1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Cryptographic utilities.

use crate::{ed25519, sr25519};
#[cfg(all(not(feature = "std"), feature = "serde"))]
use alloc::{format, string::String, vec};
use alloc::{str, vec::Vec};
use bip39::{Language, Mnemonic};
use codec::{Decode, Encode, MaxEncodedLen};
use core::hash::Hash;
#[doc(hidden)]
pub use core::ops::Deref;
#[cfg(feature = "std")]
use itertools::Itertools;
#[cfg(feature = "std")]
use rand::{rngs::OsRng, RngCore};
use scale_info::TypeInfo;
pub use secrecy::{ExposeSecret, SecretString};
use sp_runtime_interface::pass_by::PassByInner;
pub use ss58_registry::{from_known_address_format, Ss58AddressFormat, Ss58AddressFormatRegistry};
/// Trait to zeroize a memory buffer.
pub use zeroize::Zeroize;

pub use crate::{
	address_uri::{AddressUri, Error as AddressUriError},
	crypto_bytes::{CryptoBytes, PublicBytes, SignatureBytes},
};

/// The root phrase for our publicly known keys.
pub const DEV_PHRASE: &str =
	"bottom drive obey lake curtain smoke basket hold race lonely fit walk";

/// The address of the associated root phrase for our publicly known keys.
pub const DEV_ADDRESS: &str = "5DfhGyQdFobKM8NsWvEeAKk5EQQgYe9AydgJ7rMB6E1EqRzV";

/// The length of the junction identifier. Note that this is also referred to as the
/// `CHAIN_CODE_LENGTH` in the context of Schnorrkel.
pub const JUNCTION_ID_LEN: usize = 32;

/// Similar to `From`, except that the onus is on the part of the caller to ensure
/// that data passed in makes sense. Basically, you're not guaranteed to get anything
/// sensible out.
pub trait UncheckedFrom<T> {
	/// Convert from an instance of `T` to Self. This is not guaranteed to be
	/// whatever counts as a valid instance of `T` and it's up to the caller to
	/// ensure that it makes sense.
	fn unchecked_from(t: T) -> Self;
}

/// The counterpart to `UncheckedFrom`.
pub trait UncheckedInto<T> {
	/// The counterpart to `unchecked_from`.
	fn unchecked_into(self) -> T;
}

impl<S, T: UncheckedFrom<S>> UncheckedInto<T> for S {
	fn unchecked_into(self) -> T {
		T::unchecked_from(self)
	}
}

/// An error with the interpretation of a secret.
#[cfg_attr(feature = "std", derive(thiserror::Error))]
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum SecretStringError {
	/// The overall format was invalid (e.g. the seed phrase contained symbols).
	#[cfg_attr(feature = "std", error("Invalid format {0}"))]
	InvalidFormat(AddressUriError),
	/// The seed phrase provided is not a valid BIP39 phrase.
	#[cfg_attr(feature = "std", error("Invalid phrase"))]
	InvalidPhrase,
	/// The supplied password was invalid.
	#[cfg_attr(feature = "std", error("Invalid password"))]
	InvalidPassword,
	/// The seed is invalid (bad content).
	#[cfg_attr(feature = "std", error("Invalid seed"))]
	InvalidSeed,
	/// The seed has an invalid length.
	#[cfg_attr(feature = "std", error("Invalid seed length"))]
	InvalidSeedLength,
	/// The derivation path was invalid (e.g. contains soft junctions when they are not supported).
	#[cfg_attr(feature = "std", error("Invalid path"))]
	InvalidPath,
}

impl From<AddressUriError> for SecretStringError {
	fn from(e: AddressUriError) -> Self {
		Self::InvalidFormat(e)
	}
}

/// An error when deriving a key.
#[cfg_attr(feature = "std", derive(thiserror::Error))]
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum DeriveError {
	/// A soft key was found in the path (and is unsupported).
	#[cfg_attr(feature = "std", error("Soft key in path"))]
	SoftKeyInPath,
}

/// A since derivation junction description. It is the single parameter used when creating
/// a new secret key from an existing secret key and, in the case of `SoftRaw` and `SoftIndex`
/// a new public key from an existing public key.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Encode, Decode)]
pub enum DeriveJunction {
	/// Soft (vanilla) derivation. Public keys have a correspondent derivation.
	Soft([u8; JUNCTION_ID_LEN]),
	/// Hard ("hardened") derivation. Public keys do not have a correspondent derivation.
	Hard([u8; JUNCTION_ID_LEN]),
}

impl DeriveJunction {
	/// Consume self to return a soft derive junction with the same chain code.
	pub fn soften(self) -> Self {
		DeriveJunction::Soft(self.unwrap_inner())
	}

	/// Consume self to return a hard derive junction with the same chain code.
	pub fn harden(self) -> Self {
		DeriveJunction::Hard(self.unwrap_inner())
	}

	/// Create a new soft (vanilla) DeriveJunction from a given, encodable, value.
	///
	/// If you need a hard junction, use `hard()`.
	pub fn soft<T: Encode>(index: T) -> Self {
		let mut cc: [u8; JUNCTION_ID_LEN] = Default::default();
		index.using_encoded(|data| {
			if data.len() > JUNCTION_ID_LEN {
				cc.copy_from_slice(&sp_crypto_hashing::blake2_256(data));
			} else {
				cc[0..data.len()].copy_from_slice(data);
			}
		});
		DeriveJunction::Soft(cc)
	}

	/// Create a new hard (hardened) DeriveJunction from a given, encodable, value.
	///
	/// If you need a soft junction, use `soft()`.
	pub fn hard<T: Encode>(index: T) -> Self {
		Self::soft(index).harden()
	}

	/// Consume self to return the chain code.
	pub fn unwrap_inner(self) -> [u8; JUNCTION_ID_LEN] {
		match self {
			DeriveJunction::Hard(c) | DeriveJunction::Soft(c) => c,
		}
	}

	/// Get a reference to the inner junction id.
	pub fn inner(&self) -> &[u8; JUNCTION_ID_LEN] {
		match self {
			DeriveJunction::Hard(ref c) | DeriveJunction::Soft(ref c) => c,
		}
	}

	/// Return `true` if the junction is soft.
	pub fn is_soft(&self) -> bool {
		matches!(*self, DeriveJunction::Soft(_))
	}

