1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2017-2019 Isis Lovecruft and Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Jeffrey Burdges <jeff@web3.foundation>
//! Schnorr signature variants using Ristretto point compression.
//!
//! # Example
//!
//! Creating a signature on a message is simple.
//!
//! First, we need to generate a `Keypair`, which includes both public and
//! secret halves of an asymmetric key. To do so, we need a cryptographically
//! secure pseudorandom number generator (CSPRNG).
//!
//! ```
//! # #[cfg(all(feature = "std"))]
//! # fn main() {
//! use rand::{Rng, rngs::OsRng};
//! use schnorrkel::{Keypair,Signature};
//!
//! let keypair: Keypair = Keypair::generate_with(OsRng);
//! # }
//! #
//! # #[cfg(any(not(feature = "std")))]
//! # fn main() { }
//! ```
//!
//! We can now use this `keypair` to sign a message:
//!
//! ```
//! # fn main() {
//! # use rand::{SeedableRng}; // Rng
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair,Signature,signing_context};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! let context = signing_context(b"this signature does this thing");
//! let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # #[cfg(feature = "getrandom")]
//! let signature: Signature = keypair.sign(context.bytes(message));
//! # }
//! ```
//!
//! As well as to verify that this is, indeed, a valid signature on
//! that `message`:
//!
//! ```
//! # fn main() {
//! # use rand::{SeedableRng}; // Rng
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair,Signature,signing_context};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # #[cfg(feature = "getrandom")]
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # #[cfg(feature = "getrandom")]
//! assert!(keypair.verify(context.bytes(message), &signature).is_ok());
//! # }
//! ```
//!
//! Anyone else, given the `public` half of the `keypair` can also easily
//! verify this signature:
//!
//! ```
//! # fn main() {
//! # use rand::{SeedableRng}; // Rng
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair,Signature,signing_context};
//! use schnorrkel::PublicKey;
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # #[cfg(feature = "getrandom")]
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! let public_key: PublicKey = keypair.public;
//! # #[cfg(feature = "getrandom")]
//! assert!(public_key.verify(context.bytes(message), &signature).is_ok());
//! # }
//! ```
//!
//! ## Serialisation
//!
//! `PublicKey`s, `MiniSecretKey`s, `Keypair`s, and `Signature`s can be serialised
//! into byte-arrays by calling `.to_bytes()`. It's perfectly acceptable and
//! safe to transfer and/or store those bytes. (Of course, never transfer your
//! secret key to anyone else, since they will only need the public key to
//! verify your signatures!)
//!
//! ```
//! # #[cfg(feature = "getrandom")]
//! # fn main() {
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair, Signature, PublicKey, signing_context};
//! use schnorrkel::{PUBLIC_KEY_LENGTH, SECRET_KEY_LENGTH, KEYPAIR_LENGTH, SIGNATURE_LENGTH};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # let public_key: PublicKey = keypair.public;
//!
//! let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = public_key.to_bytes();
//! let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = keypair.secret.to_bytes();
//! let keypair_bytes: [u8; KEYPAIR_LENGTH] = keypair.to_bytes();
//! let signature_bytes: [u8; SIGNATURE_LENGTH] = signature.to_bytes();
//! # }
//! # #[cfg(not(feature = "getrandom"))]
//! # fn main() { }
//! ```
//!
//! And similarly, decoded from bytes with `::from_bytes()`:
//!
//! ```
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{SecretKey, Keypair, Signature, PublicKey, SignatureError, signing_context};
//! # use schnorrkel::{PUBLIC_KEY_LENGTH, SECRET_KEY_LENGTH, KEYPAIR_LENGTH, SIGNATURE_LENGTH};
//! # #[cfg(feature = "getrandom")]
//! # fn do_test() -> Result<(SecretKey, PublicKey, Keypair, Signature), SignatureError> {
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair_orig: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let signature_orig: Signature = keypair_orig.sign(context.bytes(message));
//! # let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = keypair_orig.public.to_bytes();
//! # let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = keypair_orig.secret.to_bytes();
//! # let keypair_bytes: [u8; KEYPAIR_LENGTH] = keypair_orig.to_bytes();
//! # let signature_bytes: [u8; SIGNATURE_LENGTH] = signature_orig.to_bytes();
//! #
//! let public_key: PublicKey = PublicKey::from_bytes(&public_key_bytes)?;
//! let secret_key: SecretKey = SecretKey::from_bytes(&secret_key_bytes)?;
//! let keypair: Keypair = Keypair::from_bytes(&keypair_bytes)?;
//! let signature: Signature = Signature::from_bytes(&signature_bytes)?;
//! #
//! # Ok((secret_key, public_key, keypair, signature))
//! # }
//! # fn main() {
//! # #[cfg(feature = "getrandom")]
//! # do_test();
//! # }
//! ```
//!
