1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Minimal fixed point arithmetic primitives and types for runtime.

#![cfg_attr(not(feature = "std"), no_std)]

extern crate alloc;

/// Copied from `sp-runtime` and documented there.
#[macro_export]
macro_rules! assert_eq_error_rate {
	($x:expr, $y:expr, $error:expr $(,)?) => {
		assert!(
			($x) >= (($y) - ($error)) && ($x) <= (($y) + ($error)),
			"{:?} != {:?} (with error rate {:?})",
			$x,
			$y,
			$error,
		);
	};
}

pub mod biguint;
pub mod fixed_point;
pub mod helpers_128bit;
pub mod per_things;
pub mod rational;
pub mod traits;

pub use fixed_point::{
	FixedI128, FixedI64, FixedPointNumber, FixedPointOperand, FixedU128, FixedU64,
};
pub use per_things::{
	InnerOf, MultiplyArg, PerThing, PerU16, Perbill, Percent, Permill, Perquintill, RationalArg,
	ReciprocalArg, Rounding, SignedRounding, UpperOf,
};
pub use rational::{MultiplyRational, Rational128, RationalInfinite};

use alloc::vec::Vec;
use core::{cmp::Ordering, fmt::Debug};
use traits::{BaseArithmetic, One, SaturatedConversion, Unsigned, Zero};

use codec::{Decode, Encode, MaxEncodedLen};
use scale_info::TypeInfo;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

/// Arithmetic errors.
#[derive(Eq, PartialEq, Clone, Copy, Encode, Decode, Debug, TypeInfo, MaxEncodedLen)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum ArithmeticError {
	/// Underflow.
	Underflow,
	/// Overflow.
	Overflow,
	/// Division by zero.
	DivisionByZero,
}

impl From<ArithmeticError> for &'static str {
	fn from(e: ArithmeticError) -> &'static str {
		match e {
			ArithmeticError::Underflow => "An underflow would occur",
			ArithmeticError::Overflow => "An overflow would occur",
			ArithmeticError::DivisionByZero => "Division by zero",
		}
	}
}

/// Trait for comparing two numbers with an threshold.
///
/// Returns:
/// - `Ordering::Greater` if `self` is greater than `other + threshold`.
/// - `Ordering::Less` if `self` is less than `other - threshold`.
/// - `Ordering::Equal` otherwise.
pub trait ThresholdOrd<T> {
	/// Compare if `self` is `threshold` greater or less than `other`.
	fn tcmp(&self, other: &T, threshold: T) -> Ordering;
}

impl<T> ThresholdOrd<T> for T
where
	T: Ord + PartialOrd + Copy + Clone + traits::Zero + traits::Saturating,
{
	fn tcmp(&self, other: &T, threshold: T) -> Ordering {
		// early exit.
		if threshold.is_zero() {
			return self.cmp(other);
		}

		let upper_bound = other.saturating_add(threshold);
		let lower_bound = other.saturating_sub(threshold);

		if upper_bound <= lower_bound {
			// defensive only. Can never happen.
			self.cmp(other)
		} else {
			// upper_bound is guaranteed now to be bigger than lower.
			match (self.cmp(&lower_bound), self.cmp(&upper_bound)) {
				(Ordering::Greater, Ordering::Greater) => Ordering::Greater,
				(Ordering::Less, Ordering::Less) => Ordering::Less,
				_ => Ordering::Equal,
			}
		}
	}
}

/// A collection-like object that is made of values of type `T` and can normalize its individual
/// values around a centric point.
///
/// Note that the order of items in the collection may affect the result.
pub trait Normalizable<T> {
	/// Normalize self around `targeted_sum`.
	///
	/// Only returns `Ok` if the new sum of results is guaranteed to be equal to `targeted_sum`.
	/// Else, returns an error explaining why it failed to do so.
	fn normalize(&self, targeted_sum: T) -> Result<Vec<T>, &'static str>;
}

macro_rules! impl_normalize_for_numeric {
	($($numeric:ty),*) => {
		$(
			impl Normalizable<$numeric> for Vec<$numeric> {
				fn normalize(&self, targeted_sum: $numeric) -> Result<Vec<$numeric>, &'static str> {
					normalize(self.as_ref(), targeted_sum)
				}
			}
		)*
	};
}

impl_normalize_for_numeric!(u8, u16, u32, u64, u128);

impl<P: PerThing> Normalizable<P> for Vec<P> {
	fn normalize(&self, targeted_sum: P) -> Result<Vec<P>, &'static str> {
		let uppers = self.iter().map(|p| <UpperOf<P>>::from(p.deconstruct())).collect::<Vec<_>>();

		let normalized =
			normalize(uppers.as_ref(), <UpperOf<P>>::from(targeted_sum.deconstruct()))?;