	/// Return `true` if the junction is hard.
	pub fn is_hard(&self) -> bool {
		matches!(*self, DeriveJunction::Hard(_))
	}
}

impl<T: AsRef<str>> From<T> for DeriveJunction {
	fn from(j: T) -> DeriveJunction {
		let j = j.as_ref();
		let (code, hard) =
			if let Some(stripped) = j.strip_prefix('/') { (stripped, true) } else { (j, false) };

		let res = if let Ok(n) = str::parse::<u64>(code) {
			// number
			DeriveJunction::soft(n)
		} else {
			// something else
			DeriveJunction::soft(code)
		};

		if hard {
			res.harden()
		} else {
			res
		}
	}
}

/// An error type for SS58 decoding.
#[cfg_attr(feature = "std", derive(thiserror::Error))]
#[cfg_attr(not(feature = "std"), derive(Debug))]
#[derive(Clone, Eq, PartialEq)]
#[allow(missing_docs)]
#[cfg(any(feature = "full_crypto", feature = "serde"))]
pub enum PublicError {
	#[cfg_attr(feature = "std", error("Base 58 requirement is violated"))]
	BadBase58,
	#[cfg_attr(feature = "std", error("Length is bad"))]
	BadLength,
	#[cfg_attr(
		feature = "std",
		error(
			"Unknown SS58 address format `{}`. ` \
		`To support this address format, you need to call `set_default_ss58_version` at node start up.",
			_0
		)
	)]
	UnknownSs58AddressFormat(Ss58AddressFormat),
	#[cfg_attr(feature = "std", error("Invalid checksum"))]
	InvalidChecksum,
	#[cfg_attr(feature = "std", error("Invalid SS58 prefix byte."))]
	InvalidPrefix,
	#[cfg_attr(feature = "std", error("Invalid SS58 format."))]
	InvalidFormat,
	#[cfg_attr(feature = "std", error("Invalid derivation path."))]
	InvalidPath,
	#[cfg_attr(feature = "std", error("Disallowed SS58 Address Format for this datatype."))]
	FormatNotAllowed,
	#[cfg_attr(feature = "std", error("Password not allowed."))]
	PasswordNotAllowed,
	#[cfg(feature = "std")]
	#[cfg_attr(feature = "std", error("Incorrect URI syntax {0}."))]
	MalformedUri(#[from] AddressUriError),
}

#[cfg(feature = "std")]
impl core::fmt::Debug for PublicError {
	fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
		// Just use the `Display` implementation
		write!(f, "{}", self)
	}
}

/// Key that can be encoded to/from SS58.
///
/// See <https://docs.substrate.io/v3/advanced/ss58/>
/// for information on the codec.
pub trait Ss58Codec: Sized + AsMut<[u8]> + AsRef<[u8]> + ByteArray {
	/// A format filterer, can be used to ensure that `from_ss58check` family only decode for
	/// allowed identifiers. By default just refuses the two reserved identifiers.
	fn format_is_allowed(f: Ss58AddressFormat) -> bool {
		!f.is_reserved()
	}

	/// Some if the string is a properly encoded SS58Check address.
	#[cfg(feature = "serde")]
	fn from_ss58check(s: &str) -> Result<Self, PublicError> {
		Self::from_ss58check_with_version(s).and_then(|(r, v)| match v {
			v if !v.is_custom() => Ok(r),
			v if v == default_ss58_version() => Ok(r),
			v => Err(PublicError::UnknownSs58AddressFormat(v)),
		})
	}

	/// Some if the string is a properly encoded SS58Check address.
	#[cfg(feature = "serde")]
	fn from_ss58check_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
		const CHECKSUM_LEN: usize = 2;
		let body_len = Self::LEN;

		let data = bs58::decode(s).into_vec().map_err(|_| PublicError::BadBase58)?;
		if data.len() < 2 {
			return Err(PublicError::BadLength)
		}
		let (prefix_len, ident) = match data[0] {
			0..=63 => (1, data[0] as u16),
			64..=127 => {
				// weird bit manipulation owing to the combination of LE encoding and missing two
				// bits from the left.
				// d[0] d[1] are: 01aaaaaa bbcccccc
				// they make the LE-encoded 16-bit value: aaaaaabb 00cccccc
				// so the lower byte is formed of aaaaaabb and the higher byte is 00cccccc
				let lower = (data[0] << 2) | (data[1] >> 6);
				let upper = data[1] & 0b00111111;
				(2, (lower as u16) | ((upper as u16) << 8))
			},
			_ => return Err(PublicError::InvalidPrefix),
		};
		if data.len() != prefix_len + body_len + CHECKSUM_LEN {
			return Err(PublicError::BadLength)
		}
		let format = ident.into();
		if !Self::format_is_allowed(format) {
			return Err(PublicError::FormatNotAllowed)
		}

		let hash = ss58hash(&data[0..body_len + prefix_len]);
		let checksum = &hash[0..CHECKSUM_LEN];
		if data[body_len + prefix_len..body_len + prefix_len + CHECKSUM_LEN] != *checksum {
			// Invalid checksum.
			return Err(PublicError::InvalidChecksum)
		}

		let result = Self::from_slice(&data[prefix_len..body_len + prefix_len])
			.map_err(|()| PublicError::BadLength)?;
		Ok((result, format))
	}

	/// Some if the string is a properly encoded SS58Check address, optionally with
	/// a derivation path following.
	#[cfg(feature = "std")]
	fn from_string(s: &str) -> Result<Self, PublicError> {
		Self::from_string_with_version(s).and_then(|(r, v)| match v {
			v if !v.is_custom() => Ok(r),
			v if v == default_ss58_version() => Ok(r),
			v => Err(PublicError::UnknownSs58AddressFormat(v)),
		})
	}

	/// Return the ss58-check string for this key.
	#[cfg(feature = "serde")]
	fn to_ss58check_with_version(&self, version: Ss58AddressFormat) -> String {
		// We mask out the upper two bits of the ident - SS58 Prefix currently only supports 14-bits
		let ident: u16 = u16::from(version) & 0b0011_1111_1111_1111;
		let mut v = match ident {
			0..=63 => vec![ident as u8],
			64..=16_383 => {
				// upper six bits of the lower byte(!)
				let first = ((ident & 0b0000_0000_1111_1100) as u8) >> 2;
				// lower two bits of the lower byte in the high pos,
				// lower bits of the upper byte in the low pos
				let second = ((ident >> 8) as u8) | ((ident & 0b0000_0000_0000_0011) as u8) << 6;
				vec![first | 0b01000000, second]
			},
			_ => unreachable!("masked out the upper two bits; qed"),
		};
		v.extend(self.as_ref());
		let r = ss58hash(&v);
		v.extend(&r[0..2]);
		bs58::encode(v).into_string()
	}

