1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
use alloc::vec::Vec;
use core::mem;
use core::ops::Range;
use super::buffers::{Coalescer, Delocator, Locator};
use crate::error::InvalidMessage;
use crate::msgs::codec::{u24, Codec};
use crate::msgs::message::InboundPlainMessage;
use crate::{ContentType, ProtocolVersion};
#[derive(Debug)]
pub(crate) struct HandshakeDeframer {
/// Spans covering individual handshake payloads, in order of receipt.
spans: Vec<FragmentSpan>,
/// Discard value, tracking the rightmost extent of the last message
/// in `spans`.
outer_discard: usize,
}
impl HandshakeDeframer {
/// Accepts a message into the deframer.
///
/// `containing_buffer` allows mapping the message payload to its position
/// in the input buffer, and thereby avoid retaining a borrow on the input
/// buffer.
///
/// That is required because our processing of handshake messages requires
/// them to be contiguous (and avoiding that would mean supporting gather-based
/// parsing in a large number of places, including `core`, `webpki`, and the
/// `CryptoProvider` interface). `coalesce()` arranges for that to happen, but
/// to do so it needs to move the fragments together in the original buffer.
/// This would not be possible if the messages were borrowing from that buffer.
///
/// `outer_discard` is the rightmost extent of the original message.
pub(crate) fn input_message(
&mut self,
msg: InboundPlainMessage<'_>,
containing_buffer: &Locator,
outer_discard: usize,
) {
debug_assert_eq!(msg.typ, ContentType::Handshake);
debug_assert!(containing_buffer.fully_contains(msg.payload));
debug_assert!(self.outer_discard <= outer_discard);
self.outer_discard = outer_discard;
// if our last span is incomplete, we can blindly add this as a new span --
// no need to attempt parsing it with `DissectHandshakeIter`.
//
// `coalesce()` will later move this new message to be contiguous with
// `_last_incomplete`, and reparse the result.
//
// we cannot merge these processes, because `coalesce` mutates the underlying
// buffer, and `msg` borrows it.
if let Some(_last_incomplete) = self
.spans
.last()
.filter(|span| !span.is_complete())
{
self.spans.push(FragmentSpan {
version: msg.version,
size: None,
bounds: containing_buffer.locate(msg.payload),
});
return;
}
// otherwise, we can expect `msg` to contain a handshake header introducing
// a new message (and perhaps several of them.)
for span in DissectHandshakeIter::new(msg, containing_buffer) {
self.spans.push(span);
}
}
/// Do we have a message ready? ie, would `iter().next()` return `Some`?
pub(crate) fn has_message_ready(&self) -> bool {
match self.spans.first() {
Some(span) => span.is_complete(),
None => false,
}
}
/// Do we have any message data, partial or otherwise?
pub(crate) fn is_active(&self) -> bool {
!self.spans.is_empty()
}
/// We are "aligned" if there is no partial fragment of a handshake
/// message.
pub(crate) fn is_aligned(&self) -> bool {
self.spans
.iter()
.all(|span| span.is_complete())
}
/// Iterate over the complete messages.
pub(crate) fn iter<'a, 'b>(&'a mut self, containing_buffer: &'b [u8]) -> HandshakeIter<'a, 'b> {
HandshakeIter {
deframer: self,
containing_buffer: Delocator::new(containing_buffer),
index: 0,
}
}
/// Coalesce the handshake portions of the given buffer,
/// if needed.
///
/// This does nothing if there is nothing to do.
///
/// In a normal TLS stream, handshake messages need not be contiguous.
/// For example, each handshake message could be delivered in its own
/// outer TLS message. This would mean the handshake messages are
/// separated by the outer TLS message headers, and likely also
/// separated by encryption overhead (any explicit nonce in front,
/// any padding and authentication tag afterwards).