		Ok(normalized
			.into_iter()
			.map(|i: UpperOf<P>| P::from_parts(i.saturated_into::<P::Inner>()))
			.collect())
	}
}

/// Normalize `input` so that the sum of all elements reaches `targeted_sum`.
///
/// This implementation is currently in a balanced position between being performant and accurate.
///
/// 1. We prefer storing original indices, and sorting the `input` only once. This will save the
///    cost of sorting per round at the cost of a little bit of memory.
/// 2. The granularity of increment/decrements is determined by the number of elements in `input`
///    and their sum difference with `targeted_sum`, namely `diff = diff(sum(input), target_sum)`.
///    This value is then distributed into `per_round = diff / input.len()` and `leftover = diff %
///    round`. First, per_round is applied to all elements of input, and then we move to leftover,
///    in which case we add/subtract 1 by 1 until `leftover` is depleted.
///
/// When the sum is less than the target, the above approach always holds. In this case, then each
/// individual element is also less than target. Thus, by adding `per_round` to each item, neither
/// of them can overflow the numeric bound of `T`. In fact, neither of the can go beyond
/// `target_sum`*.
///
/// If sum is more than target, there is small twist. The subtraction of `per_round`
/// form each element might go below zero. In this case, we saturate and add the error to the
/// `leftover` value. This ensures that the result will always stay accurate, yet it might cause the
/// execution to become increasingly slow, since leftovers are applied one by one.
///
/// All in all, the complicated case above is rare to happen in most use cases within this repo ,
/// hence we opt for it due to its simplicity.
///
/// This function will return an error is if length of `input` cannot fit in `T`, or if `sum(input)`
/// cannot fit inside `T`.
///
/// * This proof is used in the implementation as well.
pub fn normalize<T>(input: &[T], targeted_sum: T) -> Result<Vec<T>, &'static str>
where
	T: Clone + Copy + Ord + BaseArithmetic + Unsigned + Debug,
{
	// compute sum and return error if failed.
	let mut sum = T::zero();
	for t in input.iter() {
		sum = sum.checked_add(t).ok_or("sum of input cannot fit in `T`")?;
	}

	// convert count and return error if failed.
	let count = input.len();
	let count_t: T = count.try_into().map_err(|_| "length of `inputs` cannot fit in `T`")?;

	// Nothing to do here.
	if count.is_zero() {
		return Ok(Vec::<T>::new());
	}

	let diff = targeted_sum.max(sum) - targeted_sum.min(sum);
	if diff.is_zero() {
		return Ok(input.to_vec());
	}

	let needs_bump = targeted_sum > sum;
	let per_round = diff / count_t;
	let mut leftover = diff % count_t;

	// sort output once based on diff. This will require more data transfer and saving original
	// index, but we sort only twice instead: once now and once at the very end.
	let mut output_with_idx = input.iter().cloned().enumerate().collect::<Vec<(usize, T)>>();
	output_with_idx.sort_by_key(|x| x.1);

	if needs_bump {
		// must increase the values a bit. Bump from the min element. Index of minimum is now zero
		// because we did a sort. If at any point the min goes greater or equal the `max_threshold`,
		// we move to the next minimum.
		let mut min_index = 0;
		// at this threshold we move to next index.
		let threshold = targeted_sum / count_t;

		if !per_round.is_zero() {
			for _ in 0..count {
				output_with_idx[min_index].1 = output_with_idx[min_index]
					.1
					.checked_add(&per_round)
					.expect("Proof provided in the module doc; qed.");
				if output_with_idx[min_index].1 >= threshold {
					min_index += 1;
					min_index %= count;
				}
			}
		}

