1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Primitives for the runtime modules.

use crate::{
	generic::Digest,
	scale_info::{MetaType, StaticTypeInfo, TypeInfo},
	transaction_validity::{
		TransactionSource, TransactionValidity, TransactionValidityError, UnknownTransaction,
		ValidTransaction,
	},
	DispatchResult,
};
use alloc::vec::Vec;
use codec::{Codec, Decode, Encode, EncodeLike, FullCodec, MaxEncodedLen};
#[doc(hidden)]
pub use core::{fmt::Debug, marker::PhantomData};
use impl_trait_for_tuples::impl_for_tuples;
#[cfg(feature = "serde")]
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use sp_application_crypto::AppCrypto;
pub use sp_arithmetic::traits::{
	checked_pow, ensure_pow, AtLeast32Bit, AtLeast32BitUnsigned, Bounded, CheckedAdd, CheckedDiv,
	CheckedMul, CheckedShl, CheckedShr, CheckedSub, Ensure, EnsureAdd, EnsureAddAssign, EnsureDiv,
	EnsureDivAssign, EnsureFixedPointNumber, EnsureFrom, EnsureInto, EnsureMul, EnsureMulAssign,
	EnsureOp, EnsureOpAssign, EnsureSub, EnsureSubAssign, IntegerSquareRoot, One,
	SaturatedConversion, Saturating, UniqueSaturatedFrom, UniqueSaturatedInto, Zero,
};
use sp_core::{self, storage::StateVersion, Hasher, RuntimeDebug, TypeId, U256};
#[doc(hidden)]
pub use sp_core::{
	parameter_types, ConstBool, ConstI128, ConstI16, ConstI32, ConstI64, ConstI8, ConstU128,
	ConstU16, ConstU32, ConstU64, ConstU8, Get, GetDefault, TryCollect, TypedGet,
};
#[cfg(feature = "std")]
use std::fmt::Display;
#[cfg(feature = "std")]
use std::str::FromStr;

/// A lazy value.
pub trait Lazy<T: ?Sized> {
	/// Get a reference to the underlying value.
	///
	/// This will compute the value if the function is invoked for the first time.
	fn get(&mut self) -> &T;
}

impl<'a> Lazy<[u8]> for &'a [u8] {
	fn get(&mut self) -> &[u8] {
		self
	}
}

/// Some type that is able to be collapsed into an account ID. It is not possible to recreate the
/// original value from the account ID.
pub trait IdentifyAccount {
	/// The account ID that this can be transformed into.
	type AccountId;
	/// Transform into an account.
	fn into_account(self) -> Self::AccountId;
}

impl IdentifyAccount for sp_core::ed25519::Public {
	type AccountId = Self;
	fn into_account(self) -> Self {
		self
	}
}

impl IdentifyAccount for sp_core::sr25519::Public {
	type AccountId = Self;
	fn into_account(self) -> Self {
		self
	}
}

impl IdentifyAccount for sp_core::ecdsa::Public {
	type AccountId = Self;
	fn into_account(self) -> Self {
		self
	}
}

/// Means of signature verification.
pub trait Verify {
	/// Type of the signer.
	type Signer: IdentifyAccount;
	/// Verify a signature.
	///
	/// Return `true` if signature is valid for the value.
	fn verify<L: Lazy<[u8]>>(
		&self,
		msg: L,
		signer: &<Self::Signer as IdentifyAccount>::AccountId,
	) -> bool;
}

impl Verify for sp_core::ed25519::Signature {
	type Signer = sp_core::ed25519::Public;

	fn verify<L: Lazy<[u8]>>(&self, mut msg: L, signer: &sp_core::ed25519::Public) -> bool {
		sp_io::crypto::ed25519_verify(self, msg.get(), signer)
	}
}

impl Verify for sp_core::sr25519::Signature {
	type Signer = sp_core::sr25519::Public;

	fn verify<L: Lazy<[u8]>>(&self, mut msg: L, signer: &sp_core::sr25519::Public) -> bool {
		sp_io::crypto::sr25519_verify(self, msg.get(), signer)
	}
}

impl Verify for sp_core::ecdsa::Signature {
	type Signer = sp_core::ecdsa::Public;
	fn verify<L: Lazy<[u8]>>(&self, mut msg: L, signer: &sp_core::ecdsa::Public) -> bool {
		match sp_io::crypto::secp256k1_ecdsa_recover_compressed(
			self.as_ref(),
			&sp_io::hashing::blake2_256(msg.get()),
		) {
			Ok(pubkey) => signer.0 == pubkey,
			_ => false,
		}
	}
}