///
/// For a toy example of one handshake message in two fragments, and:
///
/// - the letter `h` for handshake header octets
/// - the letter `H` for handshake payload octets
/// - the letter `x` for octets in the buffer ignored by this code,
///
/// the buffer and `spans` data structure could look like:
///
/// ```text
/// 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9
/// x x x x x h h h h H H H x x x x x H H H H H H x x x
/// '------------' '----------'
/// | |
/// spans = [ { bounds = (5, 12), |
/// size = Some(9), .. }, |
/// { bounds = (17, 23), .. } ]
/// ```
///
/// In this case, `requires_coalesce` returns `Some(0)`. Then
/// `coalesce_one` moves the second range leftwards:
///
/// ```text
/// 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9
/// x x x x x h h h h H H H x x x x x H H H H H H x x x
/// '----------'
/// ^ '----------'
/// | v
/// '--<---<--'
/// copy_within(from = (17, 23),
/// to = (12, 18))
/// ```
///
/// Leaving the buffer and spans:
///
/// ```text
/// 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9
/// x x x x x h h h h H H H H H H H H H x x x x x x x x
/// '------------------------'
/// |
/// spans = [ { bounds = (5, 18), size = Some(9), .. } ]
/// ```
pub(crate) fn coalesce(&mut self, containing_buffer: &mut [u8]) -> Result<(), InvalidMessage> {
// Strategy: while there is work to do, scan `spans`
// for a pair where the first is not complete. move
// the second down towards the first, then reparse the contents.
while let Some(i) = self.requires_coalesce() {
self.coalesce_one(i, Coalescer::new(containing_buffer));
}
// check resulting spans pass our imposed length limit
match self
.spans
.iter()
.any(|span| span.size.unwrap_or_default() > MAX_HANDSHAKE_SIZE)
{
true => Err(InvalidMessage::HandshakePayloadTooLarge),
false => Ok(()),
}
}
/// Within `containing_buffer`, move `span[index+1]` to be contiguous
/// with `span[index]`.
fn coalesce_one(&mut self, index: usize, mut containing_buffer: Coalescer<'_>) {
let second = self.spans.remove(index + 1);
let mut first = self.spans.remove(index);
// move the entirety of `second` to be contiguous with `first`
let len = second.bounds.len();
let target = Range {
start: first.bounds.end,
end: first.bounds.end + len,
};
containing_buffer.copy_within(second.bounds, target);
let delocator = containing_buffer.delocator();
// now adjust `first` to cover both
first.bounds.end += len;
// finally, attempt to re-dissect `first`
let msg = InboundPlainMessage {
typ: ContentType::Handshake,
version: first.version,
payload: delocator.slice_from_range(&first.bounds),
};
for (i, span) in DissectHandshakeIter::new(msg, &delocator.locator()).enumerate() {
self.spans.insert(index + i, span);
}
}
/// We require coalescing if any span except the last is not complete.
///
/// Returns an index into `spans` for the first non-complete span:
/// this will never be the last item.
fn requires_coalesce(&self) -> Option<usize> {
self.spans
.split_last()
.and_then(|(_last, elements)| {
elements
.iter()
.enumerate()
.find_map(|(i, span)| (!span.is_complete()).then_some(i))
})
}
}
impl Default for HandshakeDeframer {
fn default() -> Self {
Self {
// capacity: a typical upper limit on handshake messages in
// a single flight
spans: Vec::with_capacity(16),
outer_discard: 0,
}
}
}
struct DissectHandshakeIter<'a, 'b> {
version: ProtocolVersion,
payload: &'b [u8],
containing_buffer: &'a Locator,
}
impl<'a, 'b> DissectHandshakeIter<'a, 'b> {
fn new(msg: InboundPlainMessage<'b>, containing_buffer: &'a Locator) -> Self {
Self {
version: msg.version,
payload: msg.payload,
containing_buffer,
}
}
}
impl Iterator for DissectHandshakeIter<'_, '_> {
type Item = FragmentSpan;
fn next(&mut self) -> Option<Self::Item> {
if self.payload.is_empty() {
return None;
}
// If there is not enough data to have a header the length is unknown
if self.payload.len() < HANDSHAKE_HEADER_LEN {
let buf = mem::take(&mut self.payload);
let bounds = self.containing_buffer.locate(buf);
return Some(FragmentSpan {
version: self.version,
size: None,
bounds: bounds.clone(),
});
}
let (header, rest) = mem::take(&mut self.payload).split_at(HANDSHAKE_HEADER_LEN);
// safety: header[1..] is exactly 3 bytes, so `u24::read_bytes` cannot fail
let size = u24::read_bytes(&header[1..])