		// continue with the previous min_index
		while !leftover.is_zero() {
			output_with_idx[min_index].1 = output_with_idx[min_index]
				.1
				.checked_add(&T::one())
				.expect("Proof provided in the module doc; qed.");
			if output_with_idx[min_index].1 >= threshold {
				min_index += 1;
				min_index %= count;
			}
			leftover -= One::one();
		}
	} else {
		// must decrease the stakes a bit. decrement from the max element. index of maximum is now
		// last. if at any point the max goes less or equal the `min_threshold`, we move to the next
		// maximum.
		let mut max_index = count - 1;
		// at this threshold we move to next index.
		let threshold = output_with_idx
			.first()
			.expect("length of input is greater than zero; it must have a first; qed")
			.1;

		if !per_round.is_zero() {
			for _ in 0..count {
				output_with_idx[max_index].1 =
					output_with_idx[max_index].1.checked_sub(&per_round).unwrap_or_else(|| {
						let remainder = per_round - output_with_idx[max_index].1;
						leftover += remainder;
						output_with_idx[max_index].1.saturating_sub(per_round)
					});
				if output_with_idx[max_index].1 <= threshold {
					max_index = max_index.checked_sub(1).unwrap_or(count - 1);
				}
			}
		}

		// continue with the previous max_index
		while !leftover.is_zero() {
			if let Some(next) = output_with_idx[max_index].1.checked_sub(&One::one()) {
				output_with_idx[max_index].1 = next;
				if output_with_idx[max_index].1 <= threshold {
					max_index = max_index.checked_sub(1).unwrap_or(count - 1);
				}
				leftover -= One::one();
			} else {
				max_index = max_index.checked_sub(1).unwrap_or(count - 1);
			}
		}
	}

	debug_assert_eq!(
		output_with_idx.iter().fold(T::zero(), |acc, (_, x)| acc + *x),
		targeted_sum,
		"sum({:?}) != {:?}",
		output_with_idx,
		targeted_sum
	);

	// sort again based on the original index.
	output_with_idx.sort_by_key(|x| x.0);
	Ok(output_with_idx.into_iter().map(|(_, t)| t).collect())
}

#[cfg(test)]
mod normalize_tests {
	use super::*;

	#[test]
	fn work_for_all_types() {
		macro_rules! test_for {
			($type:ty) => {
				assert_eq!(
					normalize(vec![8 as $type, 9, 7, 10].as_ref(), 40).unwrap(),
					vec![10, 10, 10, 10],
				);
			};
		}
		// it should work for all types as long as the length of vector can be converted to T.
		test_for!(u128);
		test_for!(u64);
		test_for!(u32);
		test_for!(u16);
		test_for!(u8);
	}

	#[test]
	fn fails_on_if_input_sum_large() {
		assert!(normalize(vec![1u8; 255].as_ref(), 10).is_ok());
		assert_eq!(normalize(vec![1u8; 256].as_ref(), 10), Err("sum of input cannot fit in `T`"));
	}

	#[test]
	fn does_not_fail_on_subtraction_overflow() {
		assert_eq!(normalize(vec![1u8, 100, 100].as_ref(), 10).unwrap(), vec![1, 9, 0]);
		assert_eq!(normalize(vec![1u8, 8, 9].as_ref(), 1).unwrap(), vec![0, 1, 0]);
	}

	#[test]
	fn works_for_vec() {
		assert_eq!(vec![8u32, 9, 7, 10].normalize(40).unwrap(), vec![10u32, 10, 10, 10]);
	}

	#[test]
	fn works_for_per_thing() {
		assert_eq!(
			vec![Perbill::from_percent(33), Perbill::from_percent(33), Perbill::from_percent(33)]
				.normalize(Perbill::one())
				.unwrap(),
			vec![
				Perbill::from_parts(333333334),
				Perbill::from_parts(333333333),
				Perbill::from_parts(333333333)
			]
		);

		assert_eq!(
			vec![Perbill::from_percent(20), Perbill::from_percent(15), Perbill::from_percent(30)]
				.normalize(Perbill::one())
				.unwrap(),
			vec![
				Perbill::from_parts(316666668),
				Perbill::from_parts(383333332),
				Perbill::from_parts(300000000)
			]
		);
	}

	#[test]
	fn can_work_for_peru16() {
		// Peru16 is a rather special case; since inner type is exactly the same as capacity, we
		// could have a situation where the sum cannot be calculated in the inner type. Calculating
		// using the upper type of the per_thing should assure this to be okay.
		assert_eq!(
			vec![PerU16::from_percent(40), PerU16::from_percent(40), PerU16::from_percent(40)]
				.normalize(PerU16::one())
				.unwrap(),
			vec![
				PerU16::from_parts(21845), // 33%
				PerU16::from_parts(21845), // 33%
				PerU16::from_parts(21845)  // 33%
			]
		);
	}

