1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// Copyright 2016 Alex Regueiro
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

use crate::Error;
use libc::{self, c_char, c_void, size_t};
use std::ffi::{CStr, CString};
use std::path::Path;
use std::ptr;

pub(crate) unsafe fn from_cstr(ptr: *const c_char) -> String {
    let cstr = CStr::from_ptr(ptr as *const _);
    String::from_utf8_lossy(cstr.to_bytes()).into_owned()
}

pub(crate) unsafe fn raw_data(ptr: *const c_char, size: usize) -> Option<Vec<u8>> {
    if ptr.is_null() {
        None
    } else {
        let mut dst = vec![0; size];
        ptr::copy_nonoverlapping(ptr as *const u8, dst.as_mut_ptr(), size);

        Some(dst)
    }
}

pub fn error_message(ptr: *const c_char) -> String {
    unsafe {
        let s = from_cstr(ptr);
        libc::free(ptr as *mut c_void);
        s
    }
}

pub fn opt_bytes_to_ptr<T: AsRef<[u8]>>(opt: Option<T>) -> *const c_char {
    match opt {
        Some(v) => v.as_ref().as_ptr() as *const c_char,
        None => ptr::null(),
    }
}

pub(crate) fn to_cpath<P: AsRef<Path>>(path: P) -> Result<CString, Error> {
    match CString::new(path.as_ref().to_string_lossy().as_bytes()) {
        Ok(c) => Ok(c),
        Err(e) => Err(Error::new(format!(
            "Failed to convert path to CString: {e}"
        ))),
    }
}

macro_rules! ffi_try {
    ( $($function:ident)::*() ) => {
        ffi_try_impl!($($function)::*())
    };

    ( $($function:ident)::*( $arg1:expr $(, $arg:expr)* $(,)? ) ) => {
        ffi_try_impl!($($function)::*($arg1 $(, $arg)* ,))
    };
}

macro_rules! ffi_try_impl {
    ( $($function:ident)::*( $($arg:expr,)*) ) => {{
        let mut err: *mut ::libc::c_char = ::std::ptr::null_mut();
        let result = $($function)::*($($arg,)* &mut err);
        if !err.is_null() {
            return Err(Error::new($crate::ffi_util::error_message(err)));
        }
        result
    }};
}

/// Value which can be converted into a C string.
///
/// The trait is used as argument to functions which wish to accept either
/// [`&str`] or [`&CStr`](CStr) arguments while internally need to interact with
/// C APIs.  Accepting [`&str`] may be more convenient for users but requires
/// conversion into [`CString`] internally which requires allocation.  With this
/// trait, latency-conscious users may choose to prepare [`CStr`] in advance and
/// then pass it directly without having to incur the conversion cost.
///
/// To use the trait, function should accept `impl CStrLike` and after baking
/// the argument (with [`CStrLike::bake`] method) it can use it as a [`&CStr`](CStr)
/// (since the baked result dereferences into [`CStr`]).
///
/// # Example
///
/// ```
/// use std::ffi::{CStr, CString};
/// use rocksdb::CStrLike;
///
/// fn strlen(arg: impl CStrLike) -> std::result::Result<usize, String> {
///     let baked = arg.bake().map_err(|err| err.to_string())?;
///     Ok(unsafe { libc::strlen(baked.as_ptr()) })
/// }
///
/// const FOO: &str = "foo";
/// const BAR: &CStr = unsafe { CStr::from_bytes_with_nul_unchecked(b"bar\0") };
///
/// assert_eq!(Ok(3), strlen(FOO));
/// assert_eq!(Ok(3), strlen(BAR));
/// ```
pub trait CStrLike {
    type Baked: std::ops::Deref<Target = CStr>;
    type Error: std::fmt::Debug + std::fmt::Display;

    /// Bakes self into value which can be freely converted into [`&CStr`](CStr).
    ///
    /// This may require allocation and may fail if `self` has invalid value.
    fn bake(self) -> Result<Self::Baked, Self::Error>;

    /// Consumers and converts value into an owned [`CString`].
    ///
    /// If `Self` is already a `CString` simply returns it; if it’s a reference
    /// to a `CString` then the value is cloned.  In other cases this may
    /// require allocation and may fail if `self` has invalid value.
    fn into_c_string(self) -> Result<CString, Self::Error>;
}

impl CStrLike for &str {
    type Baked = CString;
    type Error = std::ffi::NulError;

    fn bake(self) -> Result<Self::Baked, Self::Error> {
        CString::new(self)
    }
    fn into_c_string(self) -> Result<CString, Self::Error> {
        CString::new(self)
    }
}

