1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
// SPDX-License-Identifier: CC0-1.0

//! # secp256k1-sys FFI bindings
//! Direct bindings to the underlying C library functions. These should
//! not be needed for most users.

// Coding conventions
#![deny(non_upper_case_globals, non_camel_case_types, non_snake_case, unused_mut)]

#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]

#[cfg(any(test, feature = "std"))]
extern crate core;

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(secp256k1_fuzz)]
const THIS_UNUSED_CONSTANT_IS_YOUR_WARNING_THAT_ALL_THE_CRYPTO_IN_THIS_LIB_IS_DISABLED_FOR_FUZZING: usize = 0;

mod macros;
pub mod types;

#[cfg(feature = "recovery")]
pub mod recovery;

use core::{slice, ptr};
use core::ptr::NonNull;
use types::*;

/// Flag for context to enable no precomputation
pub const SECP256K1_START_NONE: c_uint = 1;
/// Flag for context to enable verification precomputation
pub const SECP256K1_START_VERIFY: c_uint = 1 | (1 << 8);
/// Flag for context to enable signing precomputation
pub const SECP256K1_START_SIGN: c_uint = 1 | (1 << 9);
/// Flag for keys to indicate uncompressed serialization format
#[allow(unused_parens)]
pub const SECP256K1_SER_UNCOMPRESSED: c_uint = (1 << 1);
/// Flag for keys to indicate compressed serialization format
pub const SECP256K1_SER_COMPRESSED: c_uint = (1 << 1) | (1 << 8);

/// A nonce generation function. Ordinary users of the library
/// never need to see this type; only if you need to control
/// nonce generation do you need to use it. I have deliberately
/// made this hard to do: you have to write your own wrapper
/// around the FFI functions to use it. And it's an unsafe type.
/// Nonces are generated deterministically by RFC6979 by
/// default; there should be no need to ever change this.
pub type NonceFn = Option<unsafe extern "C" fn(
    nonce32: *mut c_uchar,
    msg32: *const c_uchar,
    key32: *const c_uchar,
    algo16: *const c_uchar,
    data: *mut c_void,
    attempt: c_uint,
) -> c_int>;

/// Hash function to use to post-process an ECDH point to get
/// a shared secret.
pub type EcdhHashFn = Option<unsafe extern "C" fn(
    output: *mut c_uchar,
    x: *const c_uchar,
    y: *const c_uchar,
    data: *mut c_void,
) -> c_int>;

///  Same as secp256k1_nonce function with the exception of accepting an
///  additional pubkey argument and not requiring an attempt argument. The pubkey
///  argument can protect signature schemes with key-prefixed challenge hash
///  inputs against reusing the nonce when signing with the wrong precomputed
///  pubkey.
pub type SchnorrNonceFn = Option<unsafe extern "C" fn(
    nonce32: *mut c_uchar,
    msg32: *const c_uchar,
    msg_len: size_t,
    key32: *const c_uchar,
    xonly_pk32: *const c_uchar,
    algo16: *const c_uchar,
    algo_len: size_t,
    data: *mut c_void,
) -> c_int>;

/// A hash function used by `ellswift_ecdh` to hash the final ECDH shared secret.
pub type EllswiftEcdhHashFn = Option<unsafe extern "C" fn(
    output: *mut c_uchar,
    x32: *const c_uchar,
    ell_a64: *const c_uchar,
    ell_b64: *const c_uchar,
    data: *mut c_void,
) -> c_int>;

/// Data structure that contains additional arguments for schnorrsig_sign_custom.
#[repr(C)]
pub struct SchnorrSigExtraParams {
    magic: [c_uchar; 4],
    nonce_fp: SchnorrNonceFn,
    ndata: *const c_void,
}

impl SchnorrSigExtraParams {
    /// Create a new SchnorrSigExtraParams properly initialized.
    ///
    /// `nonce_fp`: pointer to a nonce generation function. If NULL
    /// rustsecp256k1_v0_5_0_nonce_function_bip340 is used
    ///
    /// `ndata`: pointer to arbitrary data used by the nonce generation function
    /// (can be NULL). If it is non-NULL and
    /// rustsecp256k1_v0_5_0_nonce_function_bip340 is used,
    /// then ndata must be a pointer to 32-byte auxiliary randomness as per
    /// BIP-340.
    pub fn new(nonce_fp: SchnorrNonceFn, ndata: *const c_void) -> Self {
        SchnorrSigExtraParams {
            magic: [0xda, 0x6f, 0xb3, 0x8c],
            nonce_fp,
            ndata,
        }
    }
}

/// A Secp256k1 context, containing various precomputed values and such
/// needed to do elliptic curve computations. If you create one of these
/// with `secp256k1_context_create` you MUST destroy it with
/// `secp256k1_context_destroy`, or else you will have a memory leak.
#[derive(Clone, Debug)]
#[repr(C)] pub struct Context(c_int);

/// Library-internal representation of a Secp256k1 public key
#[repr(C)]
#[derive(Copy, Clone)]
#[cfg_attr(secp256k1_fuzz, derive(PartialEq, Eq, PartialOrd, Ord, Hash))]
pub struct PublicKey([c_uchar; 64]);
impl_array_newtype!(PublicKey, c_uchar, 64);
impl_raw_debug!(PublicKey);

impl PublicKey {
    /// Creates an "uninitialized" FFI public key which is zeroed out
    ///
    /// # Safety
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 64])
    }

    /// Create a new public key usable for the FFI interface from raw bytes
    ///
    /// # Safety
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
        PublicKey(data)
    }

    /// Returns the underlying FFI opaque representation of the public key
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 64] {
        self.0
    }

    /// Serializes this public key as a byte-encoded pair of values, in compressed form.
    fn serialize(&self) -> [u8; 33] {
        let mut buf = [0u8; 33];
        let mut len = 33;
        unsafe {
            let ret = secp256k1_ec_pubkey_serialize(
                secp256k1_context_no_precomp,
                buf.as_mut_c_ptr(),
                &mut len,
                self,
                SECP256K1_SER_COMPRESSED,
            );
            debug_assert_eq!(ret, 1);
            debug_assert_eq!(len, 33);
        };
        buf
    }
}

#[cfg(not(secp256k1_fuzz))]
impl PartialOrd for PublicKey {
    fn partial_cmp(&self, other: &PublicKey) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Ord for PublicKey {
    fn cmp(&self, other: &PublicKey) -> core::cmp::Ordering {
        let ret = unsafe {
            secp256k1_ec_pubkey_cmp(secp256k1_context_no_precomp, self, other)
        };
        ret.cmp(&0i32)
    }
}

#[cfg(not(secp256k1_fuzz))]
impl PartialEq for PublicKey {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == core::cmp::Ordering::Equal
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Eq for PublicKey {}

