {
match opt {
Some(v) => v.as_ref().as_ptr() as *const c_char,
None => ptr::null(),
}
}
pub(crate) fn to_cpath<P: AsRef<Path>>(path: P) -> Result<CString, Error> {
match CString::new(path.as_ref().to_string_lossy().as_bytes()) {
Ok(c) => Ok(c),
Err(e) => Err(Error::new(format!(
"Failed to convert path to CString: {e}"
))),
}
}
macro_rules! ffi_try {
( $($function:ident)::*() ) => {
ffi_try_impl!($($function)::*())
};
( $($function:ident)::*( $arg1:expr $(, $arg:expr)* $(,)? ) ) => {
ffi_try_impl!($($function)::*($arg1 $(, $arg)* ,))
};
}
macro_rules! ffi_try_impl {
( $($function:ident)::*( $($arg:expr,)*) ) => {{
let mut err: *mut ::libc::c_char = ::std::ptr::null_mut();
let result = $($function)::*($($arg,)* &mut err);
if !err.is_null() {
return Err(Error::new($crate::ffi_util::error_message(err)));
}
result
}};
}
/// Value which can be converted into a C string.
///
/// The trait is used as argument to functions which wish to accept either
/// [`&str`] or [`&CStr`](CStr) arguments while internally need to interact with
/// C APIs. Accepting [`&str`] may be more convenient for users but requires
/// conversion into [`CString`] internally which requires allocation. With this
/// trait, latency-conscious users may choose to prepare [`CStr`] in advance and
/// then pass it directly without having to incur the conversion cost.
///
/// To use the trait, function should accept `impl CStrLike` and after baking
/// the argument (with [`CStrLike::bake`] method) it can use it as a [`&CStr`](CStr)
/// (since the baked result dereferences into [`CStr`]).
///
/// # Example
///
/// ```
/// use std::ffi::{CStr, CString};
/// use rocksdb::CStrLike;
///
/// fn strlen(arg: impl CStrLike) -> std::result::Result<usize, String> {
/// let baked = arg.bake().map_err(|err| err.to_string())?;
/// Ok(unsafe { libc::strlen(baked.as_ptr()) })
/// }
///
/// const FOO: &str = "foo";
/// const BAR: &CStr = unsafe { CStr::from_bytes_with_nul_unchecked(b"bar\0") };
///
/// assert_eq!(Ok(3), strlen(FOO));
/// assert_eq!(Ok(3), strlen(BAR));
/// ```
pub trait CStrLike {
type Baked: std::ops::Deref<Target = CStr>;
type Error: std::fmt::Debug + std::fmt::Display;
/// Bakes self into value which can be freely converted into [`&CStr`](CStr).
///
/// This may require allocation and may fail if `self` has invalid value.
fn bake(self) -> Result<Self::Baked, Self::Error>;
/// Consumers and converts value into an owned [`CString`].
///
/// If `Self` is already a `CString` simply returns it; if it’s a reference
/// to a `CString` then the value is cloned. In other cases this may
/// require allocation and may fail if `self` has invalid value.
fn into_c_string(self) -> Result<CString, Self::Error>;
}
impl CStrLike for &str {
type Baked = CString;
type Error = std::ffi::NulError;
fn bake(self) -> Result<Self::Baked, Self::Error> {
CString::new(self)
}
fn into_c_string(self) -> Result<CString, Self::Error> {
CString::new(self)
}
}
// This is redundant for the most part and exists so that `foo(&string)` (where
// `string: String` works just as if `foo` took `arg: &str` argument.
impl CStrLike for &String {
type Baked = CString;
type Error = std::ffi::NulError;
fn bake(self) -> Result<Self::Baked, Self::Error> {
CString::new(self.as_bytes())
}
fn into_c_string(self) -> Result<CString, Self::Error> {
CString::new(self.as_bytes())
}
}
impl CStrLike for &CStr {
type Baked = Self;
type Error = std::convert::Infallible;
fn bake(self) -> Result<Self::Baked, Self::Error> {
Ok(self)
}
fn into_c_string(self) -> Result<CString, Self::Error> {
Ok(self.to_owned())
}
}
// This exists so that if caller constructs a `CString` they can pass it into
// the function accepting `CStrLike` argument. Some of such functions may take
// the argument whereas otherwise they would need to allocated a new owned
// object.
impl CStrLike for CString {
type Baked = CString;
type Error = std::convert::Infallible;
fn bake(self) -> Result<Self::Baked, Self::Error> {
Ok(self)
}
fn into_c_string(self) -> Result<CString, Self::Error> {
Ok(self)
}
}
// This is redundant for the most part and exists so that `foo(&cstring)` (where
// `string: CString` works just as if `foo` took `arg: &CStr` argument.
impl<'a> CStrLike for &'a CString {
type Baked = &'a CStr;
type Error = std::convert::Infallible;
fn bake(self) -> Result<Self::Baked, Self::Error> {
Ok(self)
}
fn into_c_string(self) -> Result<CString, Self::Error> {
Ok(self.clone())
}
}
/// Owned malloc-allocated memory slice.
/// Do not derive `Clone` for this because it will cause double-free.
pub struct CSlice {
data: *const c_char,
len: size_t,
}
impl CSlice {
/// Constructing such a slice may be unsafe.
///
/// # Safety
/// The caller must ensure that the pointer and length are valid.
/// Moreover, `CSlice` takes the ownership of the memory and will free it using `libc::free`.
/// The caller must ensure that the memory is allocated by `libc::malloc`
/// and will not be freed by any other means.
pub(crate) unsafe fn from_raw_parts(data: *const c_char, len: size_t) -> Self {
Self { data, len }
}
}
impl AsRef<[u8]> for CSlice {
fn as_ref(&self) -> &[u8] {
unsafe { std::slice::from_raw_parts(self.data as *const u8, self.len) }
}
}
impl Drop for CSlice {
fn drop(&mut self) {
unsafe {
libc::free(self.data as *mut c_void);
}
}
}
#[test]
fn test_c_str_like_bake() {
fn test<S: CStrLike>(value: S) -> Result<usize, S::Error> {
value
.bake()
.map(|value| unsafe { libc::strlen(value.as_ptr()) })
}
assert_eq!(Ok(3), test("foo")); // &str
assert_eq!(Ok(3), test(&String::from("foo"))); // String
assert_eq!(Ok(3), test(CString::new("foo").unwrap().as_ref())); // &CStr
assert_eq!(Ok(3), test(&CString::new("foo").unwrap())); // &CString
assert_eq!(Ok(3), test(CString::new("foo").unwrap())); // CString
assert_eq!(3, test("foo\0bar").err().unwrap().nul_position());
}
#[test]
fn test_c_str_like_into() {
fn test<S: CStrLike>(value: S) -> Result<CString, S::Error> {
value.into_c_string()
}
let want = CString::new("foo").unwrap();
assert_eq!(Ok(want.clone()), test("foo")); // &str
assert_eq!(Ok(want.clone()), test(&String::from("foo"))); // &String
assert_eq!(
Ok(want.clone()),
test(CString::new("foo").unwrap().as_ref())
); // &CStr
assert_eq!(Ok(want.clone()), test(&CString::new("foo").unwrap())); // &CString
assert_eq!(Ok(want), test(CString::new("foo").unwrap())); // CString
assert_eq!(3, test("foo\0bar").err().unwrap().nul_position());
}