/// Means of signature verification of an application key.
pub trait AppVerify {
	/// Type of the signer.
	type AccountId;
	/// Verify a signature. Return `true` if signature is valid for the value.
	fn verify<L: Lazy<[u8]>>(&self, msg: L, signer: &Self::AccountId) -> bool;
}

impl<
		S: Verify<Signer = <<T as AppCrypto>::Public as sp_application_crypto::AppPublic>::Generic>
			+ From<T>,
		T: sp_application_crypto::Wraps<Inner = S>
			+ sp_application_crypto::AppCrypto
			+ sp_application_crypto::AppSignature
			+ AsRef<S>
			+ AsMut<S>
			+ From<S>,
	> AppVerify for T
where
	<S as Verify>::Signer: IdentifyAccount<AccountId = <S as Verify>::Signer>,
	<<T as AppCrypto>::Public as sp_application_crypto::AppPublic>::Generic: IdentifyAccount<
		AccountId = <<T as AppCrypto>::Public as sp_application_crypto::AppPublic>::Generic,
	>,
{
	type AccountId = <T as AppCrypto>::Public;
	fn verify<L: Lazy<[u8]>>(&self, msg: L, signer: &<T as AppCrypto>::Public) -> bool {
		use sp_application_crypto::IsWrappedBy;
		let inner: &S = self.as_ref();
		let inner_pubkey =
			<<T as AppCrypto>::Public as sp_application_crypto::AppPublic>::Generic::from_ref(
				signer,
			);
		Verify::verify(inner, msg, inner_pubkey)
	}
}

/// An error type that indicates that the origin is invalid.
#[derive(Encode, Decode, RuntimeDebug)]
pub struct BadOrigin;

impl From<BadOrigin> for &'static str {
	fn from(_: BadOrigin) -> &'static str {
		"Bad origin"
	}
}

/// An error that indicates that a lookup failed.
#[derive(Encode, Decode, RuntimeDebug)]
pub struct LookupError;

impl From<LookupError> for &'static str {
	fn from(_: LookupError) -> &'static str {
		"Can not lookup"
	}
}

impl From<LookupError> for TransactionValidityError {
	fn from(_: LookupError) -> Self {
		UnknownTransaction::CannotLookup.into()
	}
}

/// Means of changing one type into another in a manner dependent on the source type.
pub trait Lookup {
	/// Type to lookup from.
	type Source;
	/// Type to lookup into.
	type Target;
	/// Attempt a lookup.
	fn lookup(&self, s: Self::Source) -> Result<Self::Target, LookupError>;
}

/// Means of changing one type into another in a manner dependent on the source type.
/// This variant is different to `Lookup` in that it doesn't (can cannot) require any
/// context.
pub trait StaticLookup {
	/// Type to lookup from.
	type Source: Codec + Clone + PartialEq + Debug + TypeInfo;
	/// Type to lookup into.
	type Target;
	/// Attempt a lookup.
	fn lookup(s: Self::Source) -> Result<Self::Target, LookupError>;
	/// Convert from Target back to Source.
	fn unlookup(t: Self::Target) -> Self::Source;
}

/// A lookup implementation returning the input value.
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct IdentityLookup<T>(PhantomData<T>);
impl<T: Codec + Clone + PartialEq + Debug + TypeInfo> StaticLookup for IdentityLookup<T> {
	type Source = T;
	type Target = T;
	fn lookup(x: T) -> Result<T, LookupError> {
		Ok(x)
	}
	fn unlookup(x: T) -> T {
		x
	}
}

impl<T> Lookup for IdentityLookup<T> {
	type Source = T;
	type Target = T;
	fn lookup(&self, x: T) -> Result<T, LookupError> {
		Ok(x)
	}
}

/// A lookup implementation returning the `AccountId` from a `MultiAddress`.
pub struct AccountIdLookup<AccountId, AccountIndex>(PhantomData<(AccountId, AccountIndex)>);
impl<AccountId, AccountIndex> StaticLookup for AccountIdLookup<AccountId, AccountIndex>
where
	AccountId: Codec + Clone + PartialEq + Debug,
	AccountIndex: Codec + Clone + PartialEq + Debug,
	crate::MultiAddress<AccountId, AccountIndex>: Codec + StaticTypeInfo,
{
	type Source = crate::MultiAddress<AccountId, AccountIndex>;
	type Target = AccountId;
	fn lookup(x: Self::Source) -> Result<Self::Target, LookupError> {
		match x {
			crate::MultiAddress::Id(i) => Ok(i),
			_ => Err(LookupError),
		}
	}
	fn unlookup(x: Self::Target) -> Self::Source {
		crate::MultiAddress::Id(x)
	}
}

