1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//! General purpose combinators

use nom::bytes::streaming::take;
use nom::combinator::map_parser;
use nom::error::{make_error, ErrorKind, ParseError};
use nom::{IResult, Needed, Parser};
use nom::{InputIter, InputTake};
use nom::{InputLength, ToUsize};

#[deprecated(since = "3.0.1", note = "please use `be_var_u64` instead")]
/// Read an entire slice as a big-endian value.
///
/// Returns the value as `u64`. This function checks for integer overflows, and returns a
/// `Result::Err` value if the value is too big.
pub fn bytes_to_u64(s: &[u8]) -> Result<u64, &'static str> {
    let mut u: u64 = 0;

    if s.is_empty() {
        return Err("empty");
    };
    if s.len() > 8 {
        return Err("overflow");
    }
    for &c in s {
        let u1 = u << 8;
        u = u1 | (c as u64);
    }

    Ok(u)
}

/// Read the entire slice as a big endian unsigned integer, up to 8 bytes
#[inline]
pub fn be_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> {
    if input.is_empty() {
        return Err(nom::Err::Incomplete(Needed::new(1)));
    }
    if input.len() > 8 {
        return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge)));
    }
    let mut res = 0u64;
    for byte in input {
        res = (res << 8) + *byte as u64;
    }

    Ok((&b""[..], res))
}

/// Read the entire slice as a little endian unsigned integer, up to 8 bytes
#[inline]
pub fn le_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> {
    if input.is_empty() {
        return Err(nom::Err::Incomplete(Needed::new(1)));
    }
    if input.len() > 8 {
        return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge)));
    }
    let mut res = 0u64;
    for byte in input.iter().rev() {
        res = (res << 8) + *byte as u64;
    }

    Ok((&b""[..], res))
}

/// Read a slice as a big-endian value.
#[inline]
pub fn parse_hex_to_u64<S>(i: &[u8], size: S) -> IResult<&[u8], u64>
where
    S: ToUsize + Copy,
{
    map_parser(take(size.to_usize()), be_var_u64)(i)
}

/// Apply combinator, automatically converts between errors if the underlying type supports it
pub fn upgrade_error<I, O, E1: ParseError<I>, E2: ParseError<I>, F>(
    mut f: F,
) -> impl FnMut(I) -> IResult<I, O, E2>
where
    F: FnMut(I) -> IResult<I, O, E1>,
    E2: From<E1>,
{
    move |i| f(i).map_err(nom::Err::convert)
}

/// Create a combinator that returns the provided value, and input unchanged
pub fn pure<I, O, E: ParseError<I>>(val: O) -> impl Fn(I) -> IResult<I, O, E>
where
    O: Clone,
{
    move |input: I| Ok((input, val.clone()))
}

/// Return a closure that takes `len` bytes from input, and applies `parser`.
pub fn flat_take<I, C, O, E: ParseError<I>, F>(
    len: C,
    mut parser: F,
) -> impl FnMut(I) -> IResult<I, O, E>
where
    I: InputTake + InputLength + InputIter,
    C: ToUsize + Copy,
    F: Parser<I, O, E>,
{
    // Note: this is the same as `map_parser(take(len), parser)`
    move |input: I| {
        let (input, o1) = take(len.to_usize())(input)?;
        let (_, o2) = parser.parse(o1)?;
        Ok((input, o2))
    }
}

/// Take `len` bytes from `input`, and apply `parser`.
pub fn flat_takec<I, O, E: ParseError<I>, C, F>(input: I, len: C, parser: F) -> IResult<I, O, E>
where
    C: ToUsize + Copy,
    F: Parser<I, O, E>,
    I: InputTake + InputLength + InputIter,
    O: InputLength,
{
    flat_take(len, parser)(input)
}