	/// Return the ss58-check string for this key.
	#[cfg(feature = "serde")]
	fn to_ss58check(&self) -> String {
		self.to_ss58check_with_version(default_ss58_version())
	}

	/// Some if the string is a properly encoded SS58Check address, optionally with
	/// a derivation path following.
	#[cfg(feature = "std")]
	fn from_string_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
		Self::from_ss58check_with_version(s)
	}
}

/// Derivable key trait.
pub trait Derive: Sized {
	/// Derive a child key from a series of given junctions.
	///
	/// Will be `None` for public keys if there are any hard junctions in there.
	#[cfg(feature = "serde")]
	fn derive<Iter: Iterator<Item = DeriveJunction>>(&self, _path: Iter) -> Option<Self> {
		None
	}
}

#[cfg(feature = "serde")]
const PREFIX: &[u8] = b"SS58PRE";

#[cfg(feature = "serde")]
fn ss58hash(data: &[u8]) -> Vec<u8> {
	use blake2::{Blake2b512, Digest};

	let mut ctx = Blake2b512::new();
	ctx.update(PREFIX);
	ctx.update(data);
	ctx.finalize().to_vec()
}

/// Default prefix number
#[cfg(feature = "serde")]
static DEFAULT_VERSION: core::sync::atomic::AtomicU16 = core::sync::atomic::AtomicU16::new(
	from_known_address_format(Ss58AddressFormatRegistry::SubstrateAccount),
);

/// Returns default SS58 format used by the current active process.
#[cfg(feature = "serde")]
pub fn default_ss58_version() -> Ss58AddressFormat {
	DEFAULT_VERSION.load(core::sync::atomic::Ordering::Relaxed).into()
}

/// Returns either the input address format or the default.
#[cfg(feature = "serde")]
pub fn unwrap_or_default_ss58_version(network: Option<Ss58AddressFormat>) -> Ss58AddressFormat {
	network.unwrap_or_else(default_ss58_version)
}

/// Set the default SS58 "version".
///
/// This SS58 version/format will be used when encoding/decoding SS58 addresses.
///
/// If you want to support a custom SS58 prefix (that isn't yet registered in the `ss58-registry`),
/// you are required to call this function with your desired prefix [`Ss58AddressFormat::custom`].
/// This will enable the node to decode ss58 addresses with this prefix.
///
/// This SS58 version/format is also only used by the node and not by the runtime.
#[cfg(feature = "serde")]
pub fn set_default_ss58_version(new_default: Ss58AddressFormat) {
	DEFAULT_VERSION.store(new_default.into(), core::sync::atomic::Ordering::Relaxed);
}

#[cfg(feature = "std")]
impl<T: Sized + AsMut<[u8]> + AsRef<[u8]> + Public + Derive> Ss58Codec for T {
	fn from_string(s: &str) -> Result<Self, PublicError> {
		let cap = AddressUri::parse(s)?;
		if cap.pass.is_some() {
			return Err(PublicError::PasswordNotAllowed)
		}
		let s = cap.phrase.unwrap_or(DEV_ADDRESS);
		let addr = if let Some(stripped) = s.strip_prefix("0x") {
			let d = array_bytes::hex2bytes(stripped).map_err(|_| PublicError::InvalidFormat)?;
			Self::from_slice(&d).map_err(|()| PublicError::BadLength)?
		} else {
			Self::from_ss58check(s)?
		};
		if cap.paths.is_empty() {
			Ok(addr)
		} else {
			addr.derive(cap.paths.iter().map(DeriveJunction::from))
				.ok_or(PublicError::InvalidPath)
		}
	}

	fn from_string_with_version(s: &str) -> Result<(Self, Ss58AddressFormat), PublicError> {
		let cap = AddressUri::parse(s)?;
		if cap.pass.is_some() {
			return Err(PublicError::PasswordNotAllowed)
		}
		let (addr, v) = Self::from_ss58check_with_version(cap.phrase.unwrap_or(DEV_ADDRESS))?;
		if cap.paths.is_empty() {
			Ok((addr, v))
		} else {
			addr.derive(cap.paths.iter().map(DeriveJunction::from))
				.ok_or(PublicError::InvalidPath)
				.map(|a| (a, v))
		}
	}
}

// Use the default implementations of the trait in serde feature.
// The std implementation is not available because of std only crate Regex.
#[cfg(all(not(feature = "std"), feature = "serde"))]
impl<T: Sized + AsMut<[u8]> + AsRef<[u8]> + Public + Derive> Ss58Codec for T {}

/// Trait used for types that are really just a fixed-length array.
pub trait ByteArray: AsRef<[u8]> + AsMut<[u8]> + for<'a> TryFrom<&'a [u8], Error = ()> {
	/// The "length" of the values of this type, which is always the same.
	const LEN: usize;

	/// A new instance from the given slice that should be `Self::LEN` bytes long.
	fn from_slice(data: &[u8]) -> Result<Self, ()> {
		Self::try_from(data)
	}

	/// Return a `Vec<u8>` filled with raw data.
	fn to_raw_vec(&self) -> Vec<u8> {
		self.as_slice().to_vec()
	}

	/// Return a slice filled with raw data.
	fn as_slice(&self) -> &[u8] {
		self.as_ref()
	}
}

/// Trait suitable for cryptographic public keys.
pub trait Public: CryptoType + ByteArray + PartialEq + Eq + Clone + Send + Sync + Derive {}

/// Trait suitable for cryptographic signatures.
pub trait Signature: CryptoType + ByteArray + PartialEq + Eq + Clone + Send + Sync {}