#[cfg(not(secp256k1_fuzz))]
impl core::hash::Hash for PublicKey {
    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
        let ser = self.serialize();
        ser.hash(state);
    }
}

/// Library-internal representation of a Secp256k1 signature
#[repr(C)]
#[derive(Copy, Clone)]
#[cfg_attr(secp256k1_fuzz, derive(PartialEq, Eq, PartialOrd, Ord, Hash))]
pub struct Signature([c_uchar; 64]);
impl_array_newtype!(Signature, c_uchar, 64);
impl_raw_debug!(Signature);

impl Signature {
    /// Creates an "uninitialized" FFI signature which is zeroed out
    ///
    /// # Safety
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 64])
    }

    /// Create a new signature usable for the FFI interface from raw bytes
    ///
    /// # Safety
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
        Signature(data)
    }

    /// Returns the underlying FFI opaque representation of the signature
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 64] {
        self.0
    }

    /// Serializes the signature in compact format.
    fn serialize(&self) -> [u8; 64] {
        let mut buf = [0u8; 64];
        unsafe {
            let ret = secp256k1_ecdsa_signature_serialize_compact(
                secp256k1_context_no_precomp,
                buf.as_mut_c_ptr(),
                self,
            );
            debug_assert!(ret == 1);
        }
        buf
    }
}

#[cfg(not(secp256k1_fuzz))]
impl PartialOrd for Signature {
    fn partial_cmp(&self, other: &Signature) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Ord for Signature {
    fn cmp(&self, other: &Signature) -> core::cmp::Ordering {
        let this = self.serialize();
        let that = other.serialize();
        this.cmp(&that)
    }
}

#[cfg(not(secp256k1_fuzz))]
impl PartialEq for Signature {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == core::cmp::Ordering::Equal
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Eq for Signature {}

#[cfg(not(secp256k1_fuzz))]
impl core::hash::Hash for Signature {
    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
        let ser = self.serialize();
        ser.hash(state);
    }
}

#[repr(C)]
#[derive(Copy, Clone)]
#[cfg_attr(secp256k1_fuzz, derive(PartialEq, Eq, PartialOrd, Ord, Hash))]
pub struct XOnlyPublicKey([c_uchar; 64]);
impl_array_newtype!(XOnlyPublicKey, c_uchar, 64);
impl_raw_debug!(XOnlyPublicKey);

impl XOnlyPublicKey {
    /// Creates an "uninitialized" FFI x-only public key which is zeroed out
    ///
    /// # Safety
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 64])
    }

    /// Create a new x-only public key usable for the FFI interface from raw bytes
    ///
    /// # Safety
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
        XOnlyPublicKey(data)
    }

    /// Returns the underlying FFI opaque representation of the x-only public key
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 64] {
        self.0
    }

    /// Serializes this key as a byte-encoded x coordinate value (32 bytes).
    fn serialize(&self) -> [u8; 32] {
        let mut buf = [0u8; 32];
        unsafe {
            let ret = secp256k1_xonly_pubkey_serialize(
                secp256k1_context_no_precomp,
                buf.as_mut_c_ptr(),
                self,
            );
            assert_eq!(ret, 1);
        };
        buf
    }
}

#[cfg(not(secp256k1_fuzz))]
impl PartialOrd for XOnlyPublicKey {
    fn partial_cmp(&self, other: &XOnlyPublicKey) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Ord for XOnlyPublicKey {
    fn cmp(&self, other: &XOnlyPublicKey) -> core::cmp::Ordering {
        let ret = unsafe {
            secp256k1_xonly_pubkey_cmp(secp256k1_context_no_precomp, self, other)
        };
        ret.cmp(&0i32)
    }
}

#[cfg(not(secp256k1_fuzz))]
impl PartialEq for XOnlyPublicKey {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == core::cmp::Ordering::Equal
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Eq for XOnlyPublicKey {}

#[cfg(not(secp256k1_fuzz))]
impl core::hash::Hash for XOnlyPublicKey {
    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
        let ser = self.serialize();
        ser.hash(state);
    }
}

#[repr(C)]
#[derive(Copy, Clone)]
#[cfg_attr(secp256k1_fuzz, derive(PartialEq, Eq, PartialOrd, Ord, Hash))]
pub struct Keypair([c_uchar; 96]);
impl_array_newtype!(Keypair, c_uchar, 96);
impl_raw_debug!(Keypair);

impl Keypair {
    /// Creates an "uninitialized" FFI keypair which is zeroed out
    ///
    /// # Safety
    ///
    /// If you pass this to any FFI functions, except as an out-pointer,
    /// the result is likely to be an assertation failure and process
    /// termination.
    pub unsafe fn new() -> Self {
        Self::from_array_unchecked([0; 96])
    }

    /// Create a new keypair usable for the FFI interface from raw bytes
    ///
    /// # Safety
    ///
    /// Does not check the validity of the underlying representation. If it is
    /// invalid the result may be assertation failures (and process aborts) from
    /// the underlying library. You should not use this method except with data
    /// that you obtained from the FFI interface of the same version of this
    /// library.
    pub unsafe fn from_array_unchecked(data: [c_uchar; 96]) -> Self {
        Keypair(data)
    }

    /// Returns the underlying FFI opaque representation of the x-only public key
    ///
    /// You should not use this unless you really know what you are doing. It is
    /// essentially only useful for extending the FFI interface itself.
    pub fn underlying_bytes(self) -> [c_uchar; 96] {
        self.0
    }

    /// Creates a new compressed public key from this key pair.
    fn public_key(&self) -> PublicKey {
        unsafe {
            let mut pk = PublicKey::new();
            let ret = secp256k1_keypair_pub(
                secp256k1_context_no_precomp,
                &mut pk,
                self,
            );
            debug_assert_eq!(ret, 1);
            pk
        }
    }

    /// Attempts to erase the contents of the underlying array.
    ///
    /// Note, however, that the compiler is allowed to freely copy or move the
    /// contents of this array to other places in memory. Preventing this behavior
    /// is very subtle. For more discussion on this, please see the documentation
    /// of the [`zeroize`](https://docs.rs/zeroize) crate.
    #[inline]
    pub fn non_secure_erase(&mut self) {
        non_secure_erase_impl(&mut self.0, DUMMY_KEYPAIR);
    }
}