.unwrap()
.into();
let available = if size < rest.len() {
self.payload = &rest[size..];
size
} else {
rest.len()
};
let mut bounds = self.containing_buffer.locate(header);
bounds.end += available;
Some(FragmentSpan {
version: self.version,
size: Some(size),
bounds: bounds.clone(),
})
}
}
pub(crate) struct HandshakeIter<'a, 'b> {
deframer: &'a mut HandshakeDeframer,
containing_buffer: Delocator<'b>,
index: usize,
}
impl<'a, 'b> Iterator for HandshakeIter<'a, 'b> {
type Item = (InboundPlainMessage<'b>, usize);
fn next(&mut self) -> Option<Self::Item> {
let next_span = self.deframer.spans.get(self.index)?;
if !next_span.is_complete() {
return None;
}
// if this is the last handshake message, then we'll end
// up with an empty `spans` and can discard the remainder
// of the input buffer.
let discard = if self.deframer.spans.len() - 1 == self.index {
mem::take(&mut self.deframer.outer_discard)
} else {
0
};
self.index += 1;
Some((
InboundPlainMessage {
typ: ContentType::Handshake,
version: next_span.version,
payload: self
.containing_buffer
.slice_from_range(&next_span.bounds),
},
discard,
))
}
}
impl Drop for HandshakeIter<'_, '_> {
fn drop(&mut self) {
self.deframer.spans.drain(..self.index);
}
}
#[derive(Debug)]
struct FragmentSpan {
/// version taken from containing message.
version: ProtocolVersion,
/// size of the handshake message body (excluding header)
///
/// `None` means the size is unknown, because `bounds` is not
/// large enough to encompass a whole header.
size: Option<usize>,
/// bounds of the handshake message, including header
bounds: Range<usize>,
}
impl FragmentSpan {
/// A `FragmentSpan` is "complete" if its size is known, and its
/// bounds exactly encompasses one handshake message.
fn is_complete(&self) -> bool {
match self.size {
Some(sz) => sz + HANDSHAKE_HEADER_LEN == self.bounds.len(),
None => false,
}
}
}
const HANDSHAKE_HEADER_LEN: usize = 1 + 3;
/// TLS allows for handshake messages of up to 16MB. We
/// restrict that to 64KB to limit potential for denial-of-
/// service.