/// Helper macro for nom parsers: run first parser if condition is true, else second parser
pub fn cond_else<I, O, E: ParseError<I>, C, F, G>(
    cond: C,
    mut first: F,
    mut second: G,
) -> impl FnMut(I) -> IResult<I, O, E>
where
    C: Fn() -> bool,
    F: Parser<I, O, E>,
    G: Parser<I, O, E>,
{
    move |input: I| {
        if cond() {
            first.parse(input)
        } else {
            second.parse(input)
        }
    }
}

/// Align input value to the next multiple of n bytes
/// Valid only if n is a power of 2
pub const fn align_n2(x: usize, n: usize) -> usize {
    (x + (n - 1)) & !(n - 1)
}

/// Align input value to the next multiple of 4 bytes
pub const fn align32(x: usize) -> usize {
    (x + 3) & !3
}

#[cfg(test)]
mod tests {
    use super::{align32, be_var_u64, cond_else, flat_take, pure};
    use nom::bytes::streaming::take;
    use nom::number::streaming::{be_u16, be_u32, be_u8};
    use nom::{Err, IResult, Needed};

    #[test]
    fn test_be_var_u64() {
        let res: IResult<&[u8], u64> = be_var_u64(b"\x12\x34\x56");
        let (_, v) = res.expect("be_var_u64 failed");
        assert_eq!(v, 0x123456);
    }

    #[test]
    fn test_flat_take() {
        let input = &[0x00, 0x01, 0xff];
        // read first 2 bytes and use correct combinator: OK
        let res: IResult<&[u8], u16> = flat_take(2u8, be_u16)(input);
        assert_eq!(res, Ok((&input[2..], 0x0001)));
        // read 3 bytes and use 2: OK (some input is just lost)
        let res: IResult<&[u8], u16> = flat_take(3u8, be_u16)(input);
        assert_eq!(res, Ok((&b""[..], 0x0001)));
        // read 2 bytes and a combinator requiring more bytes
        let res: IResult<&[u8], u32> = flat_take(2u8, be_u32)(input);
        assert_eq!(res, Err(Err::Incomplete(Needed::new(2))));
    }

    #[test]
    fn test_flat_take_str() {
        let input = "abcdef";
        // read first 2 bytes and use correct combinator: OK
        let res: IResult<&str, &str> = flat_take(2u8, take(2u8))(input);
        assert_eq!(res, Ok(("cdef", "ab")));
        // read 3 bytes and use 2: OK (some input is just lost)
        let res: IResult<&str, &str> = flat_take(3u8, take(2u8))(input);
        assert_eq!(res, Ok(("def", "ab")));
        // read 2 bytes and a use combinator requiring more bytes
        let res: IResult<&str, &str> = flat_take(2u8, take(4u8))(input);
        assert_eq!(res, Err(Err::Incomplete(Needed::Unknown)));
    }

    #[test]
    fn test_cond_else() {
        let input = &[0x01][..];
        let empty = &b""[..];
        let a = 1;
        fn parse_u8(i: &[u8]) -> IResult<&[u8], u8> {
            be_u8(i)
        }
        assert_eq!(
            cond_else(|| a == 1, parse_u8, pure(0x02))(input),
            Ok((empty, 0x01))
        );
        assert_eq!(
            cond_else(|| a == 1, parse_u8, pure(0x02))(input),
            Ok((empty, 0x01))
        );
        assert_eq!(
            cond_else(|| a == 2, parse_u8, pure(0x02))(input),
            Ok((input, 0x02))
        );
        assert_eq!(
            cond_else(|| a == 1, pure(0x02), parse_u8)(input),
            Ok((input, 0x02))
        );
        let res: IResult<&[u8], u8> = cond_else(|| a == 1, parse_u8, parse_u8)(input);
        assert_eq!(res, Ok((empty, 0x01)));
    }

    #[test]
    fn test_align32() {
        assert_eq!(align32(3), 4);
        assert_eq!(align32(4), 4);
        assert_eq!(align32(5), 8);
        assert_eq!(align32(5usize), 8);
    }
}