// DUMMY_KEYPAIR is the internal repr of a valid key pair with secret key `[1u8; 32]`
#[cfg(target_endian = "little")]
const DUMMY_KEYPAIR: [c_uchar; 96] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 143, 7, 221, 213, 233, 245, 23, 156, 255, 25, 72, 96, 52, 24, 30, 215, 101, 5, 186, 170, 213, 62, 93, 153, 64, 100, 18, 123, 86, 197, 132, 27, 209, 232, 168, 105, 122, 212, 34, 81, 222, 57, 246, 167, 32, 129, 223, 223, 66, 171, 197, 66, 166, 214, 254, 7, 21, 84, 139, 88, 143, 175, 190, 112];
#[cfg(all(target_endian = "big", target_pointer_width = "32"))]
const DUMMY_KEYPAIR: [c_uchar; 96] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 213, 221, 7, 143, 156, 23, 245, 233, 96, 72, 25, 255, 215, 30, 24, 52, 170, 186, 5, 101, 153, 93, 62, 213, 123, 18, 100, 64, 27, 132, 197, 86, 105, 168, 232, 209, 81, 34, 212, 122, 167, 246, 57, 222, 223, 223, 129, 32, 66, 197, 171, 66, 7, 254, 214, 166, 88, 139, 84, 21, 112, 190, 175, 143];
#[cfg(all(target_endian = "big", target_pointer_width = "64"))]
const DUMMY_KEYPAIR: [c_uchar; 96] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 156, 23, 245, 233, 213, 221, 7, 143, 215, 30, 24, 52, 96, 72, 25, 255, 153, 93, 62, 213, 170, 186, 5, 101, 27, 132, 197, 86, 123, 18, 100, 64, 81, 34, 212, 122, 105, 168, 232, 209, 223, 223, 129, 32, 167, 246, 57, 222, 7, 254, 214, 166, 66, 197, 171, 66, 112, 190, 175, 143, 88, 139, 84, 21];

/// Does a best attempt at secure erasure using Rust intrinsics.
///
/// The implementation is based on the approach used by the [`zeroize`](https://docs.rs/zeroize) crate.
#[inline(always)]
pub fn non_secure_erase_impl<T>(dst: &mut T, src: T) {
    use core::sync::atomic;
    // overwrite using volatile value
    unsafe { ptr::write_volatile(dst, src); }

    // prevent future accesses from being reordered to before erasure
    atomic::compiler_fence(atomic::Ordering::SeqCst);
}

#[cfg(not(secp256k1_fuzz))]
impl PartialOrd for Keypair {
    fn partial_cmp(&self, other: &Keypair) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Ord for Keypair {
    fn cmp(&self, other: &Keypair) -> core::cmp::Ordering {
        let this = self.public_key();
        let that = other.public_key();
        this.cmp(&that)
    }
}

#[cfg(not(secp256k1_fuzz))]
impl PartialEq for Keypair {
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == core::cmp::Ordering::Equal
    }
}

#[cfg(not(secp256k1_fuzz))]
impl Eq for Keypair {}

#[cfg(not(secp256k1_fuzz))]
impl core::hash::Hash for Keypair {
    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
        // To hash the key pair we just hash the serialized public key. Since any change to the
        // secret key would also be a change to the public key this is a valid one way function from
        // the key pair to the digest.
        let pk = self.public_key();
        let ser = pk.serialize();
        ser.hash(state);
    }
}

/// Library-internal representation of a ElligatorSwift encoded group element.
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ElligatorSwift([u8; 64]);

impl ElligatorSwift {
    pub fn from_array(arr: [u8; 64]) -> Self {
        ElligatorSwift(arr)
    }
    pub fn to_array(self) -> [u8; 64] {
        self.0
    }
}

impl_array_newtype!(ElligatorSwift, u8, 64);
impl_raw_debug!(ElligatorSwift);

extern "C" {
    /// Default ECDH hash function
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdh_hash_function_default")]
    pub static secp256k1_ecdh_hash_function_default: EcdhHashFn;

    /// Default ECDH hash function for BIP324 key establishment
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ellswift_xdh_hash_function_bip324")]
    pub static secp256k1_ellswift_xdh_hash_function_bip324: EllswiftEcdhHashFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_nonce_function_rfc6979")]
    pub static secp256k1_nonce_function_rfc6979: NonceFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_nonce_function_default")]
    pub static secp256k1_nonce_function_default: NonceFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_nonce_function_bip340")]
    pub static secp256k1_nonce_function_bip340: SchnorrNonceFn;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_context_no_precomp")]
    pub static secp256k1_context_no_precomp: *const Context;

    // Contexts
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_context_preallocated_destroy")]
    pub fn secp256k1_context_preallocated_destroy(cx: NonNull<Context>);

    // Signatures
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_signature_parse_der")]
    pub fn secp256k1_ecdsa_signature_parse_der(cx: *const Context, sig: *mut Signature,
                                               input: *const c_uchar, in_len: size_t)
                                               -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_signature_parse_compact")]
    pub fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature,
                                                   input64: *const c_uchar)
                                                   -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_signature_parse_der_lax")]
    pub fn ecdsa_signature_parse_der_lax(cx: *const Context, sig: *mut Signature,
                                         input: *const c_uchar, in_len: size_t)
                                         -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_signature_serialize_der")]
    pub fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar,
                                                   out_len: *mut size_t, sig: *const Signature)
                                                   -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_signature_serialize_compact")]
    pub fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *mut c_uchar,
                                                       sig: *const Signature)
                                                       -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_signature_normalize")]
    pub fn secp256k1_ecdsa_signature_normalize(cx: *const Context, out_sig: *mut Signature,
                                               in_sig: *const Signature)
                                               -> c_int;

    // Secret Keys
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_seckey_verify")]
    pub fn secp256k1_ec_seckey_verify(cx: *const Context,
                                      sk: *const c_uchar) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_seckey_negate")]
    pub fn secp256k1_ec_seckey_negate(cx: *const Context,
                                      sk: *mut c_uchar) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_seckey_tweak_add")]
    pub fn secp256k1_ec_seckey_tweak_add(cx: *const Context,
                                        sk: *mut c_uchar,
                                        tweak: *const c_uchar)
                                        -> c_int;
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_seckey_tweak_mul")]
    pub fn secp256k1_ec_seckey_tweak_mul(cx: *const Context,
                                        sk: *mut c_uchar,
                                        tweak: *const c_uchar)
                                        -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_keypair_sec")]
    pub fn secp256k1_keypair_sec(cx: *const Context,
                                 output_seckey: *mut c_uchar,
                                 keypair: *const Keypair)
                                 -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_keypair_pub")]
    pub fn secp256k1_keypair_pub(cx: *const Context,
                                 output_pubkey: *mut PublicKey,
                                 keypair: *const Keypair)
                                 -> c_int;
    // Elligator Swift
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ellswift_encode")]
    pub fn secp256k1_ellswift_encode(ctx: *const Context,
                                     ell64: *mut c_uchar,
                                     pubkey: *const PublicKey,
                                     rnd32: *const c_uchar)
                                     -> c_int;
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ellswift_decode")]
    pub fn secp256k1_ellswift_decode(ctx: *const Context,
                                     pubkey: *mut u8,
                                     ell64: *const c_uchar)
                                     -> c_int;
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ellswift_create")]
    pub fn secp256k1_ellswift_create(ctx: *const Context,
                                     ell64: *mut c_uchar,
                                     seckey32: *const c_uchar,
                                     aux_rand32: *const c_uchar)
                                     -> c_int;
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ellswift_xdh")]
    pub fn secp256k1_ellswift_xdh(ctx: *const Context,
                                  output: *mut c_uchar,
                                  ell_a64: *const c_uchar,
                                  ell_b64: *const c_uchar,
                                  seckey32: *const c_uchar,
                                  party: c_int,
                                  hashfp: EllswiftEcdhHashFn,
                                  data: *mut c_void)
                                  -> c_int;
}