/// Perform a StaticLookup where there are multiple lookup sources of the same type.
impl<A, B> StaticLookup for (A, B)
where
	A: StaticLookup,
	B: StaticLookup<Source = A::Source, Target = A::Target>,
{
	type Source = A::Source;
	type Target = A::Target;

	fn lookup(x: Self::Source) -> Result<Self::Target, LookupError> {
		A::lookup(x.clone()).or_else(|_| B::lookup(x))
	}
	fn unlookup(x: Self::Target) -> Self::Source {
		A::unlookup(x)
	}
}

/// Extensible conversion trait. Generic over only source type, with destination type being
/// associated.
pub trait Morph<A> {
	/// The type into which `A` is mutated.
	type Outcome;

	/// Make conversion.
	fn morph(a: A) -> Self::Outcome;
}

/// A structure that performs identity conversion.
impl<T> Morph<T> for Identity {
	type Outcome = T;
	fn morph(a: T) -> T {
		a
	}
}

/// Extensible conversion trait. Generic over only source type, with destination type being
/// associated.
pub trait TryMorph<A> {
	/// The type into which `A` is mutated.
	type Outcome;

	/// Make conversion.
	fn try_morph(a: A) -> Result<Self::Outcome, ()>;
}

/// A structure that performs identity conversion.
impl<T> TryMorph<T> for Identity {
	type Outcome = T;
	fn try_morph(a: T) -> Result<T, ()> {
		Ok(a)
	}
}

/// Implementation of `Morph` which converts between types using `Into`.
pub struct MorphInto<T>(core::marker::PhantomData<T>);
impl<T, A: Into<T>> Morph<A> for MorphInto<T> {
	type Outcome = T;
	fn morph(a: A) -> T {
		a.into()
	}
}

/// Implementation of `TryMorph` which attempts to convert between types using `TryInto`.
pub struct TryMorphInto<T>(core::marker::PhantomData<T>);
impl<T, A: TryInto<T>> TryMorph<A> for TryMorphInto<T> {
	type Outcome = T;
	fn try_morph(a: A) -> Result<T, ()> {
		a.try_into().map_err(|_| ())
	}
}

/// Implementation of `Morph` to retrieve just the first element of a tuple.
pub struct TakeFirst;
impl<T1> Morph<(T1,)> for TakeFirst {
	type Outcome = T1;
	fn morph(a: (T1,)) -> T1 {
		a.0
	}
}
impl<T1, T2> Morph<(T1, T2)> for TakeFirst {
	type Outcome = T1;
	fn morph(a: (T1, T2)) -> T1 {
		a.0
	}
}
impl<T1, T2, T3> Morph<(T1, T2, T3)> for TakeFirst {
	type Outcome = T1;
	fn morph(a: (T1, T2, T3)) -> T1 {
		a.0
	}
}
impl<T1, T2, T3, T4> Morph<(T1, T2, T3, T4)> for TakeFirst {
	type Outcome = T1;
	fn morph(a: (T1, T2, T3, T4)) -> T1 {
		a.0
	}
}

