1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Defines the compiled Wasm runtime that uses Wasmtime internally.

use crate::{
	host::HostState,
	instance_wrapper::{EntryPoint, InstanceWrapper, MemoryWrapper},
	util::{self, replace_strategy_if_broken},
};

use parking_lot::Mutex;
use sc_allocator::{AllocationStats, FreeingBumpHeapAllocator};
use sc_executor_common::{
	error::{Error, Result, WasmError},
	runtime_blob::RuntimeBlob,
	util::checked_range,
	wasm_runtime::{HeapAllocStrategy, WasmInstance, WasmModule},
};
use sp_runtime_interface::unpack_ptr_and_len;
use sp_wasm_interface::{HostFunctions, Pointer, WordSize};
use std::{
	path::{Path, PathBuf},
	sync::{
		atomic::{AtomicBool, Ordering},
		Arc,
	},
};
use wasmtime::{AsContext, Engine, Memory};

const MAX_INSTANCE_COUNT: u32 = 64;

#[derive(Default)]
pub(crate) struct StoreData {
	/// This will only be set when we call into the runtime.
	pub(crate) host_state: Option<HostState>,
	/// This will be always set once the store is initialized.
	pub(crate) memory: Option<Memory>,
}

impl StoreData {
	/// Returns a mutable reference to the host state.
	pub fn host_state_mut(&mut self) -> Option<&mut HostState> {
		self.host_state.as_mut()
	}

	/// Returns the host memory.
	pub fn memory(&self) -> Memory {
		self.memory.expect("memory is always set; qed")
	}
}

pub(crate) type Store = wasmtime::Store<StoreData>;

enum Strategy {
	RecreateInstance(InstanceCreator),
}

struct InstanceCreator {
	engine: Engine,
	instance_pre: Arc<wasmtime::InstancePre<StoreData>>,
	instance_counter: Arc<InstanceCounter>,
}

impl InstanceCreator {
	fn instantiate(&mut self) -> Result<InstanceWrapper> {
		InstanceWrapper::new(&self.engine, &self.instance_pre, self.instance_counter.clone())
	}
}

/// A handle for releasing an instance acquired by [`InstanceCounter::acquire_instance`].
pub(crate) struct ReleaseInstanceHandle {
	counter: Arc<InstanceCounter>,
}

impl Drop for ReleaseInstanceHandle {
	fn drop(&mut self) {
		{
			let mut counter = self.counter.counter.lock();
			*counter = counter.saturating_sub(1);
		}

		self.counter.wait_for_instance.notify_one();
	}
}

/// Keeps track on the number of parallel instances.
///
/// The runtime cache keeps track on the number of parallel instances. The maximum number in the
/// cache is less than what we have configured as [`MAX_INSTANCE_COUNT`] for wasmtime. However, the
/// cache will create on demand instances if required. This instance counter will ensure that we are
/// blocking when we are trying to create too many instances.
#[derive(Default)]
pub(crate) struct InstanceCounter {
	counter: Mutex<u32>,
	wait_for_instance: parking_lot::Condvar,
}

impl InstanceCounter {
	/// Acquire an instance.
	///
	/// Blocks if there is no free instance available.
	///
	/// The returned [`ReleaseInstanceHandle`] should be dropped when the instance isn't used
	/// anymore.
	pub fn acquire_instance(self: Arc<Self>) -> ReleaseInstanceHandle {
		let mut counter = self.counter.lock();

		while *counter >= MAX_INSTANCE_COUNT {
			self.wait_for_instance.wait(&mut counter);
		}
		*counter += 1;