#[cfg(not(secp256k1_fuzz))]
extern "C" {
    // Contexts
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_context_preallocated_size")]
    pub fn secp256k1_context_preallocated_size(flags: c_uint) -> size_t;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_context_preallocated_create")]
    pub fn secp256k1_context_preallocated_create(prealloc: NonNull<c_void>, flags: c_uint) -> NonNull<Context>;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_context_preallocated_clone_size")]
    pub fn secp256k1_context_preallocated_clone_size(cx: *const Context) -> size_t;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_context_preallocated_clone")]
    pub fn secp256k1_context_preallocated_clone(cx: *const Context, prealloc: NonNull<c_void>) -> NonNull<Context>;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_context_randomize")]
    pub fn secp256k1_context_randomize(cx: NonNull<Context>,
                                       seed32: *const c_uchar)
                                       -> c_int;
    // Pubkeys
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_parse")]
    pub fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
                                     input: *const c_uchar, in_len: size_t)
                                     -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_serialize")]
    pub fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
                                         out_len: *mut size_t, pk: *const PublicKey,
                                         compressed: c_uint)
                                         -> c_int;

    // EC
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_create")]
    pub fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
                                      sk: *const c_uchar) -> c_int;


    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_negate")]
    pub fn secp256k1_ec_pubkey_negate(cx: *const Context,
                                      pk: *mut PublicKey) -> c_int;


    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_cmp")]
    pub fn secp256k1_ec_pubkey_cmp(cx: *const Context,
                                   pubkey1: *const PublicKey,
                                   pubkey2: *const PublicKey)
                                   -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_tweak_add")]
    pub fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
                                         pk: *mut PublicKey,
                                         tweak: *const c_uchar)
                                         -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_tweak_mul")]
    pub fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
                                         pk: *mut PublicKey,
                                         tweak: *const c_uchar)
                                         -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ec_pubkey_combine")]
    pub fn secp256k1_ec_pubkey_combine(cx: *const Context,
                                       out: *mut PublicKey,
                                       ins: *const *const PublicKey,
                                       n: size_t)
                                       -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdh")]
    pub fn secp256k1_ecdh(
        cx: *const Context,
        output: *mut c_uchar,
        pubkey: *const PublicKey,
        seckey: *const c_uchar,
        hashfp: EcdhHashFn,
        data: *mut c_void,
    ) -> c_int;

    // ECDSA
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_verify")]
    pub fn secp256k1_ecdsa_verify(cx: *const Context,
                                  sig: *const Signature,
                                  msg32: *const c_uchar,
                                  pk: *const PublicKey)
                                  -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_ecdsa_sign")]
    pub fn secp256k1_ecdsa_sign(cx: *const Context,
                                sig: *mut Signature,
                                msg32: *const c_uchar,
                                sk: *const c_uchar,
                                noncefn: NonceFn,
                                noncedata: *const c_void)
                                -> c_int;

    // Schnorr Signatures
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_schnorrsig_sign")]
    pub fn secp256k1_schnorrsig_sign(
        cx: *const Context,
        sig: *mut c_uchar,
        msg32: *const c_uchar,
        keypair: *const Keypair,
        aux_rand32: *const c_uchar
    ) -> c_int;

    // Schnorr Signatures with extra parameters (see [`SchnorrSigExtraParams`])
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_schnorrsig_sign_custom")]
    pub fn secp256k1_schnorrsig_sign_custom(
        cx: *const Context,
        sig: *mut c_uchar,
        msg: *const c_uchar,
        msg_len: size_t,
        keypair: *const Keypair,
        extra_params: *const SchnorrSigExtraParams,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_schnorrsig_verify")]
    pub fn secp256k1_schnorrsig_verify(
        cx: *const Context,
        sig64: *const c_uchar,
        msg32: *const c_uchar,
        msglen: size_t,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int;

    // Extra keys
    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_keypair_create")]
    pub fn secp256k1_keypair_create(
        cx: *const Context,
        keypair: *mut Keypair,
        seckey: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_xonly_pubkey_parse")]
    pub fn secp256k1_xonly_pubkey_parse(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        input32: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_xonly_pubkey_serialize")]
    pub fn secp256k1_xonly_pubkey_serialize(
        cx: *const Context,
        output32: *mut c_uchar,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_xonly_pubkey_from_pubkey")]
    pub fn secp256k1_xonly_pubkey_from_pubkey(
        cx: *const Context,
        xonly_pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        pubkey: *const PublicKey,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_xonly_pubkey_cmp")]
    pub fn secp256k1_xonly_pubkey_cmp(
        cx: *const Context,
        pubkey1: *const XOnlyPublicKey,
        pubkey2: *const XOnlyPublicKey
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_xonly_pubkey_tweak_add")]
    pub fn secp256k1_xonly_pubkey_tweak_add(
        cx: *const Context,
        output_pubkey: *mut PublicKey,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_keypair_xonly_pub")]
    pub fn secp256k1_keypair_xonly_pub(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        keypair: *const Keypair
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_keypair_xonly_tweak_add")]
    pub fn secp256k1_keypair_xonly_tweak_add(
        cx: *const Context,
        keypair: *mut Keypair,
        tweak32: *const c_uchar,
    ) -> c_int;

    #[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_9_2_xonly_pubkey_tweak_add_check")]
    pub fn secp256k1_xonly_pubkey_tweak_add_check(
        cx: *const Context,
        tweaked_pubkey32: *const c_uchar,
        tweaked_pubkey_parity: c_int,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int;
}

/// A reimplementation of the C function `secp256k1_context_create` in rust.
///
/// This function allocates memory, the pointer should be deallocated using
/// `secp256k1_context_destroy`. Failure to do so will result in a memory leak.
///
/// Input `flags` control which parts of the context to initialize.
///
/// # Safety
///
/// This function is unsafe because it calls unsafe functions however (assuming no bugs) no
/// undefined behavior is possible.
///
/// # Returns
///
/// The newly created secp256k1 raw context.
#[cfg(all(feature = "alloc", not(rust_secp_no_symbol_renaming)))]
pub unsafe fn secp256k1_context_create(flags: c_uint) -> NonNull<Context> {
    rustsecp256k1_v0_9_2_context_create(flags)
}