/// Create a `Morph` and/or `TryMorph` impls with a simple closure-like expression.
///
/// # Examples
///
/// ```
/// # use sp_runtime::{morph_types, traits::{Morph, TryMorph, TypedGet, ConstU32}};
/// # use sp_arithmetic::traits::CheckedSub;
///
/// morph_types! {
///    /// Replace by some other value; produce both `Morph` and `TryMorph` implementations
///    pub type Replace<V: TypedGet> = |_| -> V::Type { V::get() };
///    /// A private `Morph` implementation to reduce a `u32` by 10.
///    type ReduceU32ByTen: Morph = |r: u32| -> u32 { r - 10 };
///    /// A `TryMorph` implementation to reduce a scalar by a particular amount, checking for
///    /// underflow.
///    pub type CheckedReduceBy<N: TypedGet>: TryMorph = |r: N::Type| -> Result<N::Type, ()> {
///        r.checked_sub(&N::get()).ok_or(())
///    } where N::Type: CheckedSub;
/// }
///
/// trait Config {
///    type TestMorph1: Morph<u32>;
///    type TestTryMorph1: TryMorph<u32>;
///    type TestMorph2: Morph<u32>;
///    type TestTryMorph2: TryMorph<u32>;
/// }
///
/// struct Runtime;
/// impl Config for Runtime {
///    type TestMorph1 = Replace<ConstU32<42>>;
///    type TestTryMorph1 = Replace<ConstU32<42>>;
///    type TestMorph2 = ReduceU32ByTen;
///    type TestTryMorph2 = CheckedReduceBy<ConstU32<10>>;
/// }
/// ```
#[macro_export]
macro_rules! morph_types {
	(
		@DECL $( #[doc = $doc:expr] )* $vq:vis $name:ident ()
	) => {
		$( #[doc = $doc] )* $vq struct $name;
	};
	(
		@DECL $( #[doc = $doc:expr] )* $vq:vis $name:ident ( $( $bound_id:ident ),+ )
	) => {
		$( #[doc = $doc] )*
		$vq struct $name < $($bound_id,)* > ( $crate::traits::PhantomData< ( $($bound_id,)* ) > ) ;
	};
	(
		@IMPL $name:ty : ( $( $bounds:tt )* ) ( $( $where:tt )* )
		= |$var:ident: $var_type:ty| -> $outcome:ty { $( $ex:expr )* }
	) => {
		impl<$($bounds)*> $crate::traits::Morph<$var_type> for $name $( $where )? {
			type Outcome = $outcome;
			fn morph($var: $var_type) -> Self::Outcome { $( $ex )* }
		}
	};
	(
		@IMPL_TRY $name:ty : ( $( $bounds:tt )* ) ( $( $where:tt )* )
		= |$var:ident: $var_type:ty| -> $outcome:ty { $( $ex:expr )* }
	) => {
		impl<$($bounds)*> $crate::traits::TryMorph<$var_type> for $name $( $where )? {
			type Outcome = $outcome;
			fn try_morph($var: $var_type) -> Result<Self::Outcome, ()> { $( $ex )* }
		}
	};
	(
		@IMPL $name:ty : () ( $( $where:tt )* )
		= |$var:ident: $var_type:ty| -> $outcome:ty { $( $ex:expr )* }
	) => {
		impl $crate::traits::Morph<$var_type> for $name $( $where )? {
			type Outcome = $outcome;
			fn morph($var: $var_type) -> Self::Outcome { $( $ex )* }
		}
	};
	(
		@IMPL_TRY $name:ty : () ( $( $where:tt )* )
		= |$var:ident: $var_type:ty| -> $outcome:ty { $( $ex:expr )* }
	) => {
		impl $crate::traits::TryMorph<$var_type> for $name $( $where )? {
			type Outcome = $outcome;
			fn try_morph($var: $var_type) -> Result<Self::Outcome, ()> { $( $ex )* }
		}
	};
	(
		@IMPL_BOTH $name:ty : ( $( $bounds:tt )* ) ( $( $where:tt )* )
		= |$var:ident: $var_type:ty| -> $outcome:ty { $( $ex:expr )* }
	) => {
		morph_types! {
			@IMPL $name : ($($bounds)*) ($($where)*)
			= |$var: $var_type| -> $outcome { $( $ex )* }
		}
		morph_types! {
			@IMPL_TRY $name : ($($bounds)*) ($($where)*)
			= |$var: $var_type| -> $outcome { Ok({$( $ex )*}) }
		}
	};

	(
		$( #[doc = $doc:expr] )* $vq:vis type $name:ident
		$( < $( $bound_id:ident $( : $bound_head:path $( | $bound_tail:path )* )? ),+ > )?
		$(: $type:tt)?
		= |_| -> $outcome:ty { $( $ex:expr )* };
		$( $rest:tt )*
	) => {
		morph_types! {
			$( #[doc = $doc] )* $vq type $name
			$( < $( $bound_id $( : $bound_head $( | $bound_tail )* )? ),+ > )?
			EXTRA_GENERIC(X)
			$(: $type)?
			= |_x: X| -> $outcome { $( $ex )* };
			$( $rest )*
		}
	};
	(
		$( #[doc = $doc:expr] )* $vq:vis type $name:ident
		$( < $( $bound_id:ident $( : $bound_head:path $( | $bound_tail:path )* )? ),+ > )?
		$( EXTRA_GENERIC ($extra:ident) )?
		= |$var:ident: $var_type:ty| -> $outcome:ty { $( $ex:expr )* }
		$( where $( $where_path:ty : $where_bound_head:path $( | $where_bound_tail:path )* ),* )?;
		$( $rest:tt )*
	) => {
		morph_types! { @DECL $( #[doc = $doc] )* $vq $name ( $( $( $bound_id ),+ )? ) }
		morph_types! {
			@IMPL_BOTH $name $( < $( $bound_id ),* > )? :
			( $( $( $bound_id $( : $bound_head $( + $bound_tail )* )? , )+ )? $( $extra )? )
			( $( where $( $where_path : $where_bound_head $( + $where_bound_tail )* ),* )? )
			= |$var: $var_type| -> $outcome { $( $ex )* }
		}
		morph_types!{ $($rest)* }
	};
	(
		$( #[doc = $doc:expr] )* $vq:vis type $name:ident
		$( < $( $bound_id:ident $( : $bound_head:path $( | $bound_tail:path )* )? ),+ > )?
		$( EXTRA_GENERIC ($extra:ident) )?
		: Morph
		= |$var:ident: $var_type:ty| -> $outcome:ty { $( $ex:expr )* }
		$( where $( $where_path:ty : $where_bound_head:path $( | $where_bound_tail:path )* ),* )?;
		$( $rest:tt )*
	) => {
		morph_types! { @DECL $( #[doc = $doc] )* $vq $name ( $( $( $bound_id ),+ )? ) }
		morph_types! {
			@IMPL $name $( < $( $bound_id ),* > )? :
			( $( $( $bound_id $( : $bound_head $( + $bound_tail )* )? , )+ )? $( $extra )? )
			( $( where $( $where_path : $where_bound_head $( + $where_bound_tail )* ),* )? )
			= |$var: $var_type| -> $outcome { $( $ex )* }
		}
		morph_types!{ $($rest)* }
	};
	(
		$( #[doc = $doc:expr] )* $vq:vis type $name:ident
		$( < $( $bound_id:ident $( : $bound_head:path $( | $bound_tail:path )* )? ),+ > )?
		$( EXTRA_GENERIC ($extra:ident) )?
		: TryMorph
		= |$var:ident: $var_type:ty| -> Result<$outcome:ty, ()> { $( $ex:expr )* }
		$( where $( $where_path:ty : $where_bound_head:path $( | $where_bound_tail:path )* ),* )?;
		$( $rest:tt )*
	) => {
		morph_types! { @DECL $( #[doc = $doc] )* $vq $name ( $( $( $bound_id ),+ )? ) }
		morph_types! {
			@IMPL_TRY $name $( < $( $bound_id ),* > )? :
			( $( $( $bound_id $( : $bound_head $( + $bound_tail )* )? , )+ )? $( $extra )? )
			( $( where $( $where_path : $where_bound_head $( + $where_bound_tail )* ),* )? )
			= |$var: $var_type| -> $outcome { $( $ex )* }
		}
		morph_types!{ $($rest)* }
	};
	() => {}
}

