1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
use crate::{
cipherstate::CipherStates,
constants::{MAXDHLEN, MAXMSGLEN, TAGLEN},
error::{Error, StateProblem},
handshakestate::HandshakeState,
params::HandshakePattern,
utils::Toggle,
};
use std::{convert::TryFrom, fmt};
/// A state machine encompassing the transport phase of a Noise session, using the two
/// `CipherState`s (for sending and receiving) that were spawned from the `SymmetricState`'s
/// `Split()` method, called after a handshake has been finished.
///
/// Also see: [the relevant Noise spec section](https://noiseprotocol.org/noise.html#the-handshakestate-object).
pub struct TransportState {
cipherstates: CipherStates,
pattern: HandshakePattern,
dh_len: usize,
rs: Toggle<[u8; MAXDHLEN]>,
initiator: bool,
}
impl TransportState {
pub(crate) fn new(handshake: HandshakeState) -> Result<Self, Error> {
if !handshake.is_handshake_finished() {
return Err(StateProblem::HandshakeNotFinished.into());
}
let dh_len = handshake.dh_len();
let HandshakeState { cipherstates, params, rs, initiator, .. } = handshake;
let pattern = params.handshake.pattern;
Ok(TransportState { cipherstates, pattern, dh_len, rs, initiator })
}
/// Get the remote party's static public key, if available.
///
/// Note: will return `None` if either the chosen Noise pattern
/// doesn't necessitate a remote static key, *or* if the remote
/// static key is not yet known (as can be the case in the `XX`
/// pattern, for example).
pub fn get_remote_static(&self) -> Option<&[u8]> {
self.rs.get().map(|rs| &rs[..self.dh_len])
}
/// Construct a message from `payload` (and pending handshake tokens if in handshake state),
/// and writes it to the `output` buffer.
///
/// Returns the size of the written payload.
///
/// # Errors
///
/// Will result in `Error::Input` if the size of the output exceeds the max message
/// length in the Noise Protocol (65535 bytes).
pub fn write_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, Error> {
if !self.initiator && self.pattern.is_oneway() {
return Err(StateProblem::OneWay.into());
} else if payload.len() + TAGLEN > MAXMSGLEN || payload.len() + TAGLEN > message.len() {
return Err(Error::Input);
}
let cipher =
if self.initiator { &mut self.cipherstates.0 } else { &mut self.cipherstates.1 };
cipher.encrypt(payload, message)
}
/// Reads a noise message from `input`
///
/// Returns the size of the payload written to `payload`.
///
/// # Errors
///
/// Will result in `Error::Decrypt` if the contents couldn't be decrypted and/or the
/// authentication tag didn't verify.
///
/// Will result in `StateProblem::Exhausted` if the max nonce overflows.
pub fn read_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, Error> {
if payload.len() > MAXMSGLEN {
Err(Error::Input)
} else if self.initiator && self.pattern.is_oneway() {
Err(StateProblem::OneWay.into())
} else {
let cipher =
if self.initiator { &mut self.cipherstates.1 } else { &mut self.cipherstates.0 };
cipher.decrypt(payload, message)
}
}
/// Generates a new key for the egress symmetric cipher according to Section 4.2
/// of the Noise Specification. Synchronizing timing of rekey between initiator and
/// responder is the responsibility of the application, as described in Section 11.3
/// of the Noise Specification.
pub fn rekey_outgoing(&mut self) {
if self.initiator {
self.cipherstates.rekey_initiator()
} else {
self.cipherstates.rekey_responder()
}
}
/// Generates a new key for the ingress symmetric cipher according to Section 4.2
/// of the Noise Specification. Synchronizing timing of rekey between initiator and
/// responder is the responsibility of the application, as described in Section 11.3
/// of the Noise Specification.
pub fn rekey_incoming(&mut self) {
if self.initiator {
self.cipherstates.rekey_responder()
} else {
self.cipherstates.rekey_initiator()
}
}
/// Set a new key for the one or both of the initiator-egress and responder-egress symmetric ciphers.
pub fn rekey_manually(&mut self, initiator: Option<&[u8]>, responder: Option<&[u8]>) {
if let Some(key) = initiator {
self.rekey_initiator_manually(key);
}
if let Some(key) = responder {
self.rekey_responder_manually(key);
}
}
/// Set a new key for the initiator-egress symmetric cipher.
pub fn rekey_initiator_manually(&mut self, key: &[u8]) {
self.cipherstates.rekey_initiator_manually(key)
}
/// Set a new key for the responder-egress symmetric cipher.
pub fn rekey_responder_manually(&mut self, key: &[u8]) {
self.cipherstates.rekey_responder_manually(key)
}
/// Sets the *receiving* CipherState's nonce. Useful for using noise on lossy transports.
pub fn set_receiving_nonce(&mut self, nonce: u64) {
if self.initiator {
self.cipherstates.1.set_nonce(nonce);
} else {
self.cipherstates.0.set_nonce(nonce);
}
}
/// Get the forthcoming inbound nonce value.
///
/// # Errors
///
/// Will result in `Error::State` if not in transport mode.
pub fn receiving_nonce(&self) -> u64 {
if self.initiator {
self.cipherstates.1.nonce()
} else {
self.cipherstates.0.nonce()
}
}
/// Get the forthcoming outbound nonce value.
///
/// # Errors
///
/// Will result in `Error::State` if not in transport mode.
pub fn sending_nonce(&self) -> u64 {
if self.initiator {
self.cipherstates.0.nonce()
} else {
self.cipherstates.1.nonce()
}
}
/// Check if this session was started with the "initiator" role.
pub fn is_initiator(&self) -> bool {
self.initiator
}
}
impl fmt::Debug for TransportState {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("TransportState").finish()
}
}
impl TryFrom<HandshakeState> for TransportState {
type Error = Error;
fn try_from(old: HandshakeState) -> Result<Self, Self::Error> {
TransportState::new(old)
}
}