/// A reimplementation of the C function `secp256k1_context_create` in rust.
///
/// See [`secp256k1_context_create`] for documentation and safety constraints.
#[no_mangle]
#[allow(clippy::missing_safety_doc)] // Documented above.
#[cfg(all(feature = "alloc", not(rust_secp_no_symbol_renaming)))]
pub unsafe extern "C" fn rustsecp256k1_v0_9_2_context_create(flags: c_uint) -> NonNull<Context> {
    use core::mem;
    use crate::alloc::alloc;
    assert!(ALIGN_TO >= mem::align_of::<usize>());
    assert!(ALIGN_TO >= mem::align_of::<&usize>());
    assert!(ALIGN_TO >= mem::size_of::<usize>());

    // We need to allocate `ALIGN_TO` more bytes in order to write the amount of bytes back.
    let bytes = secp256k1_context_preallocated_size(flags) + ALIGN_TO;
    let layout = alloc::Layout::from_size_align(bytes, ALIGN_TO).unwrap();
    let ptr = alloc::alloc(layout);
    if ptr.is_null() {
        alloc::handle_alloc_error(layout);
    }
    (ptr as *mut usize).write(bytes);
    // We must offset a whole ALIGN_TO in order to preserve the same alignment
    // this means we "lose" ALIGN_TO-size_of(usize) for padding.
    let ptr = ptr.add(ALIGN_TO);
    let ptr = NonNull::new_unchecked(ptr as *mut c_void); // Checked above.
    secp256k1_context_preallocated_create(ptr, flags)
}

/// A reimplementation of the C function `secp256k1_context_destroy` in rust.
///
/// This function destroys and deallcates the context created by `secp256k1_context_create`.
///
/// The pointer shouldn't be used after passing to this function, consider it as passing it to `free()`.
///
/// # Safety
///
///  `ctx` must be a valid pointer to a block of memory created using [`secp256k1_context_create`].
#[cfg(all(feature = "alloc", not(rust_secp_no_symbol_renaming)))]
pub unsafe fn secp256k1_context_destroy(ctx: NonNull<Context>) {
    rustsecp256k1_v0_9_2_context_destroy(ctx)
}

#[no_mangle]
#[allow(clippy::missing_safety_doc)] // Documented above.
#[cfg(all(feature = "alloc", not(rust_secp_no_symbol_renaming)))]
pub unsafe extern "C" fn rustsecp256k1_v0_9_2_context_destroy(mut ctx: NonNull<Context>) {
    use crate::alloc::alloc;
    secp256k1_context_preallocated_destroy(ctx);
    let ctx: *mut Context = ctx.as_mut();
    let ptr = (ctx as *mut u8).sub(ALIGN_TO);
    let bytes = (ptr as *mut usize).read();
    let layout = alloc::Layout::from_size_align(bytes, ALIGN_TO).unwrap();
    alloc::dealloc(ptr, layout);
}

/// **This function is an override for the C function, this is the an edited version of the original description:**
///
/// A callback function to be called when an illegal argument is passed to
/// an API call. It will only trigger for violations that are mentioned
/// explicitly in the header. **This will cause a panic**.
///
/// The philosophy is that these shouldn't be dealt with through a
/// specific return value, as calling code should not have branches to deal with
/// the case that this code itself is broken.
///
/// On the other hand, during debug stage, one would want to be informed about
/// such mistakes, and the default (crashing) may be inadvisable.
/// When this callback is triggered, the API function called is guaranteed not
/// to cause a crash, though its return value and output arguments are
/// undefined.
///
/// See also secp256k1_default_error_callback_fn.
///
///
/// # Safety
///
/// `message` string should be a null terminated C string and, up to the first null byte, must be valid UTF8.
///
/// For exact safety constraints see [`std::slice::from_raw_parts`] and [`std::str::from_utf8_unchecked`].
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
pub unsafe extern "C" fn rustsecp256k1_v0_9_2_default_illegal_callback_fn(message: *const c_char, _data: *mut c_void) {
    use core::str;
    let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
    let msg = str::from_utf8_unchecked(msg_slice);
    panic!("[libsecp256k1] illegal argument. {}", msg);
}

/// **This function is an override for the C function, this is the an edited version of the original description:**
///
/// A callback function to be called when an internal consistency check
/// fails. **This will cause a panic**.
///
/// This can only trigger in case of a hardware failure, miscompilation,
/// memory corruption, serious bug in the library, or other error would can
/// otherwise result in undefined behaviour. It will not trigger due to mere
/// incorrect usage of the API (see secp256k1_default_illegal_callback_fn
/// for that). After this callback returns, anything may happen, including
/// crashing.
///
/// See also secp256k1_default_illegal_callback_fn.
///
/// # Safety
///
/// `message` string should be a null terminated C string and, up to the first null byte, must be valid UTF8.
///
/// For exact safety constraints see [`std::slice::from_raw_parts`] and [`std::str::from_utf8_unchecked`].
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
pub unsafe extern "C" fn rustsecp256k1_v0_9_2_default_error_callback_fn(message: *const c_char, _data: *mut c_void) {
    use core::str;
    let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
    let msg = str::from_utf8_unchecked(msg_slice);
    panic!("[libsecp256k1] internal consistency check failed {}", msg);
}

/// Returns the length of the `str_ptr` string.
///
/// # Safety
///
/// `str_ptr` must be valid pointer and point to a valid null terminated C string.
#[cfg(not(rust_secp_no_symbol_renaming))]
unsafe fn strlen(mut str_ptr: *const c_char) -> usize {
    let mut ctr = 0;
    while *str_ptr != '\0' as c_char {
        ctr += 1;
        str_ptr = str_ptr.offset(1);
    }
    ctr
}


/// A trait for producing pointers that will always be valid in C (assuming NULL pointer is a valid
/// no-op).
///
/// Rust does not guarantee pointers to Zero Sized Types
/// (<https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts>). In case the type
/// is empty this trait will return a NULL pointer, which should be handled in C.
pub trait CPtr {
    type Target;
    fn as_c_ptr(&self) -> *const Self::Target;
    fn as_mut_c_ptr(&mut self) -> *mut Self::Target;
}

impl<T> CPtr for [T] {
    type Target = T;
    fn as_c_ptr(&self) -> *const Self::Target {
        if self.is_empty() {
            ptr::null()
        } else {
            self.as_ptr()
        }
    }

    fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
        if self.is_empty() {
            ptr::null_mut::<Self::Target>()
        } else {
            self.as_mut_ptr()
        }
    }
}

impl<T> CPtr for &[T] {
    type Target = T;
    fn as_c_ptr(&self) -> *const Self::Target {
        if self.is_empty() {
            ptr::null()
        } else {
            self.as_ptr()
        }
    }

    fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
        if self.is_empty() {
            ptr::null_mut()
        } else {
            self.as_ptr() as *mut Self::Target
        }
    }
    