/// An opaque 32-byte cryptographic identifier.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Encode, Decode, MaxEncodedLen, TypeInfo)]
#[cfg_attr(feature = "std", derive(Hash))]
pub struct AccountId32([u8; 32]);

impl AccountId32 {
	/// Create a new instance from its raw inner byte value.
	///
	/// Equivalent to this types `From<[u8; 32]>` implementation. For the lack of const
	/// support in traits we have this constructor.
	pub const fn new(inner: [u8; 32]) -> Self {
		Self(inner)
	}
}

impl UncheckedFrom<crate::hash::H256> for AccountId32 {
	fn unchecked_from(h: crate::hash::H256) -> Self {
		AccountId32(h.into())
	}
}

impl ByteArray for AccountId32 {
	const LEN: usize = 32;
}

#[cfg(feature = "serde")]
impl Ss58Codec for AccountId32 {}

impl AsRef<[u8]> for AccountId32 {
	fn as_ref(&self) -> &[u8] {
		&self.0[..]
	}
}

impl AsMut<[u8]> for AccountId32 {
	fn as_mut(&mut self) -> &mut [u8] {
		&mut self.0[..]
	}
}

impl AsRef<[u8; 32]> for AccountId32 {
	fn as_ref(&self) -> &[u8; 32] {
		&self.0
	}
}

impl AsMut<[u8; 32]> for AccountId32 {
	fn as_mut(&mut self) -> &mut [u8; 32] {
		&mut self.0
	}
}

impl From<[u8; 32]> for AccountId32 {
	fn from(x: [u8; 32]) -> Self {
		Self::new(x)
	}
}

impl<'a> TryFrom<&'a [u8]> for AccountId32 {
	type Error = ();
	fn try_from(x: &'a [u8]) -> Result<AccountId32, ()> {
		if x.len() == 32 {
			let mut data = [0; 32];
			data.copy_from_slice(x);
			Ok(AccountId32(data))
		} else {
			Err(())
		}
	}
}

impl From<AccountId32> for [u8; 32] {
	fn from(x: AccountId32) -> [u8; 32] {
		x.0
	}
}

impl From<sr25519::Public> for AccountId32 {
	fn from(k: sr25519::Public) -> Self {
		k.0.into()
	}
}

impl From<ed25519::Public> for AccountId32 {
	fn from(k: ed25519::Public) -> Self {
		k.0.into()
	}
}

#[cfg(feature = "std")]
impl std::fmt::Display for AccountId32 {
	fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
		write!(f, "{}", self.to_ss58check())
	}
}

impl core::fmt::Debug for AccountId32 {
	fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
		#[cfg(feature = "serde")]
		{
			let s = self.to_ss58check();
			write!(f, "{} ({}...)", crate::hexdisplay::HexDisplay::from(&self.0), &s[0..8])?;
		}

		#[cfg(not(feature = "serde"))]
		write!(f, "{}", crate::hexdisplay::HexDisplay::from(&self.0))?;

		Ok(())
	}
}

#[cfg(feature = "serde")]
impl serde::Serialize for AccountId32 {
	fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
	where
		S: serde::Serializer,
	{
		serializer.serialize_str(&self.to_ss58check())
	}
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for AccountId32 {
	fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
	where
		D: serde::Deserializer<'de>,
	{
		Ss58Codec::from_ss58check(&String::deserialize(deserializer)?)
			.map_err(|e| serde::de::Error::custom(format!("{:?}", e)))
	}
}

#[cfg(feature = "std")]
impl std::str::FromStr for AccountId32 {
	type Err = &'static str;

	fn from_str(s: &str) -> Result<Self, Self::Err> {
		let hex_or_ss58_without_prefix = s.trim_start_matches("0x");
		if hex_or_ss58_without_prefix.len() == 64 {
			array_bytes::hex_n_into(hex_or_ss58_without_prefix).map_err(|_| "invalid hex address.")
		} else {
			Self::from_ss58check(s).map_err(|_| "invalid ss58 address.")
		}
	}
}

/// Creates an [`AccountId32`] from the input, which should contain at least 32 bytes.
impl FromEntropy for AccountId32 {
	fn from_entropy(input: &mut impl codec::Input) -> Result<Self, codec::Error> {
		Ok(AccountId32::new(FromEntropy::from_entropy(input)?))
	}
}

#[cfg(feature = "std")]
pub use self::dummy::*;

#[cfg(feature = "std")]
mod dummy {
	use super::*;

	#[doc(hidden)]
	pub struct DummyTag;

	/// Dummy cryptography. Doesn't do anything.
	pub type Dummy = CryptoBytes<0, DummyTag>;

	impl CryptoType for Dummy {
		type Pair = Dummy;
	}

	impl Derive for Dummy {}

	impl Public for Dummy {}

	impl Signature for Dummy {}

	impl Pair for Dummy {
		type Public = Dummy;
		type Seed = Dummy;
		type Signature = Dummy;

		#[cfg(feature = "std")]
		fn generate_with_phrase(_: Option<&str>) -> (Self, String, Self::Seed) {
			Default::default()
		}

		#[cfg(feature = "std")]
		fn from_phrase(_: &str, _: Option<&str>) -> Result<(Self, Self::Seed), SecretStringError> {
			Ok(Default::default())
		}

		fn derive<Iter: Iterator<Item = DeriveJunction>>(
			&self,
			_: Iter,
			_: Option<Dummy>,
		) -> Result<(Self, Option<Dummy>), DeriveError> {
			Ok((Self::default(), None))
		}

		fn from_seed_slice(_: &[u8]) -> Result<Self, SecretStringError> {
			Ok(Self::default())
		}

		fn sign(&self, _: &[u8]) -> Self::Signature {
			Self::default()
		}

		fn verify<M: AsRef<[u8]>>(_: &Self::Signature, _: M, _: &Self::Public) -> bool {
			true
		}