morph_types! {
	/// Morpher to disregard the source value and replace with another.
	pub type Replace<V: TypedGet> = |_| -> V::Type { V::get() };

	/// Morpher to disregard the source value and replace with the default of `V`.
	pub type ReplaceWithDefault<V: Default> = |_| -> V { Default::default() };

	/// Mutator which reduces a scalar by a particular amount.
	pub type ReduceBy<N: TypedGet> = |r: N::Type| -> N::Type {
		r.checked_sub(&N::get()).unwrap_or(Zero::zero())
	} where N::Type: CheckedSub | Zero;

	/// A `TryMorph` implementation to reduce a scalar by a particular amount, checking for
	/// underflow.
	pub type CheckedReduceBy<N: TypedGet>: TryMorph = |r: N::Type| -> Result<N::Type, ()> {
		r.checked_sub(&N::get()).ok_or(())
	} where N::Type: CheckedSub;

	/// A `TryMorph` implementation to enforce an upper limit for a result of the outer morphed type.
	pub type MorphWithUpperLimit<L: TypedGet, M>: TryMorph = |r: L::Type| -> Result<L::Type, ()> {
		M::try_morph(r).map(|m| m.min(L::get()))
	} where L::Type: Ord, M: TryMorph<L::Type, Outcome = L::Type>;
}

/// Infallible conversion trait. Generic over both source and destination types.
pub trait Convert<A, B> {
	/// Make conversion.
	fn convert(a: A) -> B;
}

impl<A, B: Default> Convert<A, B> for () {
	fn convert(_: A) -> B {
		Default::default()
	}
}

/// Reversing infallible conversion trait. Generic over both source and destination types.
///
/// This specifically reverses the conversion.
pub trait ConvertBack<A, B>: Convert<A, B> {
	/// Make conversion back.
	fn convert_back(b: B) -> A;
}

/// Fallible conversion trait returning an [Option]. Generic over both source and destination types.
pub trait MaybeConvert<A, B> {
	/// Attempt to make conversion.
	fn maybe_convert(a: A) -> Option<B>;
}

#[impl_trait_for_tuples::impl_for_tuples(30)]
impl<A: Clone, B> MaybeConvert<A, B> for Tuple {
	fn maybe_convert(a: A) -> Option<B> {
		for_tuples!( #(
			match Tuple::maybe_convert(a.clone()) {
				Some(b) => return Some(b),
				None => {},
			}
		)* );
		None
	}
}

/// Reversing fallible conversion trait returning an [Option]. Generic over both source and
/// destination types.
pub trait MaybeConvertBack<A, B>: MaybeConvert<A, B> {
	/// Attempt to make conversion back.
	fn maybe_convert_back(b: B) -> Option<A>;
}