}

impl CPtr for [u8; 32] {
    type Target = u8;
    fn as_c_ptr(&self) -> *const Self::Target {
        self.as_ptr()
    }

    fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
        self.as_mut_ptr()
    }
}

impl <T: CPtr> CPtr for Option<T> {
    type Target = T::Target;
    fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
        match self {
            Some(contents) => contents.as_mut_c_ptr(),
            None => ptr::null_mut(),
        }
    }
    fn as_c_ptr(&self) -> *const Self::Target {
        match self {
            Some(content) => content.as_c_ptr(),
            None => ptr::null(),
        }
    }
}

#[cfg(secp256k1_fuzz)]
mod fuzz_dummy {
    use super::*;
    use core::sync::atomic::{AtomicUsize, Ordering};

    #[cfg(rust_secp_no_symbol_renaming)] compile_error!("We do not support fuzzing with rust_secp_no_symbol_renaming");

    extern "C" {
        fn rustsecp256k1_v0_9_2_context_preallocated_size(flags: c_uint) -> size_t;
        fn rustsecp256k1_v0_9_2_context_preallocated_create(prealloc: NonNull<c_void>, flags: c_uint) -> NonNull<Context>;
        fn rustsecp256k1_v0_9_2_context_preallocated_clone(cx: *const Context, prealloc: NonNull<c_void>) -> NonNull<Context>;
    }

    #[cfg(feature = "lowmemory")]
    const CTX_SIZE: usize = 1024 * 65;
    #[cfg(not(feature = "lowmemory"))]
    const CTX_SIZE: usize = 1024 * (1024 + 128);
    // Contexts
    pub unsafe fn secp256k1_context_preallocated_size(flags: c_uint) -> size_t {
        assert!(rustsecp256k1_v0_9_2_context_preallocated_size(flags) + std::mem::size_of::<c_uint>() <= CTX_SIZE);
        CTX_SIZE
    }

    static HAVE_PREALLOCATED_CONTEXT: AtomicUsize = AtomicUsize::new(0);
    const HAVE_CONTEXT_NONE: usize = 0;
    const HAVE_CONTEXT_WORKING: usize = 1;
    const HAVE_CONTEXT_DONE: usize = 2;
    static mut PREALLOCATED_CONTEXT: [u8; CTX_SIZE] = [0; CTX_SIZE];
    pub unsafe fn secp256k1_context_preallocated_create(prealloc: NonNull<c_void>, flags: c_uint) -> NonNull<Context> {
        // While applications should generally avoid creating too many contexts, sometimes fuzzers
        // perform tasks repeatedly which real applications may only do rarely. Thus, we want to
        // avoid being overly slow here. We do so by having a static context and copying it into
        // new buffers instead of recalculating it. Because we shouldn't rely on std, we use a
        // simple hand-written OnceFlag built out of an atomic to gate the global static.
        let mut have_ctx = HAVE_PREALLOCATED_CONTEXT.load(Ordering::Relaxed);
        while have_ctx != HAVE_CONTEXT_DONE {
            if have_ctx == HAVE_CONTEXT_NONE {
                have_ctx = HAVE_PREALLOCATED_CONTEXT.swap(HAVE_CONTEXT_WORKING, Ordering::AcqRel);
                if have_ctx == HAVE_CONTEXT_NONE {
                    assert!(rustsecp256k1_v0_9_2_context_preallocated_size(SECP256K1_START_SIGN | SECP256K1_START_VERIFY) + std::mem::size_of::<c_uint>() <= CTX_SIZE);
                    assert_eq!(rustsecp256k1_v0_9_2_context_preallocated_create(
                            NonNull::new_unchecked(PREALLOCATED_CONTEXT[..].as_mut_ptr() as *mut c_void),
                            SECP256K1_START_SIGN | SECP256K1_START_VERIFY),
                        NonNull::new_unchecked(PREALLOCATED_CONTEXT[..].as_mut_ptr() as *mut Context));
                    assert_eq!(HAVE_PREALLOCATED_CONTEXT.swap(HAVE_CONTEXT_DONE, Ordering::AcqRel),
                        HAVE_CONTEXT_WORKING);
                } else if have_ctx == HAVE_CONTEXT_DONE {
                    // Another thread finished while we were swapping.
                    HAVE_PREALLOCATED_CONTEXT.store(HAVE_CONTEXT_DONE, Ordering::Release);
                }
            } else {
                // Another thread is building, just busy-loop until they're done.
                assert_eq!(have_ctx, HAVE_CONTEXT_WORKING);
                have_ctx = HAVE_PREALLOCATED_CONTEXT.load(Ordering::Acquire);
                #[cfg(feature = "std")]
                std::thread::yield_now();
            }
        }
        ptr::copy_nonoverlapping(PREALLOCATED_CONTEXT[..].as_ptr(), prealloc.as_ptr() as *mut u8, CTX_SIZE);
        let ptr = (prealloc.as_ptr()).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
        (ptr as *mut c_uint).write(flags);
        NonNull::new_unchecked(prealloc.as_ptr() as *mut Context)
    }
    pub unsafe fn secp256k1_context_preallocated_clone_size(_cx: *const Context) -> size_t { CTX_SIZE }
    pub unsafe fn secp256k1_context_preallocated_clone(cx: *const Context, prealloc: NonNull<c_void>) -> NonNull<Context> {
        let orig_ptr = (cx as *mut u8).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
        let new_ptr = (prealloc.as_ptr() as *mut u8).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
        let flags = (orig_ptr as *mut c_uint).read();
        (new_ptr as *mut c_uint).write(flags);
        rustsecp256k1_v0_9_2_context_preallocated_clone(cx, prealloc)
    }

    pub unsafe fn secp256k1_context_randomize(cx: NonNull<Context>,
                                              _seed32: *const c_uchar)
                                              -> c_int {
        // This function is really slow, and unsuitable for fuzzing
        check_context_flags(cx.as_ptr(), 0);
        1
    }

    unsafe fn check_context_flags(cx: *const Context, required_flags: c_uint) {
        assert!(!cx.is_null());
        let cx_flags = if cx == secp256k1_context_no_precomp {
            1
        } else {
            let ptr = (cx as *const u8).add(CTX_SIZE).sub(std::mem::size_of::<c_uint>());
            (ptr as *const c_uint).read()
        };
        assert_eq!(cx_flags & 1, 1); // SECP256K1_FLAGS_TYPE_CONTEXT
        assert_eq!(cx_flags & required_flags, required_flags);
    }