		fn public(&self) -> Self::Public {
			Self::default()
		}

		fn to_raw_vec(&self) -> Vec<u8> {
			Default::default()
		}
	}
}

/// A secret uri (`SURI`) that can be used to generate a key pair.
///
/// The `SURI` can be parsed from a string. The string is interpreted in the following way:
///
/// - If `string` is a possibly `0x` prefixed 64-digit hex string, then it will be interpreted
/// directly as a `MiniSecretKey` (aka "seed" in `subkey`).
/// - If `string` is a valid BIP-39 key phrase of 12, 15, 18, 21 or 24 words, then the key will
/// be derived from it. In this case:
///   - the phrase may be followed by one or more items delimited by `/` characters.
///   - the path may be followed by `///`, in which case everything after the `///` is treated
/// as a password.
/// - If `string` begins with a `/` character it is prefixed with the Substrate public `DEV_PHRASE`
///   and interpreted as above.
///
/// In this case they are interpreted as HDKD junctions; purely numeric items are interpreted as
/// integers, non-numeric items as strings. Junctions prefixed with `/` are interpreted as soft
/// junctions, and with `//` as hard junctions.
///
/// There is no correspondence mapping between `SURI` strings and the keys they represent.
/// Two different non-identical strings can actually lead to the same secret being derived.
/// Notably, integer junction indices may be legally prefixed with arbitrary number of zeros.
/// Similarly an empty password (ending the `SURI` with `///`) is perfectly valid and will
/// generally be equivalent to no password at all.
///
/// The `password` is used as salt when generating the seed from the BIP-39 key phrase.
///
/// # Example
///
/// Parse [`DEV_PHRASE`] secret uri with junction:
///
/// ```
/// # use sp_core::crypto::{SecretUri, DeriveJunction, DEV_PHRASE, ExposeSecret};
/// # use std::str::FromStr;
/// let suri = SecretUri::from_str("//Alice").expect("Parse SURI");
///
/// assert_eq!(vec![DeriveJunction::from("Alice").harden()], suri.junctions);
/// assert_eq!(DEV_PHRASE, suri.phrase.expose_secret());
/// assert!(suri.password.is_none());
/// ```
///
/// Parse [`DEV_PHRASE`] secret ui with junction and password:
///
/// ```
/// # use sp_core::crypto::{SecretUri, DeriveJunction, DEV_PHRASE, ExposeSecret};
/// # use std::str::FromStr;
/// let suri = SecretUri::from_str("//Alice///SECRET_PASSWORD").expect("Parse SURI");
///
/// assert_eq!(vec![DeriveJunction::from("Alice").harden()], suri.junctions);
/// assert_eq!(DEV_PHRASE, suri.phrase.expose_secret());
/// assert_eq!("SECRET_PASSWORD", suri.password.unwrap().expose_secret());
/// ```
///
/// Parse [`DEV_PHRASE`] secret ui with hex phrase and junction:
///
/// ```
/// # use sp_core::crypto::{SecretUri, DeriveJunction, DEV_PHRASE, ExposeSecret};
/// # use std::str::FromStr;
/// let suri = SecretUri::from_str("0xe5be9a5092b81bca64be81d212e7f2f9eba183bb7a90954f7b76361f6edb5c0a//Alice").expect("Parse SURI");
///
/// assert_eq!(vec![DeriveJunction::from("Alice").harden()], suri.junctions);
/// assert_eq!("0xe5be9a5092b81bca64be81d212e7f2f9eba183bb7a90954f7b76361f6edb5c0a", suri.phrase.expose_secret());
/// assert!(suri.password.is_none());
/// ```
pub struct SecretUri {
	/// The phrase to derive the private key.
	///
	/// This can either be a 64-bit hex string or a BIP-39 key phrase.
	pub phrase: SecretString,
	/// Optional password as given as part of the uri.
	pub password: Option<SecretString>,
	/// The junctions as part of the uri.
	pub junctions: Vec<DeriveJunction>,
}

impl alloc::str::FromStr for SecretUri {
	type Err = SecretStringError;

	fn from_str(s: &str) -> Result<Self, Self::Err> {
		let cap = AddressUri::parse(s)?;
		let phrase = cap.phrase.unwrap_or(DEV_PHRASE);

		Ok(Self {
			phrase: SecretString::from_str(phrase).expect("Returns infallible error; qed"),
			password: cap
				.pass
				.map(|v| SecretString::from_str(v).expect("Returns infallible error; qed")),
			junctions: cap.paths.iter().map(DeriveJunction::from).collect::<Vec<_>>(),
		})
	}
}

/// Trait suitable for typical cryptographic PKI key pair type.
///
/// For now it just specifies how to create a key from a phrase and derivation path.
pub trait Pair: CryptoType + Sized {
	/// The type which is used to encode a public key.
	type Public: Public + Hash;

	/// The type used to (minimally) encode the data required to securely create
	/// a new key pair.
	type Seed: Default + AsRef<[u8]> + AsMut<[u8]> + Clone;

	/// The type used to represent a signature. Can be created from a key pair and a message
	/// and verified with the message and a public key.
	type Signature: Signature;

	/// Generate new secure (random) key pair.
	///
	/// This is only for ephemeral keys really, since you won't have access to the secret key
	/// for storage. If you want a persistent key pair, use `generate_with_phrase` instead.
	#[cfg(feature = "std")]
	fn generate() -> (Self, Self::Seed) {
		let mut seed = Self::Seed::default();
		OsRng.fill_bytes(seed.as_mut());
		(Self::from_seed(&seed), seed)
	}

	/// Generate new secure (random) key pair and provide the recovery phrase.
	///
	/// You can recover the same key later with `from_phrase`.
	///
	/// This is generally slower than `generate()`, so prefer that unless you need to persist
	/// the key from the current session.
	#[cfg(feature = "std")]
	fn generate_with_phrase(password: Option<&str>) -> (Self, String, Self::Seed) {
		let mnemonic = Mnemonic::generate(12).expect("Mnemonic generation always works; qed");
		let phrase = mnemonic.words().join(" ");
		let (pair, seed) = Self::from_phrase(&phrase, password)
			.expect("All phrases generated by Mnemonic are valid; qed");
		(pair, phrase.to_owned(), seed)
	}

	/// Returns the KeyPair from the English BIP39 seed `phrase`, or an error if it's invalid.
	fn from_phrase(
		phrase: &str,
		password: Option<&str>,
	) -> Result<(Self, Self::Seed), SecretStringError> {
		let mnemonic = Mnemonic::parse_in(Language::English, phrase)
			.map_err(|_| SecretStringError::InvalidPhrase)?;
		let (entropy, entropy_len) = mnemonic.to_entropy_array();
		let big_seed =
			substrate_bip39::seed_from_entropy(&entropy[0..entropy_len], password.unwrap_or(""))
				.map_err(|_| SecretStringError::InvalidSeed)?;
		let mut seed = Self::Seed::default();
		let seed_slice = seed.as_mut();
		let seed_len = seed_slice.len();
		debug_assert!(seed_len <= big_seed.len());
		seed_slice[..seed_len].copy_from_slice(&big_seed[..seed_len]);
		Self::from_seed_slice(seed_slice).map(|x| (x, seed))
	}