		ReleaseInstanceHandle { counter: self.clone() }
	}
}

/// A `WasmModule` implementation using wasmtime to compile the runtime module to machine code
/// and execute the compiled code.
pub struct WasmtimeRuntime {
	engine: Engine,
	instance_pre: Arc<wasmtime::InstancePre<StoreData>>,
	instantiation_strategy: InternalInstantiationStrategy,
	instance_counter: Arc<InstanceCounter>,
}

impl WasmModule for WasmtimeRuntime {
	fn new_instance(&self) -> Result<Box<dyn WasmInstance>> {
		let strategy = match self.instantiation_strategy {
			InternalInstantiationStrategy::Builtin => Strategy::RecreateInstance(InstanceCreator {
				engine: self.engine.clone(),
				instance_pre: self.instance_pre.clone(),
				instance_counter: self.instance_counter.clone(),
			}),
		};

		Ok(Box::new(WasmtimeInstance { strategy }))
	}
}

/// A `WasmInstance` implementation that reuses compiled module and spawns instances
/// to execute the compiled code.
pub struct WasmtimeInstance {
	strategy: Strategy,
}

impl WasmtimeInstance {
	fn call_impl(
		&mut self,
		method: &str,
		data: &[u8],
		allocation_stats: &mut Option<AllocationStats>,
	) -> Result<Vec<u8>> {
		match &mut self.strategy {
			Strategy::RecreateInstance(ref mut instance_creator) => {
				let mut instance_wrapper = instance_creator.instantiate()?;
				let heap_base = instance_wrapper.extract_heap_base()?;
				let entrypoint = instance_wrapper.resolve_entrypoint(method)?;
				let allocator = FreeingBumpHeapAllocator::new(heap_base);

				perform_call(data, &mut instance_wrapper, entrypoint, allocator, allocation_stats)
			},
		}
	}
}

impl WasmInstance for WasmtimeInstance {
	fn call_with_allocation_stats(
		&mut self,
		method: &str,
		data: &[u8],
	) -> (Result<Vec<u8>>, Option<AllocationStats>) {
		let mut allocation_stats = None;
		let result = self.call_impl(method, data, &mut allocation_stats);
		(result, allocation_stats)
	}
}

/// Prepare a directory structure and a config file to enable wasmtime caching.
///
/// In case of an error the caching will not be enabled.
fn setup_wasmtime_caching(
	cache_path: &Path,
	config: &mut wasmtime::Config,
) -> std::result::Result<(), String> {
	use std::fs;

	let wasmtime_cache_root = cache_path.join("wasmtime");
	fs::create_dir_all(&wasmtime_cache_root)
		.map_err(|err| format!("cannot create the dirs to cache: {}", err))?;

	// Canonicalize the path after creating the directories.
	let wasmtime_cache_root = wasmtime_cache_root
		.canonicalize()
		.map_err(|err| format!("failed to canonicalize the path: {}", err))?;

	// Write the cache config file
	let cache_config_path = wasmtime_cache_root.join("cache-config.toml");
	let config_content = format!(
		"\
[cache]
enabled = true
directory = \"{cache_dir}\"
",
		cache_dir = wasmtime_cache_root.display()
	);
	fs::write(&cache_config_path, config_content)
		.map_err(|err| format!("cannot write the cache config: {}", err))?;

	config
		.cache_config_load(cache_config_path)
		.map_err(|err| format!("failed to parse the config: {:#}", err))?;

	Ok(())
}

fn common_config(semantics: &Semantics) -> std::result::Result<wasmtime::Config, WasmError> {
	let mut config = wasmtime::Config::new();
	config.cranelift_opt_level(wasmtime::OptLevel::SpeedAndSize);
	config.cranelift_nan_canonicalization(semantics.canonicalize_nans);

	// Since wasmtime 6.0.0 the default for this is `true`, but that heavily regresses
	// the contracts pallet's performance, so disable it for now.
	#[allow(deprecated)]
	config.cranelift_use_egraphs(false);

	let profiler = match std::env::var_os("WASMTIME_PROFILING_STRATEGY") {
		Some(os_string) if os_string == "jitdump" => wasmtime::ProfilingStrategy::JitDump,
		None => wasmtime::ProfilingStrategy::None,
		Some(_) => {
			// Remember if we have already logged a warning due to an unknown profiling strategy.
			static UNKNOWN_PROFILING_STRATEGY: AtomicBool = AtomicBool::new(false);
			// Make sure that the warning will not be relogged regularly.
			if !UNKNOWN_PROFILING_STRATEGY.swap(true, Ordering::Relaxed) {
				log::warn!("WASMTIME_PROFILING_STRATEGY is set to unknown value, ignored.");
			}
			wasmtime::ProfilingStrategy::None
		},
	};
	config.profiler(profiler);

	let native_stack_max = match semantics.deterministic_stack_limit {
		Some(DeterministicStackLimit { native_stack_max, .. }) => native_stack_max,