// This is redundant for the most part and exists so that `foo(&string)` (where
// `string: String` works just as if `foo` took `arg: &str` argument.
impl CStrLike for &String {
    type Baked = CString;
    type Error = std::ffi::NulError;

    fn bake(self) -> Result<Self::Baked, Self::Error> {
        CString::new(self.as_bytes())
    }
    fn into_c_string(self) -> Result<CString, Self::Error> {
        CString::new(self.as_bytes())
    }
}

impl CStrLike for &CStr {
    type Baked = Self;
    type Error = std::convert::Infallible;

    fn bake(self) -> Result<Self::Baked, Self::Error> {
        Ok(self)
    }
    fn into_c_string(self) -> Result<CString, Self::Error> {
        Ok(self.to_owned())
    }
}

// This exists so that if caller constructs a `CString` they can pass it into
// the function accepting `CStrLike` argument.  Some of such functions may take
// the argument whereas otherwise they would need to allocated a new owned
// object.
impl CStrLike for CString {
    type Baked = CString;
    type Error = std::convert::Infallible;

    fn bake(self) -> Result<Self::Baked, Self::Error> {
        Ok(self)
    }
    fn into_c_string(self) -> Result<CString, Self::Error> {
        Ok(self)
    }
}

// This is redundant for the most part and exists so that `foo(&cstring)` (where
// `string: CString` works just as if `foo` took `arg: &CStr` argument.
impl<'a> CStrLike for &'a CString {
    type Baked = &'a CStr;
    type Error = std::convert::Infallible;

    fn bake(self) -> Result<Self::Baked, Self::Error> {
        Ok(self)
    }
    fn into_c_string(self) -> Result<CString, Self::Error> {
        Ok(self.clone())
    }
}

/// Owned malloc-allocated memory slice.
/// Do not derive `Clone` for this because it will cause double-free.
pub struct CSlice {
    data: *const c_char,
    len: size_t,
}

impl CSlice {
    /// Constructing such a slice may be unsafe.
    ///
    /// # Safety
    /// The caller must ensure that the pointer and length are valid.
    /// Moreover, `CSlice` takes the ownership of the memory and will free it using `libc::free`.
    /// The caller must ensure that the memory is allocated by `libc::malloc`
    /// and will not be freed by any other means.
    pub(crate) unsafe fn from_raw_parts(data: *const c_char, len: size_t) -> Self {
        Self { data, len }
    }
}

impl AsRef<[u8]> for CSlice {
    fn as_ref(&self) -> &[u8] {
        unsafe { std::slice::from_raw_parts(self.data as *const u8, self.len) }
    }
}

impl Drop for CSlice {
    fn drop(&mut self) {
        unsafe {
            libc::free(self.data as *mut c_void);
        }
    }
}

#[test]
fn test_c_str_like_bake() {
    fn test<S: CStrLike>(value: S) -> Result<usize, S::Error> {
        value
            .bake()
            .map(|value| unsafe { libc::strlen(value.as_ptr()) })
    }

    assert_eq!(Ok(3), test("foo")); // &str
    assert_eq!(Ok(3), test(&String::from("foo"))); // String
    assert_eq!(Ok(3), test(CString::new("foo").unwrap().as_ref())); // &CStr
    assert_eq!(Ok(3), test(&CString::new("foo").unwrap())); // &CString
    assert_eq!(Ok(3), test(CString::new("foo").unwrap())); // CString

    assert_eq!(3, test("foo\0bar").err().unwrap().nul_position());
}

#[test]
fn test_c_str_like_into() {
    fn test<S: CStrLike>(value: S) -> Result<CString, S::Error> {
        value.into_c_string()
    }

    let want = CString::new("foo").unwrap();

    assert_eq!(Ok(want.clone()), test("foo")); // &str
    assert_eq!(Ok(want.clone()), test(&String::from("foo"))); // &String
    assert_eq!(
        Ok(want.clone()),
        test(CString::new("foo").unwrap().as_ref())
    ); // &CStr
    assert_eq!(Ok(want.clone()), test(&CString::new("foo").unwrap())); // &CString
    assert_eq!(Ok(want), test(CString::new("foo").unwrap())); // CString

    assert_eq!(3, test("foo\0bar").err().unwrap().nul_position());
}