	#[test]
	fn normalize_works_all_le() {
		assert_eq!(normalize(vec![8u32, 9, 7, 10].as_ref(), 40).unwrap(), vec![10, 10, 10, 10]);

		assert_eq!(normalize(vec![7u32, 7, 7, 7].as_ref(), 40).unwrap(), vec![10, 10, 10, 10]);

		assert_eq!(normalize(vec![7u32, 7, 7, 10].as_ref(), 40).unwrap(), vec![11, 11, 8, 10]);

		assert_eq!(normalize(vec![7u32, 8, 7, 10].as_ref(), 40).unwrap(), vec![11, 8, 11, 10]);

		assert_eq!(normalize(vec![7u32, 7, 8, 10].as_ref(), 40).unwrap(), vec![11, 11, 8, 10]);
	}

	#[test]
	fn normalize_works_some_ge() {
		assert_eq!(normalize(vec![8u32, 11, 9, 10].as_ref(), 40).unwrap(), vec![10, 11, 9, 10]);
	}

	#[test]
	fn always_inc_min() {
		assert_eq!(normalize(vec![10u32, 7, 10, 10].as_ref(), 40).unwrap(), vec![10, 10, 10, 10]);
		assert_eq!(normalize(vec![10u32, 10, 7, 10].as_ref(), 40).unwrap(), vec![10, 10, 10, 10]);
		assert_eq!(normalize(vec![10u32, 10, 10, 7].as_ref(), 40).unwrap(), vec![10, 10, 10, 10]);
	}

	#[test]
	fn normalize_works_all_ge() {
		assert_eq!(normalize(vec![12u32, 11, 13, 10].as_ref(), 40).unwrap(), vec![10, 10, 10, 10]);

		assert_eq!(normalize(vec![13u32, 13, 13, 13].as_ref(), 40).unwrap(), vec![10, 10, 10, 10]);

		assert_eq!(normalize(vec![13u32, 13, 13, 10].as_ref(), 40).unwrap(), vec![12, 9, 9, 10]);

		assert_eq!(normalize(vec![13u32, 12, 13, 10].as_ref(), 40).unwrap(), vec![9, 12, 9, 10]);

		assert_eq!(normalize(vec![13u32, 13, 12, 10].as_ref(), 40).unwrap(), vec![9, 9, 12, 10]);
	}
}

#[cfg(test)]
mod per_and_fixed_examples {
	use super::*;

	#[docify::export]
	#[test]
	fn percent_mult() {
		let percent = Percent::from_rational(5u32, 100u32); // aka, 5%
		let five_percent_of_100 = percent * 100u32; // 5% of 100 is 5.
		assert_eq!(five_percent_of_100, 5)
	}
	#[docify::export]
	#[test]
	fn perbill_example() {
		let p = Perbill::from_percent(80);
		// 800000000 bil, or a representative of 0.800000000.
		// Precision is in the billions place.
		assert_eq!(p.deconstruct(), 800000000);
	}

	#[docify::export]
	#[test]
	fn percent_example() {
		let percent = Percent::from_rational(190u32, 400u32);
		assert_eq!(percent.deconstruct(), 47);
	}

	#[docify::export]
	#[test]
	fn fixed_u64_block_computation_example() {
		// Calculate a very rudimentary on-chain price from supply / demand
		// Supply: Cores available per block
		// Demand: Cores being ordered per block
		let price = FixedU64::from_rational(5u128, 10u128);

		// 0.5 DOT per core
		assert_eq!(price, FixedU64::from_float(0.5));

		// Now, the story has changed - lots of demand means we buy as many cores as there
		// available.  This also means that price goes up! For the sake of simplicity, we don't care
		// about who gets a core - just about our very simple price model

		// Calculate a very rudimentary on-chain price from supply / demand
		// Supply: Cores available per block
		// Demand: Cores being ordered per block
		let price = FixedU64::from_rational(19u128, 10u128);