		// In `wasmtime` 0.35 the default stack size limit was changed from 1MB to 512KB.
		//
		// This broke at least one parachain which depended on the original 1MB limit,
		// so here we restore it to what it was originally.
		None => 1024 * 1024,
	};

	config.max_wasm_stack(native_stack_max as usize);

	config.parallel_compilation(semantics.parallel_compilation);

	// Be clear and specific about the extensions we support. If an update brings new features
	// they should be introduced here as well.
	config.wasm_reference_types(semantics.wasm_reference_types);
	config.wasm_simd(semantics.wasm_simd);
	config.wasm_bulk_memory(semantics.wasm_bulk_memory);
	config.wasm_multi_value(semantics.wasm_multi_value);
	config.wasm_multi_memory(false);
	config.wasm_threads(false);
	config.wasm_memory64(false);

	let (use_pooling, use_cow) = match semantics.instantiation_strategy {
		InstantiationStrategy::PoolingCopyOnWrite => (true, true),
		InstantiationStrategy::Pooling => (true, false),
		InstantiationStrategy::RecreateInstanceCopyOnWrite => (false, true),
		InstantiationStrategy::RecreateInstance => (false, false),
	};

	const WASM_PAGE_SIZE: u64 = 65536;

	config.memory_init_cow(use_cow);
	config.memory_guaranteed_dense_image_size(match semantics.heap_alloc_strategy {
		HeapAllocStrategy::Dynamic { maximum_pages } =>
			maximum_pages.map(|p| p as u64 * WASM_PAGE_SIZE).unwrap_or(u64::MAX),
		HeapAllocStrategy::Static { .. } => u64::MAX,
	});

	if use_pooling {
		const MAX_WASM_PAGES: u64 = 0x10000;

		let memory_pages = match semantics.heap_alloc_strategy {
			HeapAllocStrategy::Dynamic { maximum_pages } =>
				maximum_pages.map(|p| p as u64).unwrap_or(MAX_WASM_PAGES),
			HeapAllocStrategy::Static { .. } => MAX_WASM_PAGES,
		};

		let mut pooling_config = wasmtime::PoolingAllocationConfig::default();
		pooling_config
			.max_unused_warm_slots(4)
			// Pooling needs a bunch of hard limits to be set; if we go over
			// any of these then the instantiation will fail.
			//
			// Current minimum values for kusama (as of 2022-04-14):
			//   size: 32384
			//   table_elements: 1249
			//   memory_pages: 2070
			.instance_size(128 * 1024)
			.instance_table_elements(8192)
			.instance_memory_pages(memory_pages)
			// We can only have a single of those.
			.instance_tables(1)
			.instance_memories(1)
			// This determines how many instances of the module can be
			// instantiated in parallel from the same `Module`.
			.instance_count(MAX_INSTANCE_COUNT);

		config.allocation_strategy(wasmtime::InstanceAllocationStrategy::Pooling(pooling_config));
	}