const MAX_HANDSHAKE_SIZE: usize = 0xffff;
#[cfg(test)]
mod tests {
use std::vec;
use super::*;
use crate::msgs::deframer::DeframerIter;
fn add_bytes(hs: &mut HandshakeDeframer, slice: &[u8], within: &[u8]) {
let msg = InboundPlainMessage {
typ: ContentType::Handshake,
version: ProtocolVersion::TLSv1_3,
payload: slice,
};
let locator = Locator::new(within);
let discard = locator.locate(slice).end;
hs.input_message(msg, &locator, discard);
}
#[test]
fn coalesce() {
let mut input = vec![0, 0, 0, 0x21, 0, 0, 0, 0, 0x01, 0xff, 0x00, 0x01];
let mut hs = HandshakeDeframer::default();
add_bytes(&mut hs, &input[3..4], &input);
assert_eq!(hs.requires_coalesce(), None);
add_bytes(&mut hs, &input[4..6], &input);
assert_eq!(hs.requires_coalesce(), Some(0));
add_bytes(&mut hs, &input[8..10], &input);
assert_eq!(hs.requires_coalesce(), Some(0));
std::println!("before: {hs:?}");
hs.coalesce(&mut input).unwrap();
std::println!("after: {hs:?}");
let (msg, discard) = hs.iter(&input).next().unwrap();
std::println!("msg {msg:?} discard {discard:?}");
assert_eq!(msg.typ, ContentType::Handshake);
assert_eq!(msg.version, ProtocolVersion::TLSv1_3);
assert_eq!(msg.payload, &[0x21, 0x00, 0x00, 0x01, 0xff]);
input.drain(..discard);
assert_eq!(input, &[0, 1]);
}
#[test]
fn append() {
let mut input = vec![0, 0, 0, 0x21, 0, 0, 5, 0, 0, 1, 2, 3, 4, 5, 0];
let mut hs = HandshakeDeframer::default();
add_bytes(&mut hs, &input[3..7], &input);
add_bytes(&mut hs, &input[9..14], &input);
assert_eq!(hs.spans.len(), 2);
hs.coalesce(&mut input).unwrap();
assert_eq!(hs.spans.len(), 1);
let (msg, discard) = std::dbg!(hs.iter(&input).next().unwrap());
assert_eq!(msg.typ, ContentType::Handshake);
assert_eq!(msg.version, ProtocolVersion::TLSv1_3);
assert_eq!(msg.payload, &[0x21, 0x00, 0x00, 0x05, 1, 2, 3, 4, 5]);
input.drain(..discard);
assert_eq!(input, &[0]);
}
#[test]
fn coalesce_rejects_excess_size_message() {
const X: u8 = 0xff;
let mut input = vec![0x21, 0x01, 0x00, X, 0x00, 0xab, X];
let mut hs = HandshakeDeframer::default();
// split header over multiple messages, which motivates doing
// this check in `coalesce()`
add_bytes(&mut hs, &input[0..3], &input);
add_bytes(&mut hs, &input[4..6], &input);
assert_eq!(
hs.coalesce(&mut input),
Err(InvalidMessage::HandshakePayloadTooLarge)
);
}
#[test]
fn iter_only_returns_full_messages() {
let input = [0, 0, 0, 0x21, 0, 0, 1, 0xab, 0x21, 0, 0, 1];
let mut hs = HandshakeDeframer::default();
add_bytes(&mut hs, &input[3..8], &input);
add_bytes(&mut hs, &input[8..12], &input);
let mut iter = hs.iter(&input);
let (msg, discard) = iter.next().unwrap();
assert!(iter.next().is_none());
assert_eq!(msg.typ, ContentType::Handshake);
assert_eq!(msg.version, ProtocolVersion::TLSv1_3);
assert_eq!(msg.payload, &[0x21, 0x00, 0x00, 0x01, 0xab]);
assert_eq!(discard, 0);
}
#[test]
fn handshake_flight() {
// intended to be a realistic example
let mut input = include_bytes!("../../testdata/handshake-test.1.bin").to_vec();
let locator = Locator::new(&input);
let mut hs = HandshakeDeframer::default();
let mut iter = DeframerIter::new(&mut input[..]);
while let Some(message) = iter.next() {
let plain = message.unwrap().into_plain_message();
std::println!("message {plain:?}");
hs.input_message(plain, &locator, iter.bytes_consumed());
}
hs.coalesce(&mut input[..]).unwrap();
let mut iter = hs.iter(&input[..]);
for _ in 0..4 {
let (msg, discard) = iter.next().unwrap();
assert!(matches!(
msg,
InboundPlainMessage {
typ: ContentType::Handshake,
..
}
));
assert_eq!(discard, 0);
}
let (msg, discard) = iter.next().unwrap();
assert!(matches!(
msg,
InboundPlainMessage {
typ: ContentType::Handshake,
..
}
));
assert_eq!(discard, 4280);
drop(iter);
input.drain(0..discard);
assert!(input.is_empty());
}
}