1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
// Copyright 2019-2022 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! The registry stores type definitions in a space-efficient manner.
//!
//! This is done by deduplicating common types in order to reuse their
//! definitions which otherwise can grow arbitrarily large. A type is uniquely
//! identified by its type identifier that is therefore used to refer to types
//! and their definitions.
//!
//! Types with the same name are uniquely identifiable by introducing
//! namespaces. The normal Rust namespace of a type is used, except for the Rust
//! prelude types that live in the so-called root namespace which is empty.
use crate::{
form::Form,
prelude::{any::TypeId, collections::BTreeMap, fmt::Debug, vec::Vec},
};
use crate::{
form::PortableForm,
interner::{Interner, UntrackedSymbol},
meta_type::MetaType,
Type,
};
/// Convert the type definition into the portable form using a registry.
pub trait IntoPortable {
/// The portable version of `Self`.
type Output;
/// Convert `self` to the portable form by using the registry for caching.
fn into_portable(self, registry: &mut Registry) -> Self::Output;
}
impl IntoPortable for &'static str {
type Output = <PortableForm as Form>::String;
fn into_portable(self, _registry: &mut Registry) -> Self::Output {
self.into()
}
}
/// The registry for space-efficient storage of type identifiers and
/// definitions.
///
/// The registry consists of a cache for type identifiers and definitions.
///
/// When adding a type to the registry, all of its sub-types are registered
/// recursively as well. A type is considered a sub-type of another type if it
/// is used by its identifier or structure.
///
/// # Note
///
/// A type can be a sub-type of itself. In this case the registry has a builtin
/// mechanism to stop recursion and avoid going into an infinite loop.
#[derive(Debug, PartialEq, Eq)]
pub struct Registry {
/// The cache for already registered types.
///
/// This is just an accessor to the actual database
/// for all types found in the `types` field.
type_table: Interner<TypeId>,
/// The database where registered types reside.
///
/// The contents herein is used for serlialization.
types: BTreeMap<UntrackedSymbol<TypeId>, Type<PortableForm>>,
}
impl Default for Registry {
fn default() -> Self {
Self::new()
}
}
impl Registry {
/// Creates a new empty registry.
pub fn new() -> Self {
Self {
type_table: Interner::new(),
types: BTreeMap::new(),
}
}
/// Registers the given type ID into the registry.
///
/// Returns `false` as the first return value if the type ID has already
/// been registered into this registry.
/// Returns the associated type ID symbol as second return value.
///
/// # Note
///
/// This is an internal API and should not be called directly from the
/// outside.
fn intern_type_id(&mut self, type_id: TypeId) -> (bool, UntrackedSymbol<TypeId>) {
let (inserted, symbol) = self.type_table.intern_or_get(type_id);
(inserted, symbol.into_untracked())
}
/// Registers the given type into the registry and returns
/// its associated type ID symbol.
///
/// # Note
///
/// Due to safety requirements the returns type ID symbol cannot
/// be used later to resolve back to the associated type definition.
/// However, since this facility is going to be used for serialization
/// purposes this functionality isn't needed anyway.
pub fn register_type(&mut self, ty: &MetaType) -> UntrackedSymbol<TypeId> {
let (inserted, symbol) = self.intern_type_id(ty.type_id());
if inserted {
let portable_id = ty.type_info().into_portable(self);
self.types.insert(symbol, portable_id);
}
symbol
}
/// Calls `register_type` for each `MetaType` in the given `iter`.
pub fn register_types<I>(&mut self, iter: I) -> Vec<UntrackedSymbol<TypeId>>
where
I: IntoIterator<Item = MetaType>,
{
iter.into_iter()
.map(|i| self.register_type(&i))
.collect::<Vec<_>>()
}
/// Converts an iterator into a Vec of the equivalent portable
/// representations.
pub fn map_into_portable<I, T>(&mut self, iter: I) -> Vec<T::Output>
where
I: IntoIterator<Item = T>,
T: IntoPortable,
{
iter.into_iter()
.map(|i| i.into_portable(self))
.collect::<Vec<_>>()
}
/// Returns an iterator over the types with their keys
pub fn types(&self) -> impl Iterator<Item = (&UntrackedSymbol<TypeId>, &Type<PortableForm>)> {
self.types.iter()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{build::Fields, meta_type, Path, TypeDef, TypeInfo};
#[test]
fn recursive_struct_with_references() {
#[allow(unused)]
struct RecursiveRefs<'a> {
boxed: Box<RecursiveRefs<'a>>,
reference: &'a RecursiveRefs<'a>,
mutable_reference: &'a mut RecursiveRefs<'a>,
}
impl TypeInfo for RecursiveRefs<'static> {
type Identity = Self;
fn type_info() -> Type {
Type::builder()
.path(Path::new("RecursiveRefs", module_path!()))
.composite(
Fields::named()
.field(|f| {
f.ty::<Box<RecursiveRefs>>()
.name("boxed")
.type_name("Box < RecursiveRefs >")
})
.field(|f| {
f.ty::<&'static RecursiveRefs<'static>>()
.name("reference")
.type_name("&RecursiveRefs")
})
.field(|f| {
f.ty::<&'static mut RecursiveRefs<'static>>()
.name("mutable_reference")
.type_name("&mut RecursiveRefs")
}),
)
}
}
let mut registry = Registry::new();
let type_id = registry.register_type(&meta_type::<RecursiveRefs>());
let recursive = registry.types.get(&type_id).unwrap();
if let TypeDef::Composite(composite) = &recursive.type_def {
for field in &composite.fields {
assert_eq!(field.ty, type_id)
}
} else {
panic!("Should be a composite type definition")
}
}
}