//! ### Using Serde
//!
//! If you prefer the bytes to be wrapped in another serialisation format, all
//! types additionally come with built-in [serde](https://serde.rs) support by
//! building `schnorrkell` via:
//!
//! ```bash
//! $ cargo build --features="serde"
//! ```
//!
//! They can be then serialised into any of the wire formats which serde supports.
//! For example, using [bincode](https://github.com/TyOverby/bincode):
//!
//! ```
//! # #[cfg(feature = "serde")]
//! # fn main() {
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair, Signature, PublicKey, signing_context};
//! use bincode::{serialize};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # let public_key: PublicKey = keypair.public;
//! # assert!( public_key.verify(context.bytes(message), &signature).is_ok() );
//!
//! let encoded_public_key: Vec<u8> = serialize(&public_key).unwrap();
//! let encoded_signature: Vec<u8> = serialize(&signature).unwrap();
//! # }
//! # #[cfg(not(feature = "serde"))]
//! # fn main() {}
//! ```
//!
//! After sending the `encoded_public_key` and `encoded_signature`, the
//! recipient may deserialise them and verify:
//!
//! ```
//! # #[cfg(feature = "serde")]
//! # fn main() {
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair, Signature, PublicKey, signing_context};
//! # use bincode::{serialize};
//! use bincode::{deserialize};
//!
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let context = signing_context(b"this signature does this thing");
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # let public_key: PublicKey = keypair.public;
//! # let encoded_public_key: Vec<u8> = serialize(&public_key).unwrap();
//! # let encoded_signature: Vec<u8> = serialize(&signature).unwrap();
//! let decoded_public_key: PublicKey = deserialize(&encoded_public_key).unwrap();
//! let decoded_signature: Signature = deserialize(&encoded_signature).unwrap();
//!
//! # assert_eq!(public_key, decoded_public_key);
//! # assert_eq!(signature, decoded_signature);
//! #
//! assert!( public_key.verify(context.bytes(message), &signature).is_ok() );
//! # }
//! # #[cfg(not(feature = "serde"))]
//! # fn main() {}
//! ```
#![no_std]
#![warn(future_incompatible)]
#![warn(rust_2018_compatibility)]
#![warn(rust_2018_idioms)]
#![deny(missing_docs)] // refuse to compile if documentation is missing
#![allow(clippy::needless_lifetimes)]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
#[cfg(feature = "alloc")]
extern crate alloc;
use getrandom_or_panic::{RngCore,CryptoRng,getrandom_or_panic};
use curve25519_dalek::scalar::Scalar;
#[macro_use]
mod serdey;
pub mod points;
mod scalars;
pub mod keys;
pub mod context;
pub mod sign;
pub mod vrf;
pub mod derive;
pub mod cert;
pub mod errors;
#[cfg(all(feature = "aead", feature = "getrandom"))]
pub mod aead;
#[cfg(feature = "alloc")]
mod batch;
// Not safe because need randomness
#[cfg_attr(not(test), deprecated(since = "0.11.0", note = "This module will be replaced in the future"))]
#[cfg(feature = "std")]
pub mod musig;
pub use crate::keys::*; // {MiniSecretKey,SecretKey,PublicKey,Keypair,ExpansionMode}; + *_LENGTH
pub use crate::context::{signing_context}; // SigningContext,SigningTranscript
pub use crate::sign::{Signature,SIGNATURE_LENGTH};
pub use crate::errors::{SignatureError,SignatureResult};
#[cfg(feature = "alloc")]
pub use crate::batch::{verify_batch,verify_batch_rng,verify_batch_deterministic,PreparedBatch};
pub(crate) fn scalar_from_canonical_bytes(bytes: [u8; 32]) -> Option<Scalar> {
let key = Scalar::from_canonical_bytes(bytes);
// Note: this is a `CtOption` so we have to do this to extract the value.
if bool::from(key.is_none()) {
return None;
}
Some(key.unwrap())
}