1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{biguint::BigUint, helpers_128bit, Rounding};
use core::cmp::Ordering;
use num_traits::{Bounded, One, Zero};

/// A wrapper for any rational number with infinitely large numerator and denominator.
///
/// This type exists to facilitate `cmp` operation
/// on values like `a/b < c/d` where `a, b, c, d` are all `BigUint`.
#[derive(Clone, Default, Eq)]
pub struct RationalInfinite(BigUint, BigUint);

impl RationalInfinite {
	/// Return the numerator reference.
	pub fn n(&self) -> &BigUint {
		&self.0
	}

	/// Return the denominator reference.
	pub fn d(&self) -> &BigUint {
		&self.1
	}

	/// Build from a raw `n/d`.
	pub fn from(n: BigUint, d: BigUint) -> Self {
		Self(n, d.max(BigUint::one()))
	}

	/// Zero.
	pub fn zero() -> Self {
		Self(BigUint::zero(), BigUint::one())
	}

	/// One.
	pub fn one() -> Self {
		Self(BigUint::one(), BigUint::one())
	}
}

impl PartialOrd for RationalInfinite {
	fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
		Some(self.cmp(other))
	}
}

impl Ord for RationalInfinite {
	fn cmp(&self, other: &Self) -> Ordering {
		// handle some edge cases.
		if self.d() == other.d() {
			self.n().cmp(other.n())
		} else if self.d().is_zero() {
			Ordering::Greater
		} else if other.d().is_zero() {
			Ordering::Less
		} else {
			// (a/b) cmp (c/d) => (a*d) cmp (c*b)
			self.n().clone().mul(other.d()).cmp(&other.n().clone().mul(self.d()))
		}
	}
}

impl PartialEq for RationalInfinite {
	fn eq(&self, other: &Self) -> bool {
		self.cmp(other) == Ordering::Equal
	}
}

impl From<Rational128> for RationalInfinite {
	fn from(t: Rational128) -> Self {
		Self(t.0.into(), t.1.into())
	}
}

/// A wrapper for any rational number with a 128 bit numerator and denominator.
#[derive(Clone, Copy, Default, Eq)]
pub struct Rational128(u128, u128);

#[cfg(feature = "std")]
impl core::fmt::Debug for Rational128 {
	fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
		write!(f, "Rational128({} / {} ≈ {:.8})", self.0, self.1, self.0 as f64 / self.1 as f64)
	}
}

#[cfg(not(feature = "std"))]
impl core::fmt::Debug for Rational128 {
	fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
		write!(f, "Rational128({} / {})", self.0, self.1)
	}
}

impl Rational128 {
	/// Zero.
	pub fn zero() -> Self {
		Self(0, 1)
	}

	/// One
	pub fn one() -> Self {
		Self(1, 1)
	}

	/// If it is zero or not
	pub fn is_zero(&self) -> bool {
		self.0.is_zero()
	}

	/// Build from a raw `n/d`.
	pub fn from(n: u128, d: u128) -> Self {
		Self(n, d.max(1))
	}

	/// Build from a raw `n/d`. This could lead to / 0 if not properly handled.
	pub fn from_unchecked(n: u128, d: u128) -> Self {
		Self(n, d)
	}

	/// Return the numerator.
	pub fn n(&self) -> u128 {
		self.0
	}

	/// Return the denominator.
	pub fn d(&self) -> u128 {
		self.1
	}

	/// Convert `self` to a similar rational number where denominator is the given `den`.
	//
	/// This only returns if the result is accurate. `None` is returned if the result cannot be
	/// accurately calculated.
	pub fn to_den(self, den: u128) -> Option<Self> {
		if den == self.1 {
			Some(self)
		} else {
			helpers_128bit::multiply_by_rational_with_rounding(
				self.0,
				den,
				self.1,
				Rounding::NearestPrefDown,
			)
			.map(|n| Self(n, den))
		}
	}

	/// Get the least common divisor of `self` and `other`.
	///
	/// This only returns if the result is accurate. `None` is returned if the result cannot be
	/// accurately calculated.
	pub fn lcm(&self, other: &Self) -> Option<u128> {
		// this should be tested better: two large numbers that are almost the same.
		if self.1 == other.1 {
			return Some(self.1)
		}
		let g = helpers_128bit::gcd(self.1, other.1);
		helpers_128bit::multiply_by_rational_with_rounding(
			self.1,
			other.1,
			g,
			Rounding::NearestPrefDown,
		)
	}

	/// A saturating add that assumes `self` and `other` have the same denominator.
	pub fn lazy_saturating_add(self, other: Self) -> Self {
		if other.is_zero() {
			self
		} else {
			Self(self.0.saturating_add(other.0), self.1)
		}
	}