#[impl_trait_for_tuples::impl_for_tuples(30)]
impl<A: Clone, B: Clone> MaybeConvertBack<A, B> for Tuple {
	fn maybe_convert_back(b: B) -> Option<A> {
		for_tuples!( #(
			match Tuple::maybe_convert_back(b.clone()) {
				Some(a) => return Some(a),
				None => {},
			}
		)* );
		None
	}
}

/// Fallible conversion trait which returns the argument in the case of being unable to convert.
/// Generic over both source and destination types.
pub trait TryConvert<A, B> {
	/// Attempt to make conversion. If returning [Result::Err], the inner must always be `a`.
	fn try_convert(a: A) -> Result<B, A>;
}

#[impl_trait_for_tuples::impl_for_tuples(30)]
impl<A, B> TryConvert<A, B> for Tuple {
	fn try_convert(a: A) -> Result<B, A> {
		for_tuples!( #(
			let a = match Tuple::try_convert(a) {
				Ok(b) => return Ok(b),
				Err(a) => a,
			};
		)* );
		Err(a)
	}
}

/// Reversing fallible conversion trait which returns the argument in the case of being unable to
/// convert back. Generic over both source and destination types.
pub trait TryConvertBack<A, B>: TryConvert<A, B> {
	/// Attempt to make conversion back. If returning [Result::Err], the inner must always be `b`.

	fn try_convert_back(b: B) -> Result<A, B>;
}

#[impl_trait_for_tuples::impl_for_tuples(30)]
impl<A, B> TryConvertBack<A, B> for Tuple {
	fn try_convert_back(b: B) -> Result<A, B> {
		for_tuples!( #(
			let b = match Tuple::try_convert_back(b) {
				Ok(a) => return Ok(a),
				Err(b) => b,
			};
		)* );
		Err(b)
	}
}

/// Definition for a bi-directional, fallible conversion between two types.
pub trait MaybeEquivalence<A, B> {
	/// Attempt to convert reference of `A` into value of `B`, returning `None` if not possible.
	fn convert(a: &A) -> Option<B>;
	/// Attempt to convert reference of `B` into value of `A`, returning `None` if not possible.
	fn convert_back(b: &B) -> Option<A>;
}

#[impl_trait_for_tuples::impl_for_tuples(30)]
impl<A, B> MaybeEquivalence<A, B> for Tuple {
	fn convert(a: &A) -> Option<B> {
		for_tuples!( #(
			match Tuple::convert(a) {
				Some(b) => return Some(b),
				None => {},
			}
		)* );
		None
	}
	fn convert_back(b: &B) -> Option<A> {
		for_tuples!( #(
			match Tuple::convert_back(b) {
				Some(a) => return Some(a),
				None => {},
			}
		)* );
		None
	}
}

/// Adapter which turns a [Get] implementation into a [Convert] implementation which always returns
/// in the same value no matter the input.
pub struct ConvertToValue<T>(core::marker::PhantomData<T>);
impl<X, Y, T: Get<Y>> Convert<X, Y> for ConvertToValue<T> {
	fn convert(_: X) -> Y {
		T::get()
	}
}
impl<X, Y, T: Get<Y>> MaybeConvert<X, Y> for ConvertToValue<T> {
	fn maybe_convert(_: X) -> Option<Y> {
		Some(T::get())
	}
}
impl<X, Y, T: Get<Y>> MaybeConvertBack<X, Y> for ConvertToValue<T> {
	fn maybe_convert_back(_: Y) -> Option<X> {
		None
	}
}
impl<X, Y, T: Get<Y>> TryConvert<X, Y> for ConvertToValue<T> {
	fn try_convert(_: X) -> Result<Y, X> {
		Ok(T::get())
	}
}
impl<X, Y, T: Get<Y>> TryConvertBack<X, Y> for ConvertToValue<T> {
	fn try_convert_back(y: Y) -> Result<X, Y> {
		Err(y)
	}
}
impl<X, Y, T: Get<Y>> MaybeEquivalence<X, Y> for ConvertToValue<T> {
	fn convert(_: &X) -> Option<Y> {
		Some(T::get())
	}
	fn convert_back(_: &Y) -> Option<X> {
		None
	}
}

