1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Jeffrey Burdges <jeff@web3.foundation>
//! ### Adaptor signature-based implicit certificate scheme for Ristretto
//!
//! [Implicit certificates](https://en.wikipedia.org/wiki/Implicit_certificate)
//! provide an extremely space efficient public key certificate scheme.
//!
//! As a rule, implicit certificates do not prove possession of the
//! private key. We thus worry more about fear rogue key attack when
//! using them, but all protocols here should provide strong defenses
//! against then.
//!
//! We implement an implicit certificate scheme based on adaptor
//! signatures as recommended by [1] and [2], which appears useful for
//! "scriptless script" applications like [3] and [4].
//!
//! We should eventually place this into some more generally usable adaptor
//! signature framework, but doing this safely this requires more work.
//! We have not actually done security arguments for this code yet either,
//! but we expect to find such results in the paymet channel literature [3].
//! We might find arguments around Elliptic curve Qu-Vanstone (ECQV)
//! helpful too [5,6].
//!
//! [1] "Schnorr Signatures for secp256k1"
//! by Pieter Wuille, Jonas Nick, and Tim Ruffing
//! https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki#Adaptor_Signatures
//! [2] Ruben Somsen. "Schnorr signatures, adaptor signatures and statechains"
//! https://bitcoinedge.org/transcript/telaviv2019/statechains
//! [3] Giulio Malavolta and Pedro Moreno-Sanchez and Clara Schneidewind and Aniket Kate and Matteo Maffei
//! "Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability"
//! https://eprint.iacr.org/2018/472
//! [4] Jonas Nick. "Scriptless Scripts [Using Adaptor Signatures]"
//! https://github.com/ElementsProject/scriptless-scripts
//! [5] "Standards for efficient cryptography, SEC 4: Elliptic Curve
//! Qu-Vanstone Implicit Certificate Scheme (ECQV)".
//! http://www.secg.org/sec4-1.0.pdf
//! [6] Daniel R. L. Brown, Robert P. Gallant, and Scott A. Vanstone.
//! "Provably Secure Implicit Certificate Schemes". Financial
//! Cryptography 2001. Lecture Notes in Computer Science.
//! Springer Berlin Heidelberg. 2339 (1): 156–165. doi:10.1007/3-540-46088-8_15.
//! http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-55.ps
//
// Found [4] via https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2018-05-18-l2/slides.pdf via [1]
use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto};
use curve25519_dalek::scalar::Scalar;
use super::*;
use crate::context::SigningTranscript;
/// Adaptor Implicit Certificate Secret
///
/// Issuing an Adaptor implicit certificate requires producing
/// this and securely sending it to the certificate holder.
#[derive(Clone, Copy)] // Debug, Eq, PartialEq
pub struct AdaptorCertSecret(pub [u8; 64]);
/// TODO: Serde serialization/deserialization
impl From<AdaptorCertSecret> for AdaptorCertPublic {
fn from(secret: AdaptorCertSecret) -> AdaptorCertPublic {
let mut public = AdaptorCertPublic([0u8; 32]);
public.0.copy_from_slice(&secret.0[0..32]);
public
}
}
/// Adaptor Implicit Certificate Public Key Reconstruction Data
///
/// Identifying the public key of, and implicitly verifying, an Adaptor
/// implicit certificate requires this data, which is produced
/// when the certificate holder accepts the implicit certificate.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct AdaptorCertPublic(pub [u8; 32]);
/// TODO: Serde serialization/deserialization
impl AdaptorCertPublic {
fn derive_e<T: SigningTranscript>(&self, mut t: T) -> Scalar {
t.challenge_scalar(b"adaptor-e")
}
}
impl Keypair {
/// Issue an Adaptor implicit certificate
///
/// Aside from the issuing `Keypair` supplied as `self`, you provide both
/// (1) a `SigningTranscript` called `t` that incorporates both the context
/// and the certificate requester's identity, and
/// (2) the `seed_public_key` supplied by the certificate recipient
/// in their certificate request.
/// We return an `AdaptorCertSecret` which the issuer sent to the
/// certificate requester, ans from which the certificate requester
/// derives their certified key pair.
pub fn issue_adaptor_cert<T>(&self, mut t: T, seed_public_key: &PublicKey) -> AdaptorCertSecret
where T: SigningTranscript
{
t.proto_name(b"Adaptor");
t.commit_point(b"issuer-pk",self.public.as_compressed());
// We cannot commit the `seed_public_key` to the transcript
// because the whole point is to keep the transcript minimal.
// Instead we consume it as witness datathat influences only k.
let k = t.witness_scalar(b"issuing",&[ &self.secret.nonce, seed_public_key.as_compressed().as_bytes() ]);
// Compute the public key reconstruction data
let gamma = seed_public_key.as_point() + &k * constants::RISTRETTO_BASEPOINT_TABLE;
let gamma = gamma.compress();
t.commit_point(b"gamma",&gamma);
let cert_public = AdaptorCertPublic(gamma.0);
// Compute the secret key reconstruction data
let s = k + cert_public.derive_e(t) * self.secret.key;
let mut cert_secret = AdaptorCertSecret([0u8; 64]);
cert_secret.0[0..32].copy_from_slice(&cert_public.0[..]);
cert_secret.0[32..64].copy_from_slice(s.as_bytes());
cert_secret
}
}
impl PublicKey {
/// Accept an Adaptor implicit certificate
///
/// We request an Adaptor implicit certificate by first creating an
/// ephemeral `Keypair` and sending the public portion to the issuer
/// as `seed_public_key`. An issuer issues the certificate by replying
/// with the `AdaptorCertSecret` created by `issue_adaptor_cert`.