	/// A saturating subtraction that assumes `self` and `other` have the same denominator.
	pub fn lazy_saturating_sub(self, other: Self) -> Self {
		if other.is_zero() {
			self
		} else {
			Self(self.0.saturating_sub(other.0), self.1)
		}
	}

	/// Addition. Simply tries to unify the denominators and add the numerators.
	///
	/// Overflow might happen during any of the steps. Error is returned in such cases.
	pub fn checked_add(self, other: Self) -> Result<Self, &'static str> {
		let lcm = self.lcm(&other).ok_or(0).map_err(|_| "failed to scale to denominator")?;
		let self_scaled =
			self.to_den(lcm).ok_or(0).map_err(|_| "failed to scale to denominator")?;
		let other_scaled =
			other.to_den(lcm).ok_or(0).map_err(|_| "failed to scale to denominator")?;
		let n = self_scaled
			.0
			.checked_add(other_scaled.0)
			.ok_or("overflow while adding numerators")?;
		Ok(Self(n, self_scaled.1))
	}

	/// Subtraction. Simply tries to unify the denominators and subtract the numerators.
	///
	/// Overflow might happen during any of the steps. None is returned in such cases.
	pub fn checked_sub(self, other: Self) -> Result<Self, &'static str> {
		let lcm = self.lcm(&other).ok_or(0).map_err(|_| "failed to scale to denominator")?;
		let self_scaled =
			self.to_den(lcm).ok_or(0).map_err(|_| "failed to scale to denominator")?;
		let other_scaled =
			other.to_den(lcm).ok_or(0).map_err(|_| "failed to scale to denominator")?;

		let n = self_scaled
			.0
			.checked_sub(other_scaled.0)
			.ok_or("overflow while subtracting numerators")?;
		Ok(Self(n, self_scaled.1))
	}
}

impl Bounded for Rational128 {
	fn min_value() -> Self {
		Self(0, 1)
	}

	fn max_value() -> Self {
		Self(Bounded::max_value(), 1)
	}
}

impl<T: Into<u128>> From<T> for Rational128 {
	fn from(t: T) -> Self {
		Self::from(t.into(), 1)
	}
}

impl PartialOrd for Rational128 {
	fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
		Some(self.cmp(other))
	}
}

impl Ord for Rational128 {
	fn cmp(&self, other: &Self) -> Ordering {
		// handle some edge cases.
		if self.1 == other.1 {
			self.0.cmp(&other.0)
		} else if self.1.is_zero() {
			Ordering::Greater
		} else if other.1.is_zero() {
			Ordering::Less
		} else {
			// Don't even compute gcd.
			let self_n = helpers_128bit::to_big_uint(self.0) * helpers_128bit::to_big_uint(other.1);
			let other_n =
				helpers_128bit::to_big_uint(other.0) * helpers_128bit::to_big_uint(self.1);
			self_n.cmp(&other_n)
		}
	}
}

impl PartialEq for Rational128 {
	fn eq(&self, other: &Self) -> bool {
		// handle some edge cases.
		if self.1 == other.1 {
			self.0.eq(&other.0)
		} else {
			let self_n = helpers_128bit::to_big_uint(self.0) * helpers_128bit::to_big_uint(other.1);
			let other_n =
				helpers_128bit::to_big_uint(other.0) * helpers_128bit::to_big_uint(self.1);
			self_n.eq(&other_n)
		}
	}
}

pub trait MultiplyRational: Sized {
	fn multiply_rational(self, n: Self, d: Self, r: Rounding) -> Option<Self>;
}

macro_rules! impl_rrm {
	($ulow:ty, $uhi:ty) => {
		impl MultiplyRational for $ulow {
			fn multiply_rational(self, n: Self, d: Self, r: Rounding) -> Option<Self> {
				if d.is_zero() {
					return None
				}

				let sn = (self as $uhi) * (n as $uhi);
				let mut result = sn / (d as $uhi);
				let remainder = (sn % (d as $uhi)) as $ulow;
				if match r {
					Rounding::Up => remainder > 0,
					// cannot be `(d + 1) / 2` since `d` might be `max_value` and overflow.
					Rounding::NearestPrefUp => remainder >= d / 2 + d % 2,
					Rounding::NearestPrefDown => remainder > d / 2,
					Rounding::Down => false,
				} {
					result = match result.checked_add(1) {
						Some(v) => v,
						None => return None,
					};
				}
				if result > (<$ulow>::max_value() as $uhi) {
					None
				} else {
					Some(result as $ulow)
				}
			}
		}
	};
}

impl_rrm!(u8, u16);
impl_rrm!(u16, u32);
impl_rrm!(u32, u64);
impl_rrm!(u64, u128);

impl MultiplyRational for u128 {
	fn multiply_rational(self, n: Self, d: Self, r: Rounding) -> Option<Self> {
		crate::helpers_128bit::multiply_by_rational_with_rounding(self, n, d, r)
	}
}