	Ok(config)
}

/// Knobs for deterministic stack height limiting.
///
/// The WebAssembly standard defines a call/value stack but it doesn't say anything about its
/// size except that it has to be finite. The implementations are free to choose their own notion
/// of limit: some may count the number of calls or values, others would rely on the host machine
/// stack and trap on reaching a guard page.
///
/// This obviously is a source of non-determinism during execution. This feature can be used
/// to instrument the code so that it will count the depth of execution in some deterministic
/// way (the machine stack limit should be so high that the deterministic limit always triggers
/// first).
///
/// The deterministic stack height limiting feature allows to instrument the code so that it will
/// count the number of items that may be on the stack. This counting will only act as an rough
/// estimate of the actual stack limit in wasmtime. This is because wasmtime measures it's stack
/// usage in bytes.
///
/// The actual number of bytes consumed by a function is not trivial to compute  without going
/// through full compilation. Therefore, it's expected that `native_stack_max` is greatly
/// overestimated and thus never reached in practice. The stack overflow check introduced by the
/// instrumentation and that relies on the logical item count should be reached first.
///
/// See [here][stack_height] for more details of the instrumentation
///
/// [stack_height]: https://github.com/paritytech/wasm-instrument/blob/master/src/stack_limiter/mod.rs
#[derive(Clone)]
pub struct DeterministicStackLimit {
	/// A number of logical "values" that can be pushed on the wasm stack. A trap will be triggered
	/// if exceeded.
	///
	/// A logical value is a local, an argument or a value pushed on operand stack.
	pub logical_max: u32,
	/// The maximum number of bytes for stack used by wasmtime JITed code.
	///
	/// It's not specified how much bytes will be consumed by a stack frame for a given wasm
	/// function after translation into machine code. It is also not quite trivial.
	///
	/// Therefore, this number should be chosen conservatively. It must be so large so that it can
	/// fit the [`logical_max`](Self::logical_max) logical values on the stack, according to the
	/// current instrumentation algorithm.
	///
	/// This value cannot be 0.
	pub native_stack_max: u32,
}

/// The instantiation strategy to use for the WASM executor.
///
/// All of the CoW strategies (with `CopyOnWrite` suffix) are only supported when either:
///   a) we're running on Linux,
///   b) we're running on an Unix-like system and we're precompiling
///      our module beforehand and instantiating from a file.
///
/// If the CoW variant of a strategy is unsupported the executor will
/// fall back to the non-CoW equivalent.
#[non_exhaustive]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum InstantiationStrategy {
	/// Pool the instances to avoid initializing everything from scratch
	/// on each instantiation. Use copy-on-write memory when possible.
	///
	/// This is the fastest instantiation strategy.
	PoolingCopyOnWrite,

	/// Recreate the instance from scratch on every instantiation.
	/// Use copy-on-write memory when possible.
	RecreateInstanceCopyOnWrite,

	/// Pool the instances to avoid initializing everything from scratch
	/// on each instantiation.
	Pooling,

	/// Recreate the instance from scratch on every instantiation. Very slow.
	RecreateInstance,
}

enum InternalInstantiationStrategy {
	Builtin,
}

#[derive(Clone)]
pub struct Semantics {
	/// The instantiation strategy to use.
	pub instantiation_strategy: InstantiationStrategy,

	/// Specifying `Some` will enable deterministic stack height. That is, all executor
	/// invocations will reach stack overflow at the exactly same point across different wasmtime
	/// versions and architectures.
	///
	/// This is achieved by a combination of running an instrumentation pass on input code and
	/// configuring wasmtime accordingly.
	///
	/// Since this feature depends on instrumentation, it can be set only if runtime is
	/// instantiated using the runtime blob, e.g. using [`create_runtime`].
	// I.e. if [`CodeSupplyMode::Verbatim`] is used.
	pub deterministic_stack_limit: Option<DeterministicStackLimit>,

	/// Controls whether wasmtime should compile floating point in a way that doesn't allow for
	/// non-determinism.
	///
	/// By default, the wasm spec allows some local non-determinism wrt. certain floating point
	/// operations. Specifically, those operations that are not defined to operate on bits (e.g.
	/// fneg) can produce NaN values. The exact bit pattern for those is not specified and may
	/// depend on the particular machine that executes wasmtime generated JITed machine code. That
	/// is a source of non-deterministic values.
	///
	/// The classical runtime environment for Substrate allowed it and punted this on the runtime
	/// developers. For PVFs, we want to ensure that execution is deterministic though. Therefore,
	/// for PVF execution this flag is meant to be turned on.
	pub canonicalize_nans: bool,