    /// Checks that pk != 0xffff...ffff and pk[1..32] == pk[33..64]
    unsafe fn test_pk_validate(cx: *const Context,
                               pk: *const PublicKey) -> c_int {
        check_context_flags(cx, 0);
        if (*pk).0[1..32] != (*pk).0[33..64] ||
           ((*pk).0[32] != 0 && (*pk).0[32] != 0xff) ||
           secp256k1_ec_seckey_verify(cx, (*pk).0[0..32].as_ptr()) == 0 {
            0
        } else {
            1
        }
    }
    unsafe fn test_cleanup_pk(pk: *mut PublicKey) {
        (*pk).0[32..].copy_from_slice(&(*pk).0[..32]);
        if (*pk).0[32] <= 0x7f {
            (*pk).0[32] = 0;
        } else {
            (*pk).0[32] = 0xff;
        }
    }

    // Pubkeys
    pub unsafe fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
                                            input: *const c_uchar, in_len: size_t)
                                            -> c_int {
        check_context_flags(cx, 0);
        match in_len {
            33 => {
                if *input != 2 && *input != 3 {
                    0
                } else {
                    ptr::copy(input.offset(1), (*pk).0[0..32].as_mut_ptr(), 32);
                    ptr::copy(input.offset(2), (*pk).0[33..64].as_mut_ptr(), 31);
                    if *input == 3 {
                        (*pk).0[32] = 0xff;
                    } else {
                        (*pk).0[32] = 0;
                    }
                    test_pk_validate(cx, pk)
                }
            },
            65 => {
                if *input != 4 && *input != 6 && *input != 7 {
                    0
                } else {
                    ptr::copy(input.offset(1), (*pk).0.as_mut_ptr(), 64);
                    test_cleanup_pk(pk);
                    test_pk_validate(cx, pk)
                }
            },
            _ => 0
        }
    }

    /// Serialize PublicKey back to 33/65 byte pubkey
    pub unsafe fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
                                                out_len: *mut size_t, pk: *const PublicKey,
                                                compressed: c_uint)
                                                -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if compressed == SECP256K1_SER_COMPRESSED {
            assert_eq!(*out_len, 33);
            if (*pk).0[32] <= 0x7f {
                *output = 2;
            } else {
                *output = 3;
            }
            ptr::copy((*pk).0.as_ptr(), output.offset(1), 32);
        } else if compressed == SECP256K1_SER_UNCOMPRESSED {
            assert_eq!(*out_len, 65);
            *output = 4;
            ptr::copy((*pk).0.as_ptr(), output.offset(1), 64);
        } else {
            panic!("Bad flags");
        }
        1
     }

    // EC
    /// Sets pk to sk||sk
    pub unsafe fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
                                             sk: *const c_uchar) -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
        ptr::copy(sk, (*pk).0[0..32].as_mut_ptr(), 32);
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    pub unsafe fn secp256k1_ec_pubkey_negate(cx: *const Context,
                                             pk: *mut PublicKey) -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if secp256k1_ec_seckey_negate(cx, (*pk).0[..32].as_mut_ptr()) != 1 { return 0; }
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    /// The PublicKey equivalent of secp256k1_ec_privkey_tweak_add
    pub unsafe fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
                                                pk: *mut PublicKey,
                                                tweak: *const c_uchar)
                                                -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if secp256k1_ec_seckey_tweak_add(cx, (*pk).0[..32].as_mut_ptr(), tweak) != 1 { return 0; }
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    /// The PublicKey equivalent of secp256k1_ec_privkey_tweak_mul
    pub unsafe fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
                                                pk: *mut PublicKey,
                                                tweak: *const c_uchar)
                                                -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, pk), 1);
        if secp256k1_ec_seckey_tweak_mul(cx, (*pk).0[..32].as_mut_ptr(), tweak) != 1 { return 0; }
        test_cleanup_pk(pk);
        assert_eq!(test_pk_validate(cx, pk), 1);
        1
    }

    pub unsafe fn secp256k1_ec_pubkey_combine(cx: *const Context,
                                              out: *mut PublicKey,
                                              ins: *const *const PublicKey,
                                              n: size_t)
                                              -> c_int {
        check_context_flags(cx, 0);
        assert!(n >= 1);
        (*out) = **ins;
        for i in 1..n {
            assert_eq!(test_pk_validate(cx, *ins.offset(i as isize)), 1);
            if secp256k1_ec_seckey_tweak_add(cx, (*out).0[..32].as_mut_ptr(), (**ins.offset(i as isize)).0[..32].as_ptr()) != 1 {
                return 0;
            }
        }
        test_cleanup_pk(out);
        assert_eq!(test_pk_validate(cx, out), 1);
        1
    }

    /// Sets out to point^scalar^1s
    pub unsafe fn secp256k1_ecdh(
        cx: *const Context,
        out: *mut c_uchar,
        point: *const PublicKey,
        scalar: *const c_uchar,
        hashfp: EcdhHashFn,
        data: *mut c_void,
    ) -> c_int {
        check_context_flags(cx, 0);
        assert_eq!(test_pk_validate(cx, point), 1);
        if secp256k1_ec_seckey_verify(cx, scalar) != 1 { return 0; }

        let scalar_slice = slice::from_raw_parts(scalar, 32);
        let pk_slice = &(*point).0[..32];

        let mut res_arr = [0u8; 32];
        for i in 0..32 {
            res_arr[i] = scalar_slice[i] ^ pk_slice[i] ^ 1;
        }

        if let Some(hashfn) = hashfp {
            (hashfn)(out, res_arr.as_ptr(), res_arr.as_ptr(), data);
        } else {
            res_arr[16] = 0x00; // result should always be a valid secret key
            let out_slice = slice::from_raw_parts_mut(out, 32);
            out_slice.copy_from_slice(&res_arr);
        }
        1
    }

    // ECDSA
    /// Verifies that sig is msg32||pk[..32]
    pub unsafe fn secp256k1_ecdsa_verify(cx: *const Context,
                                         sig: *const Signature,
                                         msg32: *const c_uchar,
                                         pk: *const PublicKey)
                                         -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        // Actually verify
        let sig_sl = slice::from_raw_parts(sig as *const u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
        if &sig_sl[..32] == msg_sl && sig_sl[32..] == (*pk).0[0..32] {
            1
        } else {
            0
        }
    }

    /// Sets sig to msg32||pk[..32]
    pub unsafe fn secp256k1_ecdsa_sign(cx: *const Context,
                                       sig: *mut Signature,
                                       msg32: *const c_uchar,
                                       sk: *const c_uchar,
                                       _noncefn: NonceFn,
                                       _noncedata: *const c_void)
                                       -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        // Check context is built for signing (and compute pk)
        let mut new_pk = PublicKey::new();
        if secp256k1_ec_pubkey_create(cx, &mut new_pk, sk) != 1 {
            return 0;
        }
        // Sign
        let sig_sl = slice::from_raw_parts_mut(sig as *mut u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
        sig_sl[..32].copy_from_slice(msg_sl);
        sig_sl[32..].copy_from_slice(&new_pk.0[..32]);
        1
    }