	/// Derive a child key from a series of given junctions.
	fn derive<Iter: Iterator<Item = DeriveJunction>>(
		&self,
		path: Iter,
		seed: Option<Self::Seed>,
	) -> Result<(Self, Option<Self::Seed>), DeriveError>;

	/// Generate new key pair from the provided `seed`.
	///
	/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
	/// by an attacker then they can also derive your key.
	fn from_seed(seed: &Self::Seed) -> Self {
		Self::from_seed_slice(seed.as_ref()).expect("seed has valid length; qed")
	}

	/// Make a new key pair from secret seed material. The slice must be the correct size or
	/// an error will be returned.
	///
	/// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
	/// by an attacker then they can also derive your key.
	fn from_seed_slice(seed: &[u8]) -> Result<Self, SecretStringError>;

	/// Sign a message.
	#[cfg(feature = "full_crypto")]
	fn sign(&self, message: &[u8]) -> Self::Signature;

	/// Verify a signature on a message. Returns true if the signature is good.
	fn verify<M: AsRef<[u8]>>(sig: &Self::Signature, message: M, pubkey: &Self::Public) -> bool;

	/// Get the public key.
	fn public(&self) -> Self::Public;

	/// Interprets the string `s` in order to generate a key Pair. Returns both the pair and an
	/// optional seed, in the case that the pair can be expressed as a direct derivation from a seed
	/// (some cases, such as Sr25519 derivations with path components, cannot).
	///
	/// This takes a helper function to do the key generation from a phrase, password and
	/// junction iterator.
	///
	/// - If `s` is a possibly `0x` prefixed 64-digit hex string, then it will be interpreted
	/// directly as a `MiniSecretKey` (aka "seed" in `subkey`).
	/// - If `s` is a valid BIP-39 key phrase of 12, 15, 18, 21 or 24 words, then the key will
	/// be derived from it. In this case:
	///   - the phrase may be followed by one or more items delimited by `/` characters.
	///   - the path may be followed by `///`, in which case everything after the `///` is treated
	/// as a password.
	/// - If `s` begins with a `/` character it is prefixed with the Substrate public `DEV_PHRASE`
	///   and interpreted as above.
	///
	/// In this case they are interpreted as HDKD junctions; purely numeric items are interpreted as
	/// integers, non-numeric items as strings. Junctions prefixed with `/` are interpreted as soft
	/// junctions, and with `//` as hard junctions.
	///
	/// There is no correspondence mapping between SURI strings and the keys they represent.
	/// Two different non-identical strings can actually lead to the same secret being derived.
	/// Notably, integer junction indices may be legally prefixed with arbitrary number of zeros.
	/// Similarly an empty password (ending the SURI with `///`) is perfectly valid and will
	/// generally be equivalent to no password at all.
	fn from_string_with_seed(
		s: &str,
		password_override: Option<&str>,
	) -> Result<(Self, Option<Self::Seed>), SecretStringError> {
		use alloc::str::FromStr;
		let SecretUri { junctions, phrase, password } = SecretUri::from_str(s)?;
		let password =
			password_override.or_else(|| password.as_ref().map(|p| p.expose_secret().as_str()));

		let (root, seed) = if let Some(stripped) = phrase.expose_secret().strip_prefix("0x") {
			array_bytes::hex2bytes(stripped)
				.ok()
				.and_then(|seed_vec| {
					let mut seed = Self::Seed::default();
					if seed.as_ref().len() == seed_vec.len() {
						seed.as_mut().copy_from_slice(&seed_vec);
						Some((Self::from_seed(&seed), seed))
					} else {
						None
					}
				})
				.ok_or(SecretStringError::InvalidSeed)?
		} else {
			Self::from_phrase(phrase.expose_secret().as_str(), password)
				.map_err(|_| SecretStringError::InvalidPhrase)?
		};
		root.derive(junctions.into_iter(), Some(seed))
			.map_err(|_| SecretStringError::InvalidPath)
	}

	/// Interprets the string `s` in order to generate a key pair.
	///
	/// See [`from_string_with_seed`](Pair::from_string_with_seed) for more extensive documentation.
	fn from_string(s: &str, password_override: Option<&str>) -> Result<Self, SecretStringError> {
		Self::from_string_with_seed(s, password_override).map(|x| x.0)
	}

	/// Return a vec filled with raw data.
	fn to_raw_vec(&self) -> Vec<u8>;
}

/// One type is wrapped by another.
pub trait IsWrappedBy<Outer>: From<Outer> + Into<Outer> {
	/// Get a reference to the inner from the outer.
	fn from_ref(outer: &Outer) -> &Self;
	/// Get a mutable reference to the inner from the outer.
	fn from_mut(outer: &mut Outer) -> &mut Self;
}

/// Opposite of `IsWrappedBy` - denotes a type which is a simple wrapper around another type.
pub trait Wraps: Sized {
	/// The inner type it is wrapping.
	type Inner: IsWrappedBy<Self>;

	/// Get a reference to the inner type that is wrapped.
	fn as_inner_ref(&self) -> &Self::Inner {
		Self::Inner::from_ref(self)
	}
}

impl<T, Outer> IsWrappedBy<Outer> for T
where
	Outer: AsRef<Self> + AsMut<Self> + From<Self>,
	T: From<Outer>,
{
	/// Get a reference to the inner from the outer.
	fn from_ref(outer: &Outer) -> &Self {
		outer.as_ref()
	}

	/// Get a mutable reference to the inner from the outer.
	fn from_mut(outer: &mut Outer) -> &mut Self {
		outer.as_mut()
	}
}

impl<Inner, Outer, T> UncheckedFrom<T> for Outer
where
	Outer: Wraps<Inner = Inner>,
	Inner: IsWrappedBy<Outer> + UncheckedFrom<T>,
{
	fn unchecked_from(t: T) -> Self {
		let inner: Inner = t.unchecked_into();
		inner.into()
	}
}

/// Type which has a particular kind of crypto associated with it.
pub trait CryptoType {
	/// The pair key type of this crypto.
	type Pair: Pair;
}