	/// Configures wasmtime to use multiple threads for compiling.
	pub parallel_compilation: bool,

	/// The heap allocation strategy to use.
	pub heap_alloc_strategy: HeapAllocStrategy,

	/// Enables WASM Multi-Value proposal
	pub wasm_multi_value: bool,

	/// Enables WASM Bulk Memory Operations proposal
	pub wasm_bulk_memory: bool,

	/// Enables WASM Reference Types proposal
	pub wasm_reference_types: bool,

	/// Enables WASM Fixed-Width SIMD proposal
	pub wasm_simd: bool,
}

#[derive(Clone)]
pub struct Config {
	/// The WebAssembly standard requires all imports of an instantiated module to be resolved,
	/// otherwise, the instantiation fails. If this option is set to `true`, then this behavior is
	/// overridden and imports that are requested by the module and not provided by the host
	/// functions will be resolved using stubs. These stubs will trap upon a call.
	pub allow_missing_func_imports: bool,

	/// A directory in which wasmtime can store its compiled artifacts cache.
	pub cache_path: Option<PathBuf>,

	/// Tuning of various semantics of the wasmtime executor.
	pub semantics: Semantics,
}

enum CodeSupplyMode<'a> {
	/// The runtime is instantiated using the given runtime blob.
	Fresh(RuntimeBlob),

	/// The runtime is instantiated using a precompiled module at the given path.
	///
	/// This assumes that the code is already prepared for execution and the same `Config` was
	/// used.
	///
	/// We use a `Path` here instead of simply passing a byte slice to allow `wasmtime` to
	/// map the runtime's linear memory on supported platforms in a copy-on-write fashion.
	Precompiled(&'a Path),

	/// The runtime is instantiated using a precompiled module with the given bytes.
	///
	/// This assumes that the code is already prepared for execution and the same `Config` was
	/// used.
	PrecompiledBytes(&'a [u8]),
}

/// Create a new `WasmtimeRuntime` given the code. This function performs translation from Wasm to
/// machine code, which can be computationally heavy.
///
/// The `H` generic parameter is used to statically pass a set of host functions which are exposed
/// to the runtime.
pub fn create_runtime<H>(
	blob: RuntimeBlob,
	config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
	H: HostFunctions,
{
	// SAFETY: this is safe because it doesn't use `CodeSupplyMode::Precompiled`.
	unsafe { do_create_runtime::<H>(CodeSupplyMode::Fresh(blob), config) }
}

/// The same as [`create_runtime`] but takes a path to a precompiled artifact,
/// which makes this function considerably faster than [`create_runtime`].
///
/// # Safety
///
/// The caller must ensure that the compiled artifact passed here was:
///   1) produced by [`prepare_runtime_artifact`],
///   2) written to the disk as a file,
///   3) was not modified,
///   4) will not be modified while any runtime using this artifact is alive, or is being
///      instantiated.
///
/// Failure to adhere to these requirements might lead to crashes and arbitrary code execution.
///
/// It is ok though if the compiled artifact was created by code of another version or with
/// different configuration flags. In such case the caller will receive an `Err` deterministically.
pub unsafe fn create_runtime_from_artifact<H>(
	compiled_artifact_path: &Path,
	config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
	H: HostFunctions,
{
	do_create_runtime::<H>(CodeSupplyMode::Precompiled(compiled_artifact_path), config)
}

/// The same as [`create_runtime`] but takes the bytes of a precompiled artifact,
/// which makes this function considerably faster than [`create_runtime`],
/// but slower than the more optimized [`create_runtime_from_artifact`].
/// This is especially slow on non-Linux Unix systems. Useful in very niche cases.
///
/// # Safety
///
/// The caller must ensure that the compiled artifact passed here was:
///   1) produced by [`prepare_runtime_artifact`],
///   2) was not modified,
///
/// Failure to adhere to these requirements might lead to crashes and arbitrary code execution.
///
/// It is ok though if the compiled artifact was created by code of another version or with
/// different configuration flags. In such case the caller will receive an `Err` deterministically.
pub unsafe fn create_runtime_from_artifact_bytes<H>(
	compiled_artifact_bytes: &[u8],
	config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
	H: HostFunctions,
{
	do_create_runtime::<H>(CodeSupplyMode::PrecompiledBytes(compiled_artifact_bytes), config)
}