///
/// Aside from the issuer `PublicKey` supplied as `self`, you provide
/// (1) a `SigningTranscript` called `t` that incorporates both the context
/// and the certificate requester's identity,
/// (2) the `seed_secret_key` corresponding to the `seed_public_key`
/// they sent to the issuer by the certificate recipient in their
/// certificate request, and
/// (3) the `AdaptorCertSecret` send by the issuer to the certificate
/// requester.
/// We return both your certificate's new `SecretKey` as well as
/// an `AdaptorCertPublic` from which third parties may derive
/// corresponding public key from `h` and the issuer's public key.
pub fn accept_adaptor_cert<T>(
&self,
mut t: T,
seed_secret_key: &SecretKey,
cert_secret: AdaptorCertSecret
) -> SignatureResult<(AdaptorCertPublic, SecretKey)>
where T: SigningTranscript
{
t.proto_name(b"Adaptor");
t.commit_point(b"issuer-pk",self.as_compressed());
// Again we cannot commit much to the transcript, but we again
// treat anything relevant as a witness when defining the
let mut nonce = [0u8; 32];
t.witness_bytes(b"accepting",&mut nonce, &[&cert_secret.0[..],&seed_secret_key.nonce]);
let mut s = [0u8; 32];
s.copy_from_slice(&cert_secret.0[32..64]);
let s = crate::scalar_from_canonical_bytes(s).ok_or(SignatureError::ScalarFormatError) ?;
let cert_public : AdaptorCertPublic = cert_secret.into();
let gamma = CompressedRistretto(cert_public.0);
t.commit_point(b"gamma",&gamma);
let key = s + seed_secret_key.key;
Ok(( cert_public, SecretKey { key, nonce } ))
}
}
impl Keypair {
/// Issue an Adaptor Implicit Certificate for yourself
///
/// We can issue an implicit certificate to ourselves if we merely
/// want to certify an associated public key. We should prefer
/// this option over "hierarchical deterministic" key derivation
/// because compromising the resulting secret key does not
/// compromise the issuer's secret key.
///
/// In this case, we avoid the entire interactive protocol described
/// by `issue_adaptor_cert` and `accept_adaptor_cert` by hiding it an all
/// management of the ephemeral `Keypair` inside this function.
///
/// Aside from the issuing secret key supplied as `self`, you provide
/// only a digest `h` that incorporates any context and metadata
/// pertaining to the issued key.
pub fn issue_self_adaptor_cert<T>(&self, t: T) -> (AdaptorCertPublic, SecretKey)
where T: SigningTranscript+Clone
{
let mut bytes = [0u8; 96];
t.witness_bytes(b"issue_self_adaptor_cert", &mut bytes, &[&self.secret.nonce, &self.secret.to_bytes() as &[u8]]);
let mut nonce = [0u8; 32];
nonce.copy_from_slice(&bytes[64..96]);
let mut key = [0u8; 64];
key.copy_from_slice(&bytes[0..64]);
let key = Scalar::from_bytes_mod_order_wide(&key);
let seed = SecretKey { key, nonce }.to_keypair();
let cert_secret = self.issue_adaptor_cert(t.clone(), &seed.public);
self.public.accept_adaptor_cert(t, &seed.secret, cert_secret).expect("Cert issued above and known to produce signature errors; qed")
}
}
impl PublicKey {
/// Extract the certified pulic key from an adaptor certificate
///
/// We've no confirmation that this public key was certified
/// until we use it in some authenticated setting, like an AEAD
/// or another signature.
pub fn open_adaptor_cert<T>(&self, mut t: T, cert_public: &AdaptorCertPublic) -> SignatureResult<PublicKey>
where T: SigningTranscript
{
t.proto_name(b"Adaptor");
t.commit_point(b"issuer-pk",self.as_compressed());
let gamma = CompressedRistretto(cert_public.0);
t.commit_point(b"gamma",&gamma);
let gamma = gamma.decompress().ok_or(SignatureError::PointDecompressionError) ?;
let point = cert_public.derive_e(t) * self.as_point() + gamma;
Ok(PublicKey::from_point(point))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "getrandom")]
#[test]
fn adaptor_cert_public_vs_private_paths() {
let t = signing_context(b"").bytes(b"MrMeow!");
let mut csprng = rand_core::OsRng;
let issuer = Keypair::generate_with(&mut csprng);
let (cert_public,secret_key) = issuer.issue_self_adaptor_cert(t.clone());
let public_key = issuer.public.open_adaptor_cert(t,&cert_public).unwrap();
assert_eq!(secret_key.to_public(), public_key);
}
}