1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2017-2019 Isis Lovecruft and Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Jeffrey Burdges <jeff@web3.foundation>

//! Schnorr signature variants using Ristretto point compression.
//!
//! # Example
//!
//! Creating a signature on a message is simple.
//!
//! First, we need to generate a `Keypair`, which includes both public and
//! secret halves of an asymmetric key.  To do so, we need a cryptographically
//! secure pseudorandom number generator (CSPRNG).
//!
//! ```
//! # #[cfg(all(feature = "std"))]
//! # fn main() {
//! use rand::{Rng, rngs::OsRng};
//! use schnorrkel::{Keypair,Signature};
//!
//! let keypair: Keypair = Keypair::generate_with(OsRng);
//! # }
//! #
//! # #[cfg(any(not(feature = "std")))]
//! # fn main() { }
//! ```
//!
//! We can now use this `keypair` to sign a message:
//!
//! ```
//! # fn main() {
//! # use rand::{SeedableRng}; // Rng
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair,Signature,signing_context};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! let context = signing_context(b"this signature does this thing");
//! let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # #[cfg(feature = "getrandom")]
//! let signature: Signature = keypair.sign(context.bytes(message));
//! # }
//! ```
//!
//! As well as to verify that this is, indeed, a valid signature on
//! that `message`:
//!
//! ```
//! # fn main() {
//! # use rand::{SeedableRng}; // Rng
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair,Signature,signing_context};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # #[cfg(feature = "getrandom")]
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # #[cfg(feature = "getrandom")]
//! assert!(keypair.verify(context.bytes(message), &signature).is_ok());
//! # }
//! ```
//!
//! Anyone else, given the `public` half of the `keypair` can also easily
//! verify this signature:
//!
//! ```
//! # fn main() {
//! # use rand::{SeedableRng}; // Rng
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair,Signature,signing_context};
//! use schnorrkel::PublicKey;
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # #[cfg(feature = "getrandom")]
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! let public_key: PublicKey = keypair.public;
//! # #[cfg(feature = "getrandom")]
//! assert!(public_key.verify(context.bytes(message), &signature).is_ok());
//! # }
//! ```
//!
//! ## Serialisation
//!
//! `PublicKey`s, `MiniSecretKey`s, `Keypair`s, and `Signature`s can be serialised
//! into byte-arrays by calling `.to_bytes()`.  It's perfectly acceptable and
//! safe to transfer and/or store those bytes.  (Of course, never transfer your
//! secret key to anyone else, since they will only need the public key to
//! verify your signatures!)
//!
//! ```
//! # #[cfg(feature = "getrandom")]
//! # fn main() {
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair, Signature, PublicKey, signing_context};
//! use schnorrkel::{PUBLIC_KEY_LENGTH, SECRET_KEY_LENGTH, KEYPAIR_LENGTH, SIGNATURE_LENGTH};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # let public_key: PublicKey = keypair.public;
//!
//! let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = public_key.to_bytes();
//! let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = keypair.secret.to_bytes();
//! let keypair_bytes:    [u8; KEYPAIR_LENGTH]    = keypair.to_bytes();
//! let signature_bytes:  [u8; SIGNATURE_LENGTH]  = signature.to_bytes();
//! # }
//! # #[cfg(not(feature = "getrandom"))]
//! # fn main() { }
//! ```
//!
//! And similarly, decoded from bytes with `::from_bytes()`:
//!
//! ```
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{SecretKey, Keypair, Signature, PublicKey, SignatureError, signing_context};
//! # use schnorrkel::{PUBLIC_KEY_LENGTH, SECRET_KEY_LENGTH, KEYPAIR_LENGTH, SIGNATURE_LENGTH};
//! # #[cfg(feature = "getrandom")]
//! # fn do_test() -> Result<(SecretKey, PublicKey, Keypair, Signature), SignatureError> {
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair_orig: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let signature_orig: Signature = keypair_orig.sign(context.bytes(message));
//! # let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = keypair_orig.public.to_bytes();
//! # let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = keypair_orig.secret.to_bytes();
//! # let keypair_bytes:    [u8; KEYPAIR_LENGTH]    = keypair_orig.to_bytes();
//! # let signature_bytes:  [u8; SIGNATURE_LENGTH]  = signature_orig.to_bytes();
//! #
//! let public_key: PublicKey = PublicKey::from_bytes(&public_key_bytes)?;
//! let secret_key: SecretKey = SecretKey::from_bytes(&secret_key_bytes)?;
//! let keypair:    Keypair   = Keypair::from_bytes(&keypair_bytes)?;
//! let signature:  Signature = Signature::from_bytes(&signature_bytes)?;
//! #
//! # Ok((secret_key, public_key, keypair, signature))
//! # }
//! # fn main() {
//! #     #[cfg(feature = "getrandom")]
//! #     do_test();
//! # }
//! ```
//!
//! ### Using Serde
//!
//! If you prefer the bytes to be wrapped in another serialisation format, all
//! types additionally come with built-in [serde](https://serde.rs) support by
//! building `schnorrkell` via:
//!
//! ```bash
//! $ cargo build --features="serde"
//! ```
//!
//! They can be then serialised into any of the wire formats which serde supports.
//! For example, using [bincode](https://github.com/TyOverby/bincode):
//!
//! ```
//! # #[cfg(feature = "serde")]
//! # fn main() {
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair, Signature, PublicKey, signing_context};
//! use bincode::{serialize};
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! # let context = signing_context(b"this signature does this thing");
//! # let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # let public_key: PublicKey = keypair.public;
//! # assert!( public_key.verify(context.bytes(message), &signature).is_ok() );
//!
//! let encoded_public_key: Vec<u8> = serialize(&public_key).unwrap();
//! let encoded_signature: Vec<u8> = serialize(&signature).unwrap();
//! # }
//! # #[cfg(not(feature = "serde"))]
//! # fn main() {}
//! ```
//!
//! After sending the `encoded_public_key` and `encoded_signature`, the
//! recipient may deserialise them and verify:
//!
//! ```
//! # #[cfg(feature = "serde")]
//! # fn main() {
//! # use rand::{Rng, SeedableRng};
//! # use rand_chacha::ChaChaRng;
//! # use schnorrkel::{Keypair, Signature, PublicKey, signing_context};
//! # use bincode::{serialize};
//! use bincode::{deserialize};
//!
//! # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
//! # let keypair: Keypair = Keypair::generate_with(&mut csprng);
//! let message: &[u8] = "This is a test of the tsunami alert system.".as_bytes();
//! # let context = signing_context(b"this signature does this thing");
//! # let signature: Signature = keypair.sign(context.bytes(message));
//! # let public_key: PublicKey = keypair.public;
//! # let encoded_public_key: Vec<u8> = serialize(&public_key).unwrap();
//! # let encoded_signature: Vec<u8> = serialize(&signature).unwrap();
//! let decoded_public_key: PublicKey = deserialize(&encoded_public_key).unwrap();
//! let decoded_signature: Signature = deserialize(&encoded_signature).unwrap();
//!
//! # assert_eq!(public_key, decoded_public_key);
//! # assert_eq!(signature, decoded_signature);
//! #
//! assert!( public_key.verify(context.bytes(message), &signature).is_ok() );
//! # }
//! # #[cfg(not(feature = "serde"))]
//! # fn main() {}
//! ```