/// An identifier for a type of cryptographic key.
///
/// To avoid clashes with other modules when distributing your module publicly, register your
/// `KeyTypeId` on the list here by making a PR.
///
/// Values whose first character is `_` are reserved for private use and won't conflict with any
/// public modules.
#[derive(
	Copy,
	Clone,
	Default,
	PartialEq,
	Eq,
	PartialOrd,
	Ord,
	Hash,
	Encode,
	Decode,
	PassByInner,
	crate::RuntimeDebug,
	TypeInfo,
)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct KeyTypeId(pub [u8; 4]);

impl From<u32> for KeyTypeId {
	fn from(x: u32) -> Self {
		Self(x.to_le_bytes())
	}
}

impl From<KeyTypeId> for u32 {
	fn from(x: KeyTypeId) -> Self {
		u32::from_le_bytes(x.0)
	}
}

impl<'a> TryFrom<&'a str> for KeyTypeId {
	type Error = ();

	fn try_from(x: &'a str) -> Result<Self, ()> {
		let b = x.as_bytes();
		if b.len() != 4 {
			return Err(())
		}
		let mut res = KeyTypeId::default();
		res.0.copy_from_slice(&b[0..4]);
		Ok(res)
	}
}

/// Trait grouping types shared by a VRF signer and verifiers.
pub trait VrfCrypto {
	/// VRF input.
	type VrfInput;
	/// VRF pre-output.
	type VrfPreOutput;
	/// VRF signing data.
	type VrfSignData;
	/// VRF signature.
	type VrfSignature;
}

/// VRF Secret Key.
pub trait VrfSecret: VrfCrypto {
	/// Get VRF-specific pre-output.
	fn vrf_pre_output(&self, data: &Self::VrfInput) -> Self::VrfPreOutput;

	/// Sign VRF-specific data.
	fn vrf_sign(&self, input: &Self::VrfSignData) -> Self::VrfSignature;
}

/// VRF Public Key.
pub trait VrfPublic: VrfCrypto {
	/// Verify input data signature.
	fn vrf_verify(&self, data: &Self::VrfSignData, signature: &Self::VrfSignature) -> bool;
}

/// An identifier for a specific cryptographic algorithm used by a key pair
#[derive(Debug, Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Hash, Encode, Decode)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct CryptoTypeId(pub [u8; 4]);

/// Known key types; this also functions as a global registry of key types for projects wishing to
/// avoid collisions with each other.
///
/// It's not universal in the sense that *all* key types need to be mentioned here, it's just a
/// handy place to put common key types.
pub mod key_types {
	use super::KeyTypeId;

	/// Key type for Babe module, built-in. Identified as `babe`.
	pub const BABE: KeyTypeId = KeyTypeId(*b"babe");
	/// Key type for Sassafras module, built-in. Identified as `sass`.
	pub const SASSAFRAS: KeyTypeId = KeyTypeId(*b"sass");
	/// Key type for Grandpa module, built-in. Identified as `gran`.
	pub const GRANDPA: KeyTypeId = KeyTypeId(*b"gran");
	/// Key type for controlling an account in a Substrate runtime, built-in. Identified as `acco`.
	pub const ACCOUNT: KeyTypeId = KeyTypeId(*b"acco");
	/// Key type for Aura module, built-in. Identified as `aura`.
	pub const AURA: KeyTypeId = KeyTypeId(*b"aura");
	/// Key type for BEEFY module.
	pub const BEEFY: KeyTypeId = KeyTypeId(*b"beef");
	/// Key type for ImOnline module, built-in. Identified as `imon`.
	pub const IM_ONLINE: KeyTypeId = KeyTypeId(*b"imon");
	/// Key type for AuthorityDiscovery module, built-in. Identified as `audi`.
	pub const AUTHORITY_DISCOVERY: KeyTypeId = KeyTypeId(*b"audi");
	/// Key type for staking, built-in. Identified as `stak`.
	pub const STAKING: KeyTypeId = KeyTypeId(*b"stak");
	/// A key type for signing statements
	pub const STATEMENT: KeyTypeId = KeyTypeId(*b"stmt");
	/// Key type for Mixnet module, used to sign key-exchange public keys. Identified as `mixn`.
	pub const MIXNET: KeyTypeId = KeyTypeId(*b"mixn");
	/// A key type ID useful for tests.
	pub const DUMMY: KeyTypeId = KeyTypeId(*b"dumy");
}

/// Create random values of `Self` given a stream of entropy.
pub trait FromEntropy: Sized {
	/// Create a random value of `Self` given a stream of random bytes on `input`. May only fail if
	/// `input` has an error.
	fn from_entropy(input: &mut impl codec::Input) -> Result<Self, codec::Error>;
}

impl FromEntropy for bool {
	fn from_entropy(input: &mut impl codec::Input) -> Result<Self, codec::Error> {
		Ok(input.read_byte()? % 2 == 1)
	}
}

/// Create the unit type for any given input.
impl FromEntropy for () {
	fn from_entropy(_: &mut impl codec::Input) -> Result<Self, codec::Error> {
		Ok(())
	}
}

macro_rules! impl_from_entropy {
	($type:ty , $( $others:tt )*) => {
		impl_from_entropy!($type);
		impl_from_entropy!($( $others )*);
	};
	($type:ty) => {
		impl FromEntropy for $type {
			fn from_entropy(input: &mut impl codec::Input) -> Result<Self, codec::Error> {
				<Self as codec::Decode>::decode(input)
			}
		}
	}
}

macro_rules! impl_from_entropy_base {
	($type:ty , $( $others:tt )*) => {
		impl_from_entropy_base!($type);
		impl_from_entropy_base!($( $others )*);
	};
	($type:ty) => {
		impl_from_entropy!($type,
			[$type; 1], [$type; 2], [$type; 3], [$type; 4], [$type; 5], [$type; 6], [$type; 7], [$type; 8],
			[$type; 9], [$type; 10], [$type; 11], [$type; 12], [$type; 13], [$type; 14], [$type; 15], [$type; 16],
			[$type; 17], [$type; 18], [$type; 19], [$type; 20], [$type; 21], [$type; 22], [$type; 23], [$type; 24],
			[$type; 25], [$type; 26], [$type; 27], [$type; 28], [$type; 29], [$type; 30], [$type; 31], [$type; 32],
			[$type; 36], [$type; 40], [$type; 44], [$type; 48], [$type; 56], [$type; 64], [$type; 72], [$type; 80],
			[$type; 96], [$type; 112], [$type; 128], [$type; 160], [$type; 177], [$type; 192], [$type; 224], [$type; 256]
		);
	}
}

impl_from_entropy_base!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128);

#[cfg(test)]
mod tests {
	use super::*;
	use crate::DeriveJunction;

	struct TestCryptoTag;