/// A structure that performs identity conversion.
pub struct Identity;
impl<T> Convert<T, T> for Identity {
	fn convert(a: T) -> T {
		a
	}
}
impl<T> ConvertBack<T, T> for Identity {
	fn convert_back(a: T) -> T {
		a
	}
}
impl<T> MaybeConvert<T, T> for Identity {
	fn maybe_convert(a: T) -> Option<T> {
		Some(a)
	}
}
impl<T> MaybeConvertBack<T, T> for Identity {
	fn maybe_convert_back(a: T) -> Option<T> {
		Some(a)
	}
}
impl<T> TryConvert<T, T> for Identity {
	fn try_convert(a: T) -> Result<T, T> {
		Ok(a)
	}
}
impl<T> TryConvertBack<T, T> for Identity {
	fn try_convert_back(a: T) -> Result<T, T> {
		Ok(a)
	}
}
impl<T: Clone> MaybeEquivalence<T, T> for Identity {
	fn convert(a: &T) -> Option<T> {
		Some(a.clone())
	}
	fn convert_back(a: &T) -> Option<T> {
		Some(a.clone())
	}
}

/// A structure that performs standard conversion using the standard Rust conversion traits.
pub struct ConvertInto;
impl<A: Into<B>, B> Convert<A, B> for ConvertInto {
	fn convert(a: A) -> B {
		a.into()
	}
}
impl<A: Into<B>, B> MaybeConvert<A, B> for ConvertInto {
	fn maybe_convert(a: A) -> Option<B> {
		Some(a.into())
	}
}
impl<A: Into<B>, B: Into<A>> MaybeConvertBack<A, B> for ConvertInto {
	fn maybe_convert_back(b: B) -> Option<A> {
		Some(b.into())
	}
}
impl<A: Into<B>, B> TryConvert<A, B> for ConvertInto {
	fn try_convert(a: A) -> Result<B, A> {
		Ok(a.into())
	}
}
impl<A: Into<B>, B: Into<A>> TryConvertBack<A, B> for ConvertInto {
	fn try_convert_back(b: B) -> Result<A, B> {
		Ok(b.into())
	}
}
impl<A: Clone + Into<B>, B: Clone + Into<A>> MaybeEquivalence<A, B> for ConvertInto {
	fn convert(a: &A) -> Option<B> {
		Some(a.clone().into())
	}
	fn convert_back(b: &B) -> Option<A> {
		Some(b.clone().into())
	}
}

/// A structure that performs standard conversion using the standard Rust conversion traits.
pub struct TryConvertInto;
impl<A: Clone + TryInto<B>, B> MaybeConvert<A, B> for TryConvertInto {
	fn maybe_convert(a: A) -> Option<B> {
		a.clone().try_into().ok()
	}
}
impl<A: Clone + TryInto<B>, B: Clone + TryInto<A>> MaybeConvertBack<A, B> for TryConvertInto {
	fn maybe_convert_back(b: B) -> Option<A> {
		b.clone().try_into().ok()
	}
}
impl<A: Clone + TryInto<B>, B> TryConvert<A, B> for TryConvertInto {
	fn try_convert(a: A) -> Result<B, A> {
		a.clone().try_into().map_err(|_| a)
	}
}
impl<A: Clone + TryInto<B>, B: Clone + TryInto<A>> TryConvertBack<A, B> for TryConvertInto {
	fn try_convert_back(b: B) -> Result<A, B> {
		b.clone().try_into().map_err(|_| b)
	}
}
impl<A: Clone + TryInto<B>, B: Clone + TryInto<A>> MaybeEquivalence<A, B> for TryConvertInto {
	fn convert(a: &A) -> Option<B> {
		a.clone().try_into().ok()
	}
	fn convert_back(b: &B) -> Option<A> {
		b.clone().try_into().ok()
	}
}

/// Convenience type to work around the highly unergonomic syntax needed
/// to invoke the functions of overloaded generic traits, in this case
/// `TryFrom` and `TryInto`.
pub trait CheckedConversion {
	/// Convert from a value of `T` into an equivalent instance of `Option<Self>`.
	///
	/// This just uses `TryFrom` internally but with this
	/// variant you can provide the destination type using turbofish syntax
	/// in case Rust happens not to assume the correct type.
	fn checked_from<T>(t: T) -> Option<Self>
	where
		Self: TryFrom<T>,
	{
		<Self as TryFrom<T>>::try_from(t).ok()
	}
	/// Consume self to return `Some` equivalent value of `Option<T>`.
	///
	/// This just uses `TryInto` internally but with this
	/// variant you can provide the destination type using turbofish syntax
	/// in case Rust happens not to assume the correct type.
	fn checked_into<T>(self) -> Option<T>
	where
		Self: TryInto<T>,
	{
		<Self as TryInto<T>>::try_into(self).ok()
	}
}
impl<T: Sized> CheckedConversion for T {}

/// Multiply and divide by a number that isn't necessarily the same type. Basically just the same
/// as `Mul` and `Div` except it can be used for all basic numeric types.
pub trait Scale<Other> {
	/// The output type of the product of `self` and `Other`.
	type Output;

	/// @return the product of `self` and `other`.
	fn mul(self, other: Other) -> Self::Output;