#[cfg(test)]
mod tests {
	use super::{helpers_128bit::*, *};
	use static_assertions::const_assert;

	const MAX128: u128 = u128::MAX;
	const MAX64: u128 = u64::MAX as u128;
	const MAX64_2: u128 = 2 * u64::MAX as u128;

	fn r(p: u128, q: u128) -> Rational128 {
		Rational128(p, q)
	}

	fn mul_div(a: u128, b: u128, c: u128) -> u128 {
		use primitive_types::U256;
		if a.is_zero() {
			return Zero::zero()
		}
		let c = c.max(1);

		// e for extended
		let ae: U256 = a.into();
		let be: U256 = b.into();
		let ce: U256 = c.into();

		let r = ae * be / ce;
		if r > u128::max_value().into() {
			a
		} else {
			r.as_u128()
		}
	}

	#[test]
	fn truth_value_function_works() {
		assert_eq!(mul_div(2u128.pow(100), 8, 4), 2u128.pow(101));
		assert_eq!(mul_div(2u128.pow(100), 4, 8), 2u128.pow(99));

		// and it returns a if result cannot fit
		assert_eq!(mul_div(MAX128 - 10, 2, 1), MAX128 - 10);
	}

	#[test]
	fn to_denom_works() {
		// simple up and down
		assert_eq!(r(1, 5).to_den(10), Some(r(2, 10)));
		assert_eq!(r(4, 10).to_den(5), Some(r(2, 5)));

		// up and down with large numbers
		assert_eq!(r(MAX128 - 10, MAX128).to_den(10), Some(r(10, 10)));
		assert_eq!(r(MAX128 / 2, MAX128).to_den(10), Some(r(5, 10)));

		// large to perbill. This is very well needed for npos-elections.
		assert_eq!(r(MAX128 / 2, MAX128).to_den(1000_000_000), Some(r(500_000_000, 1000_000_000)));

		// large to large
		assert_eq!(r(MAX128 / 2, MAX128).to_den(MAX128 / 2), Some(r(MAX128 / 4, MAX128 / 2)));
	}

	#[test]
	fn gdc_works() {
		assert_eq!(gcd(10, 5), 5);
		assert_eq!(gcd(7, 22), 1);
	}

	#[test]
	fn lcm_works() {
		// simple stuff
		assert_eq!(r(3, 10).lcm(&r(4, 15)).unwrap(), 30);
		assert_eq!(r(5, 30).lcm(&r(1, 7)).unwrap(), 210);
		assert_eq!(r(5, 30).lcm(&r(1, 10)).unwrap(), 30);

		// large numbers
		assert_eq!(r(1_000_000_000, MAX128).lcm(&r(7_000_000_000, MAX128 - 1)), None,);
		assert_eq!(
			r(1_000_000_000, MAX64).lcm(&r(7_000_000_000, MAX64 - 1)),
			Some(340282366920938463408034375210639556610),
		);
		const_assert!(340282366920938463408034375210639556610 < MAX128);
		const_assert!(340282366920938463408034375210639556610 == MAX64 * (MAX64 - 1));
	}

	#[test]
	fn add_works() {
		// works
		assert_eq!(r(3, 10).checked_add(r(1, 10)).unwrap(), r(2, 5));
		assert_eq!(r(3, 10).checked_add(r(3, 7)).unwrap(), r(51, 70));

		// errors
		assert_eq!(
			r(1, MAX128).checked_add(r(1, MAX128 - 1)),
			Err("failed to scale to denominator"),
		);
		assert_eq!(
			r(7, MAX128).checked_add(r(MAX128, MAX128)),
			Err("overflow while adding numerators"),
		);
		assert_eq!(
			r(MAX128, MAX128).checked_add(r(MAX128, MAX128)),
			Err("overflow while adding numerators"),
		);
	}

	#[test]
	fn sub_works() {
		// works
		assert_eq!(r(3, 10).checked_sub(r(1, 10)).unwrap(), r(1, 5));
		assert_eq!(r(6, 10).checked_sub(r(3, 7)).unwrap(), r(12, 70));