#![no_std]
#![warn(future_incompatible)]
#![warn(rust_2018_compatibility)]
#![warn(rust_2018_idioms)]
#![deny(missing_docs)] // refuse to compile if documentation is missing
#![allow(clippy::needless_lifetimes)]

#[cfg(feature = "std")]
#[macro_use]
extern crate std;

#[cfg(feature = "alloc")]
extern crate alloc;

use getrandom_or_panic::{RngCore,CryptoRng,getrandom_or_panic};
use curve25519_dalek::scalar::Scalar;

#[macro_use]
mod serdey;

pub mod points;
mod scalars;
pub mod keys;

pub mod context;
pub mod sign;
pub mod vrf;
pub mod derive;
pub mod cert;
pub mod errors;

#[cfg(all(feature = "aead", feature = "getrandom"))]
pub mod aead;

#[cfg(feature = "alloc")]
mod batch;

// Not safe because need randomness

#[cfg_attr(not(test), deprecated(since = "0.11.0", note = "This module will be replaced in the future"))]
#[cfg(feature = "std")]
pub mod musig;

pub use crate::keys::*; // {MiniSecretKey,SecretKey,PublicKey,Keypair,ExpansionMode}; + *_LENGTH
pub use crate::context::{signing_context}; // SigningContext,SigningTranscript
pub use crate::sign::{Signature,SIGNATURE_LENGTH};
pub use crate::errors::{SignatureError,SignatureResult};

#[cfg(feature = "alloc")]
pub use crate::batch::{verify_batch,verify_batch_rng,verify_batch_deterministic,PreparedBatch};

pub(crate) fn scalar_from_canonical_bytes(bytes: [u8; 32]) -> Option<Scalar> {
    let key = Scalar::from_canonical_bytes(bytes);

    // Note: this is a `CtOption` so we have to do this to extract the value.
    if bool::from(key.is_none()) {
        return None;
    }

    Some(key.unwrap())
}