/// # Safety
///
/// This is only unsafe if called with [`CodeSupplyMode::Artifact`]. See
/// [`create_runtime_from_artifact`] to get more details.
unsafe fn do_create_runtime<H>(
	code_supply_mode: CodeSupplyMode<'_>,
	mut config: Config,
) -> std::result::Result<WasmtimeRuntime, WasmError>
where
	H: HostFunctions,
{
	replace_strategy_if_broken(&mut config.semantics.instantiation_strategy);

	let mut wasmtime_config = common_config(&config.semantics)?;
	if let Some(ref cache_path) = config.cache_path {
		if let Err(reason) = setup_wasmtime_caching(cache_path, &mut wasmtime_config) {
			log::warn!(
				"failed to setup wasmtime cache. Performance may degrade significantly: {}.",
				reason,
			);
		}
	}

	let engine = Engine::new(&wasmtime_config)
		.map_err(|e| WasmError::Other(format!("cannot create the wasmtime engine: {:#}", e)))?;

	let (module, instantiation_strategy) = match code_supply_mode {
		CodeSupplyMode::Fresh(blob) => {
			let blob = prepare_blob_for_compilation(blob, &config.semantics)?;
			let serialized_blob = blob.clone().serialize();

			let module = wasmtime::Module::new(&engine, &serialized_blob)
				.map_err(|e| WasmError::Other(format!("cannot create module: {:#}", e)))?;

			match config.semantics.instantiation_strategy {
				InstantiationStrategy::Pooling |
				InstantiationStrategy::PoolingCopyOnWrite |
				InstantiationStrategy::RecreateInstance |
				InstantiationStrategy::RecreateInstanceCopyOnWrite =>
					(module, InternalInstantiationStrategy::Builtin),
			}
		},
		CodeSupplyMode::Precompiled(compiled_artifact_path) => {
			// SAFETY: The unsafety of `deserialize_file` is covered by this function. The
			//         responsibilities to maintain the invariants are passed to the caller.
			//
			//         See [`create_runtime_from_artifact`] for more details.
			let module = wasmtime::Module::deserialize_file(&engine, compiled_artifact_path)
				.map_err(|e| WasmError::Other(format!("cannot deserialize module: {:#}", e)))?;

			(module, InternalInstantiationStrategy::Builtin)
		},
		CodeSupplyMode::PrecompiledBytes(compiled_artifact_bytes) => {
			// SAFETY: The unsafety of `deserialize` is covered by this function. The
			//         responsibilities to maintain the invariants are passed to the caller.
			//
			//         See [`create_runtime_from_artifact_bytes`] for more details.
			let module = wasmtime::Module::deserialize(&engine, compiled_artifact_bytes)
				.map_err(|e| WasmError::Other(format!("cannot deserialize module: {:#}", e)))?;

			(module, InternalInstantiationStrategy::Builtin)
		},
	};

	let mut linker = wasmtime::Linker::new(&engine);
	crate::imports::prepare_imports::<H>(&mut linker, &module, config.allow_missing_func_imports)?;

	let instance_pre = linker
		.instantiate_pre(&module)
		.map_err(|e| WasmError::Other(format!("cannot preinstantiate module: {:#}", e)))?;

	Ok(WasmtimeRuntime {
		engine,
		instance_pre: Arc::new(instance_pre),
		instantiation_strategy,
		instance_counter: Default::default(),
	})
}

fn prepare_blob_for_compilation(
	mut blob: RuntimeBlob,
	semantics: &Semantics,
) -> std::result::Result<RuntimeBlob, WasmError> {
	if let Some(DeterministicStackLimit { logical_max, .. }) = semantics.deterministic_stack_limit {
		blob = blob.inject_stack_depth_metering(logical_max)?;
	}