    // Schnorr Signatures
    /// Verifies that sig is msg32||pk[32..]
    pub unsafe fn secp256k1_schnorrsig_verify(
        cx: *const Context,
        sig64: *const c_uchar,
        msg32: *const c_uchar,
        msglen: size_t,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        // Check context is built for verification
        let mut new_pk = PublicKey::new();
        let _ = secp256k1_xonly_pubkey_tweak_add(cx, &mut new_pk, pubkey, msg32);
        // Actually verify
        let sig_sl = slice::from_raw_parts(sig64 as *const u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, msglen);
        if &sig_sl[..32] == msg_sl && sig_sl[32..] == (*pubkey).0[..32] {
            1
        } else {
            0
        }
    }

    /// Sets sig to msg32||pk[..32]
    pub unsafe fn secp256k1_schnorrsig_sign(
        cx: *const Context,
        sig64: *mut c_uchar,
        msg32: *const c_uchar,
        keypair: *const Keypair,
        _aux_rand32: *const c_uchar
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        // Check context is built for signing
        let mut new_kp = Keypair::new();
        if secp256k1_keypair_create(cx, &mut new_kp, (*keypair).0.as_ptr()) != 1 {
            return 0;
        }
        assert_eq!(new_kp, *keypair);
        // Sign
        let sig_sl = slice::from_raw_parts_mut(sig64 as *mut u8, 64);
        let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
        sig_sl[..32].copy_from_slice(msg_sl);
        sig_sl[32..].copy_from_slice(&new_kp.0[32..64]);
        1
    }


    // Forwards to regular schnorrsig_sign function.
    pub unsafe fn secp256k1_schnorrsig_sign_custom(
        cx: *const Context,
        sig: *mut c_uchar,
        msg: *const c_uchar,
        _msg_len: size_t,
        keypair: *const Keypair,
        _extra_params: *const SchnorrSigExtraParams,
    ) -> c_int {
        secp256k1_schnorrsig_sign(cx, sig, msg, keypair, ptr::null())
    }

    // Extra keys
    pub unsafe fn secp256k1_keypair_create(
        cx: *const Context,
        keypair: *mut Keypair,
        seckey: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_SIGN);
        if secp256k1_ec_seckey_verify(cx, seckey) == 0 { return 0; }

        let mut pk = PublicKey::new();
        if secp256k1_ec_pubkey_create(cx, &mut pk, seckey) == 0 { return 0; }

        let seckey_slice = slice::from_raw_parts(seckey, 32);
        (*keypair).0[..32].copy_from_slice(seckey_slice);
        (*keypair).0[32..].copy_from_slice(&pk.0);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_parse(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        input32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, 0);
        let inslice = slice::from_raw_parts(input32, 32);
        (*pubkey).0[..32].copy_from_slice(inslice);
        (*pubkey).0[32..].copy_from_slice(inslice);
        test_cleanup_pk(pubkey as *mut PublicKey);
        test_pk_validate(cx, pubkey as *mut PublicKey)
    }

    pub unsafe fn secp256k1_xonly_pubkey_serialize(
        cx: *const Context,
        output32: *mut c_uchar,
        pubkey: *const XOnlyPublicKey,
    ) -> c_int {
        check_context_flags(cx, 0);
        let outslice = slice::from_raw_parts_mut(output32, 32);
        outslice.copy_from_slice(&(*pubkey).0[..32]);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_from_pubkey(
        cx: *const Context,
        xonly_pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        pubkey: *const PublicKey,
    ) -> c_int {
        check_context_flags(cx, 0);
        if !pk_parity.is_null() {
            *pk_parity = ((*pubkey).0[32] == 0).into();
        }
        (*xonly_pubkey).0.copy_from_slice(&(*pubkey).0);
        assert_eq!(test_pk_validate(cx, pubkey), 1);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_tweak_add(
        cx: *const Context,
        output_pubkey: *mut PublicKey,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        (*output_pubkey).0.copy_from_slice(&(*internal_pubkey).0);
        secp256k1_ec_pubkey_tweak_add(cx, output_pubkey, tweak32)
    }

    pub unsafe fn secp256k1_keypair_xonly_pub(
        cx: *const Context,
        pubkey: *mut XOnlyPublicKey,
        pk_parity: *mut c_int,
        keypair: *const Keypair
    ) -> c_int {
        check_context_flags(cx, 0);
        if !pk_parity.is_null() {
            *pk_parity = ((*keypair).0[64] == 0).into();
        }
        (*pubkey).0.copy_from_slice(&(*keypair).0[32..]);
        1
    }

    pub unsafe fn secp256k1_keypair_xonly_tweak_add(
        cx: *const Context,
        keypair: *mut Keypair,
        tweak32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        let mut pk = PublicKey::new();
        pk.0.copy_from_slice(&(*keypair).0[32..]);
        let mut sk = [0u8; 32];
        sk.copy_from_slice(&(*keypair).0[..32]);
        assert_eq!(secp256k1_ec_pubkey_tweak_add(cx, &mut pk, tweak32), 1);
        assert_eq!(secp256k1_ec_seckey_tweak_add(cx, (&mut sk[..]).as_mut_ptr(), tweak32), 1);
        (*keypair).0[..32].copy_from_slice(&sk);
        (*keypair).0[32..].copy_from_slice(&pk.0);
        1
    }

    pub unsafe fn secp256k1_xonly_pubkey_tweak_add_check(
        cx: *const Context,
        tweaked_pubkey32: *const c_uchar,
        tweaked_pubkey_parity: c_int,
        internal_pubkey: *const XOnlyPublicKey,
        tweak32: *const c_uchar,
    ) -> c_int {
        check_context_flags(cx, SECP256K1_START_VERIFY);
        let mut tweaked_pk = PublicKey::new();
        assert_eq!(secp256k1_xonly_pubkey_tweak_add(cx, &mut tweaked_pk, internal_pubkey, tweak32), 1);
        let in_slice = slice::from_raw_parts(tweaked_pubkey32, 32);
        if &tweaked_pk.0[..32] == in_slice && tweaked_pubkey_parity == (tweaked_pk.0[32] == 0).into() {
            1
        } else {
            0
        }
    }
}

#[cfg(secp256k1_fuzz)]
pub use self::fuzz_dummy::*;

#[cfg(test)]
mod tests {
    #[cfg(not(rust_secp_no_symbol_renaming))]
    #[test]
    fn test_strlen() {
        use std::ffi::CString;
        use super::strlen;

        let orig = "test strlen \t \n";
        let test = CString::new(orig).unwrap();

        assert_eq!(orig.len(), unsafe {strlen(test.as_ptr())});
    }
}