		// 1.9 DOT per core
		assert_eq!(price, FixedU64::from_float(1.9));
	}

	#[docify::export]
	#[test]
	fn fixed_u64() {
		// The difference between this and perthings is perthings operates within the relam of [0,
		// 1] In cases where we need > 1, we can used fixed types such as FixedU64

		let rational_1 = FixedU64::from_rational(10, 5); //" 200%" aka 2.
		let rational_2 = FixedU64::from_rational_with_rounding(5, 10, Rounding::Down); // "50%" aka 0.50...

		assert_eq!(rational_1, (2u64).into());
		assert_eq!(rational_2.into_perbill(), Perbill::from_float(0.5));
	}

	#[docify::export]
	#[test]
	fn fixed_u64_operation_example() {
		let rational_1 = FixedU64::from_rational(10, 5); // "200%" aka 2.
		let rational_2 = FixedU64::from_rational(8, 5); // "160%" aka 1.6.

		let addition = rational_1 + rational_2;
		let multiplication = rational_1 * rational_2;
		let division = rational_1 / rational_2;
		let subtraction = rational_1 - rational_2;

		assert_eq!(addition, FixedU64::from_float(3.6));
		assert_eq!(multiplication, FixedU64::from_float(3.2));
		assert_eq!(division, FixedU64::from_float(1.25));
		assert_eq!(subtraction, FixedU64::from_float(0.4));
	}
}

#[cfg(test)]
mod threshold_compare_tests {
	use super::*;
	use crate::traits::Saturating;
	use core::cmp::Ordering;

	#[test]
	fn epsilon_ord_works() {
		let b = 115u32;
		let e = Perbill::from_percent(10).mul_ceil(b);

		// [115 - 11,5 (103,5), 115 + 11,5 (126,5)] is all equal
		assert_eq!((103u32).tcmp(&b, e), Ordering::Equal);
		assert_eq!((104u32).tcmp(&b, e), Ordering::Equal);
		assert_eq!((115u32).tcmp(&b, e), Ordering::Equal);
		assert_eq!((120u32).tcmp(&b, e), Ordering::Equal);
		assert_eq!((126u32).tcmp(&b, e), Ordering::Equal);
		assert_eq!((127u32).tcmp(&b, e), Ordering::Equal);

		assert_eq!((128u32).tcmp(&b, e), Ordering::Greater);
		assert_eq!((102u32).tcmp(&b, e), Ordering::Less);
	}

	#[test]
	fn epsilon_ord_works_with_small_epc() {
		let b = 115u32;
		// way less than 1 percent. threshold will be zero. Result should be same as normal ord.
		let e = Perbill::from_parts(100) * b;

		// [115 - 11,5 (103,5), 115 + 11,5 (126,5)] is all equal
		assert_eq!((103u32).tcmp(&b, e), (103u32).cmp(&b));
		assert_eq!((104u32).tcmp(&b, e), (104u32).cmp(&b));
		assert_eq!((115u32).tcmp(&b, e), (115u32).cmp(&b));
		assert_eq!((120u32).tcmp(&b, e), (120u32).cmp(&b));
		assert_eq!((126u32).tcmp(&b, e), (126u32).cmp(&b));
		assert_eq!((127u32).tcmp(&b, e), (127u32).cmp(&b));

		assert_eq!((128u32).tcmp(&b, e), (128u32).cmp(&b));
		assert_eq!((102u32).tcmp(&b, e), (102u32).cmp(&b));
	}

	#[test]
	fn peru16_rational_does_not_overflow() {
		// A historical example that will panic only for per_thing type that are created with
		// maximum capacity of their type, e.g. PerU16.
		let _ = PerU16::from_rational(17424870u32, 17424870);
	}

	#[test]
	fn saturating_mul_works() {
		assert_eq!(Saturating::saturating_mul(2, i32::MIN), i32::MIN);
		assert_eq!(Saturating::saturating_mul(2, i32::MAX), i32::MAX);
	}

	#[test]
	fn saturating_pow_works() {
		assert_eq!(Saturating::saturating_pow(i32::MIN, 0), 1);
		assert_eq!(Saturating::saturating_pow(i32::MAX, 0), 1);
		assert_eq!(Saturating::saturating_pow(i32::MIN, 3), i32::MIN);
		assert_eq!(Saturating::saturating_pow(i32::MIN, 2), i32::MAX);
		assert_eq!(Saturating::saturating_pow(i32::MAX, 2), i32::MAX);
	}
}