	// We don't actually need the memory to be imported so we can just convert any memory
	// import into an export with impunity. This simplifies our code since `wasmtime` will
	// now automatically take care of creating the memory for us, and it is also necessary
	// to enable `wasmtime`'s instance pooling. (Imported memories are ineligible for pooling.)
	blob.convert_memory_import_into_export()?;
	blob.setup_memory_according_to_heap_alloc_strategy(semantics.heap_alloc_strategy)?;

	Ok(blob)
}

/// Takes a [`RuntimeBlob`] and precompiles it returning the serialized result of compilation. It
/// can then be used for calling [`create_runtime`] avoiding long compilation times.
pub fn prepare_runtime_artifact(
	blob: RuntimeBlob,
	semantics: &Semantics,
) -> std::result::Result<Vec<u8>, WasmError> {
	let mut semantics = semantics.clone();
	replace_strategy_if_broken(&mut semantics.instantiation_strategy);

	let blob = prepare_blob_for_compilation(blob, &semantics)?;

	let engine = Engine::new(&common_config(&semantics)?)
		.map_err(|e| WasmError::Other(format!("cannot create the engine: {:#}", e)))?;

	engine
		.precompile_module(&blob.serialize())
		.map_err(|e| WasmError::Other(format!("cannot precompile module: {:#}", e)))
}

fn perform_call(
	data: &[u8],
	instance_wrapper: &mut InstanceWrapper,
	entrypoint: EntryPoint,
	mut allocator: FreeingBumpHeapAllocator,
	allocation_stats: &mut Option<AllocationStats>,
) -> Result<Vec<u8>> {
	let (data_ptr, data_len) = inject_input_data(instance_wrapper, &mut allocator, data)?;

	let host_state = HostState::new(allocator);

	// Set the host state before calling into wasm.
	instance_wrapper.store_mut().data_mut().host_state = Some(host_state);

	let ret = entrypoint
		.call(instance_wrapper.store_mut(), data_ptr, data_len)
		.map(unpack_ptr_and_len);

	// Reset the host state
	let host_state = instance_wrapper.store_mut().data_mut().host_state.take().expect(
		"the host state is always set before calling into WASM so it can't be None here; qed",
	);
	*allocation_stats = Some(host_state.allocation_stats());

	let (output_ptr, output_len) = ret?;
	let output = extract_output_data(instance_wrapper, output_ptr, output_len)?;

	Ok(output)
}

fn inject_input_data(
	instance: &mut InstanceWrapper,
	allocator: &mut FreeingBumpHeapAllocator,
	data: &[u8],
) -> Result<(Pointer<u8>, WordSize)> {
	let mut ctx = instance.store_mut();
	let memory = ctx.data().memory();
	let data_len = data.len() as WordSize;
	let data_ptr = allocator.allocate(&mut MemoryWrapper(&memory, &mut ctx), data_len)?;
	util::write_memory_from(instance.store_mut(), data_ptr, data)?;
	Ok((data_ptr, data_len))
}

fn extract_output_data(
	instance: &InstanceWrapper,
	output_ptr: u32,
	output_len: u32,
) -> Result<Vec<u8>> {
	let ctx = instance.store();

	// Do a length check before allocating. The returned output should not be bigger than the
	// available WASM memory. Otherwise, a malicious parachain can trigger a large allocation,
	// potentially causing memory exhaustion.
	//
	// Get the size of the WASM memory in bytes.
	let memory_size = ctx.as_context().data().memory().data_size(ctx);
	if checked_range(output_ptr as usize, output_len as usize, memory_size).is_none() {
		Err(Error::OutputExceedsBounds)?
	}
	let mut output = vec![0; output_len as usize];

	util::read_memory_into(ctx, Pointer::new(output_ptr), &mut output)?;
	Ok(output)
}