	#[derive(Clone, Eq, PartialEq, Debug)]
	enum TestPair {
		Generated,
		GeneratedWithPhrase,
		GeneratedFromPhrase { phrase: String, password: Option<String> },
		Standard { phrase: String, password: Option<String>, path: Vec<DeriveJunction> },
		Seed(Vec<u8>),
	}

	impl Default for TestPair {
		fn default() -> Self {
			TestPair::Generated
		}
	}

	impl CryptoType for TestPair {
		type Pair = Self;
	}

	type TestPublic = PublicBytes<0, TestCryptoTag>;

	impl CryptoType for TestPublic {
		type Pair = TestPair;
	}

	type TestSignature = SignatureBytes<0, TestCryptoTag>;

	impl CryptoType for TestSignature {
		type Pair = TestPair;
	}

	impl Pair for TestPair {
		type Public = TestPublic;
		type Seed = [u8; 8];
		type Signature = TestSignature;

		fn generate() -> (Self, <Self as Pair>::Seed) {
			(TestPair::Generated, [0u8; 8])
		}

		fn generate_with_phrase(_password: Option<&str>) -> (Self, String, <Self as Pair>::Seed) {
			(TestPair::GeneratedWithPhrase, "".into(), [0u8; 8])
		}

		fn from_phrase(
			phrase: &str,
			password: Option<&str>,
		) -> Result<(Self, <Self as Pair>::Seed), SecretStringError> {
			Ok((
				TestPair::GeneratedFromPhrase {
					phrase: phrase.to_owned(),
					password: password.map(Into::into),
				},
				[0u8; 8],
			))
		}

		fn derive<Iter: Iterator<Item = DeriveJunction>>(
			&self,
			path_iter: Iter,
			_: Option<[u8; 8]>,
		) -> Result<(Self, Option<[u8; 8]>), DeriveError> {
			Ok((
				match self.clone() {
					TestPair::Standard { phrase, password, path } => TestPair::Standard {
						phrase,
						password,
						path: path.into_iter().chain(path_iter).collect(),
					},
					TestPair::GeneratedFromPhrase { phrase, password } =>
						TestPair::Standard { phrase, password, path: path_iter.collect() },
					x =>
						if path_iter.count() == 0 {
							x
						} else {
							return Err(DeriveError::SoftKeyInPath)
						},
				},
				None,
			))
		}

		fn sign(&self, _message: &[u8]) -> Self::Signature {
			TestSignature::default()
		}

		fn verify<M: AsRef<[u8]>>(_: &Self::Signature, _: M, _: &Self::Public) -> bool {
			true
		}

		fn public(&self) -> Self::Public {
			TestPublic::default()
		}

		fn from_seed_slice(seed: &[u8]) -> Result<Self, SecretStringError> {
			Ok(TestPair::Seed(seed.to_owned()))
		}

		fn to_raw_vec(&self) -> Vec<u8> {
			vec![]
		}
	}

	#[test]
	fn interpret_std_seed_should_work() {
		assert_eq!(
			TestPair::from_string("0x0123456789abcdef", None),
			Ok(TestPair::Seed(array_bytes::hex2bytes_unchecked("0123456789abcdef")))
		);
	}

	#[test]
	fn password_override_should_work() {
		assert_eq!(
			TestPair::from_string("hello world///password", None),
			TestPair::from_string("hello world", Some("password")),
		);
		assert_eq!(
			TestPair::from_string("hello world///password", None),
			TestPair::from_string("hello world///other password", Some("password")),
		);
	}

	#[test]
	fn interpret_std_secret_string_should_work() {
		assert_eq!(
			TestPair::from_string("hello world", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world/1", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::soft(1)]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world/DOT", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::soft("DOT")]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world/0123456789012345678901234567890123456789", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::soft("0123456789012345678901234567890123456789")]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world//1", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::hard(1)]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world//DOT", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::hard("DOT")]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world//0123456789012345678901234567890123456789", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::hard("0123456789012345678901234567890123456789")]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world//1/DOT", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::hard(1), DeriveJunction::soft("DOT")]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world//DOT/1", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: None,
				path: vec![DeriveJunction::hard("DOT"), DeriveJunction::soft(1)]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world///password", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: Some("password".to_owned()),
				path: vec![]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world//1/DOT///password", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: Some("password".to_owned()),
				path: vec![DeriveJunction::hard(1), DeriveJunction::soft("DOT")]
			})
		);
		assert_eq!(
			TestPair::from_string("hello world/1//DOT///password", None),
			Ok(TestPair::Standard {
				phrase: "hello world".to_owned(),
				password: Some("password".to_owned()),
				path: vec![DeriveJunction::soft(1), DeriveJunction::hard("DOT")]
			})
		);
	}

	#[test]
	fn accountid_32_from_str_works() {
		use std::str::FromStr;
		assert!(AccountId32::from_str("5G9VdMwXvzza9pS8qE8ZHJk3CheHW9uucBn9ngW4C1gmmzpv").is_ok());
		assert!(AccountId32::from_str(
			"5c55177d67b064bb5d189a3e1ddad9bc6646e02e64d6e308f5acbb1533ac430d"
		)
		.is_ok());
		assert!(AccountId32::from_str(
			"0x5c55177d67b064bb5d189a3e1ddad9bc6646e02e64d6e308f5acbb1533ac430d"
		)
		.is_ok());

		assert_eq!(
			AccountId32::from_str("99G9VdMwXvzza9pS8qE8ZHJk3CheHW9uucBn9ngW4C1gmmzpv").unwrap_err(),
			"invalid ss58 address.",
		);
		assert_eq!(
			AccountId32::from_str(
				"gc55177d67b064bb5d189a3e1ddad9bc6646e02e64d6e308f5acbb1533ac430d"
			)
			.unwrap_err(),
			"invalid hex address.",
		);
		assert_eq!(
			AccountId32::from_str(
				"0xgc55177d67b064bb5d189a3e1ddad9bc6646e02e64d6e308f5acbb1533ac430d"
			)
			.unwrap_err(),
			"invalid hex address.",
		);

		// valid hex but invalid length will be treated as ss58.
		assert_eq!(
			AccountId32::from_str(
				"55c55177d67b064bb5d189a3e1ddad9bc6646e02e64d6e308f5acbb1533ac430d"
			)
			.unwrap_err(),
			"invalid ss58 address.",
		);
	}
}