		// errors
		assert_eq!(
			r(2, MAX128).checked_sub(r(1, MAX128 - 1)),
			Err("failed to scale to denominator"),
		);
		assert_eq!(
			r(7, MAX128).checked_sub(r(MAX128, MAX128)),
			Err("overflow while subtracting numerators"),
		);
		assert_eq!(r(1, 10).checked_sub(r(2, 10)), Err("overflow while subtracting numerators"));
	}

	#[test]
	fn ordering_and_eq_works() {
		assert!(r(1, 2) > r(1, 3));
		assert!(r(1, 2) > r(2, 6));

		assert!(r(1, 2) < r(6, 6));
		assert!(r(2, 1) > r(2, 6));

		assert!(r(5, 10) == r(1, 2));
		assert!(r(1, 2) == r(1, 2));

		assert!(r(1, 1490000000000200000) > r(1, 1490000000000200001));
	}

	#[test]
	fn multiply_by_rational_with_rounding_works() {
		assert_eq!(multiply_by_rational_with_rounding(7, 2, 3, Rounding::Down).unwrap(), 7 * 2 / 3);
		assert_eq!(
			multiply_by_rational_with_rounding(7, 20, 30, Rounding::Down).unwrap(),
			7 * 2 / 3
		);
		assert_eq!(
			multiply_by_rational_with_rounding(20, 7, 30, Rounding::Down).unwrap(),
			7 * 2 / 3
		);

		assert_eq!(
			// MAX128 % 3 == 0
			multiply_by_rational_with_rounding(MAX128, 2, 3, Rounding::Down).unwrap(),
			MAX128 / 3 * 2,
		);
		assert_eq!(
			// MAX128 % 7 == 3
			multiply_by_rational_with_rounding(MAX128, 5, 7, Rounding::Down).unwrap(),
			(MAX128 / 7 * 5) + (3 * 5 / 7),
		);
		assert_eq!(
			// MAX128 % 7 == 3
			multiply_by_rational_with_rounding(MAX128, 11, 13, Rounding::Down).unwrap(),
			(MAX128 / 13 * 11) + (8 * 11 / 13),
		);
		assert_eq!(
			// MAX128 % 1000 == 455
			multiply_by_rational_with_rounding(MAX128, 555, 1000, Rounding::Down).unwrap(),
			(MAX128 / 1000 * 555) + (455 * 555 / 1000),
		);

		assert_eq!(
			multiply_by_rational_with_rounding(2 * MAX64 - 1, MAX64, MAX64, Rounding::Down)
				.unwrap(),
			2 * MAX64 - 1
		);
		assert_eq!(
			multiply_by_rational_with_rounding(2 * MAX64 - 1, MAX64 - 1, MAX64, Rounding::Down)
				.unwrap(),
			2 * MAX64 - 3
		);

		assert_eq!(
			multiply_by_rational_with_rounding(MAX64 + 100, MAX64_2, MAX64_2 / 2, Rounding::Down)
				.unwrap(),
			(MAX64 + 100) * 2,
		);
		assert_eq!(
			multiply_by_rational_with_rounding(
				MAX64 + 100,
				MAX64_2 / 100,
				MAX64_2 / 200,
				Rounding::Down
			)
			.unwrap(),
			(MAX64 + 100) * 2,
		);

		assert_eq!(
			multiply_by_rational_with_rounding(
				2u128.pow(66) - 1,
				2u128.pow(65) - 1,
				2u128.pow(65),
				Rounding::Down
			)
			.unwrap(),
			73786976294838206461,
		);
		assert_eq!(
			multiply_by_rational_with_rounding(1_000_000_000, MAX128 / 8, MAX128 / 2, Rounding::Up)
				.unwrap(),
			250000000
		);

		assert_eq!(
			multiply_by_rational_with_rounding(
				29459999999999999988000u128,
				1000000000000000000u128,
				10000000000000000000u128,
				Rounding::Down
			)
			.unwrap(),
			2945999999999999998800u128
		);
	}

	#[test]
	fn multiply_by_rational_with_rounding_a_b_are_interchangeable() {
		assert_eq!(
			multiply_by_rational_with_rounding(10, MAX128, MAX128 / 2, Rounding::NearestPrefDown),
			Some(20)
		);
		assert_eq!(
			multiply_by_rational_with_rounding(MAX128, 10, MAX128 / 2, Rounding::NearestPrefDown),
			Some(20)
		);
	}

	#[test]
	#[ignore]
	fn multiply_by_rational_with_rounding_fuzzed_equation() {
		assert_eq!(
			multiply_by_rational_with_rounding(
				154742576605164960401588224,
				9223376310179529214,
				549756068598,
				Rounding::NearestPrefDown
			),
			Some(2596149632101417846585204209223679)
		);
	}
}