	/// @return the integer division of `self` and `other`.
	fn div(self, other: Other) -> Self::Output;

	/// @return the modulo remainder of `self` and `other`.
	fn rem(self, other: Other) -> Self::Output;
}
macro_rules! impl_scale {
	($self:ty, $other:ty) => {
		impl Scale<$other> for $self {
			type Output = Self;
			fn mul(self, other: $other) -> Self::Output {
				self * (other as Self)
			}
			fn div(self, other: $other) -> Self::Output {
				self / (other as Self)
			}
			fn rem(self, other: $other) -> Self::Output {
				self % (other as Self)
			}
		}
	};
}
impl_scale!(u128, u128);
impl_scale!(u128, u64);
impl_scale!(u128, u32);
impl_scale!(u128, u16);
impl_scale!(u128, u8);
impl_scale!(u64, u64);
impl_scale!(u64, u32);
impl_scale!(u64, u16);
impl_scale!(u64, u8);
impl_scale!(u32, u32);
impl_scale!(u32, u16);
impl_scale!(u32, u8);
impl_scale!(u16, u16);
impl_scale!(u16, u8);
impl_scale!(u8, u8);

/// Trait for things that can be clear (have no bits set). For numeric types, essentially the same
/// as `Zero`.
pub trait Clear {
	/// True iff no bits are set.
	fn is_clear(&self) -> bool;

	/// Return the value of Self that is clear.
	fn clear() -> Self;
}

impl<T: Default + Eq + PartialEq> Clear for T {
	fn is_clear(&self) -> bool {
		*self == Self::clear()
	}
	fn clear() -> Self {
		Default::default()
	}
}

/// A meta trait for all bit ops.
pub trait SimpleBitOps:
	Sized
	+ Clear
	+ core::ops::BitOr<Self, Output = Self>
	+ core::ops::BitXor<Self, Output = Self>
	+ core::ops::BitAnd<Self, Output = Self>
{
}
impl<
		T: Sized
			+ Clear
			+ core::ops::BitOr<Self, Output = Self>
			+ core::ops::BitXor<Self, Output = Self>
			+ core::ops::BitAnd<Self, Output = Self>,
	> SimpleBitOps for T
{
}

/// Abstraction around hashing
// Stupid bug in the Rust compiler believes derived
// traits must be fulfilled by all type parameters.
pub trait Hash:
	'static
	+ MaybeSerializeDeserialize
	+ Debug
	+ Clone
	+ Eq
	+ PartialEq
	+ Hasher<Out = <Self as Hash>::Output>
{
	/// The hash type produced.
	type Output: HashOutput;

	/// Produce the hash of some byte-slice.
	fn hash(s: &[u8]) -> Self::Output {
		<Self as Hasher>::hash(s)
	}

	/// Produce the hash of some codec-encodable value.
	fn hash_of<S: Encode>(s: &S) -> Self::Output {
		Encode::using_encoded(s, <Self as Hasher>::hash)
	}

	/// The ordered Patricia tree root of the given `input`.
	fn ordered_trie_root(input: Vec<Vec<u8>>, state_version: StateVersion) -> Self::Output;

	/// The Patricia tree root of the given mapping.
	fn trie_root(input: Vec<(Vec<u8>, Vec<u8>)>, state_version: StateVersion) -> Self::Output;
}

/// Super trait with all the attributes for a hashing output.
pub trait HashOutput:
	Member
	+ MaybeSerializeDeserialize
	+ MaybeDisplay
	+ MaybeFromStr
	+ Debug
	+ core::hash::Hash
	+ AsRef<[u8]>
	+ AsMut<[u8]>
	+ Copy
	+ Ord
	+ Default
	+ Encode
	+ Decode
	+ EncodeLike
	+ MaxEncodedLen
	+ TypeInfo
{
}

impl<T> HashOutput for T where
	T: Member
		+ MaybeSerializeDeserialize
		+ MaybeDisplay
		+ MaybeFromStr
		+ Debug
		+ core::hash::Hash
		+ AsRef<[u8]>
		+ AsMut<[u8]>
		+ Copy
		+ Ord
		+ Default
		+ Encode
		+ Decode
		+ EncodeLike
		+ MaxEncodedLen
		+ TypeInfo
{
}

/// Blake2-256 Hash implementation.
#[derive(PartialEq, Eq, Clone, RuntimeDebug, TypeInfo)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct BlakeTwo256;

impl Hasher for BlakeTwo256 {
	type Out = sp_core::H256;
	type StdHasher = hash256_std_hasher::Hash256StdHasher;
	const LENGTH: usize = 32;

	fn hash(s: &[u8]) -> Self::Out {
		sp_io::hashing::blake2_256(s).into()
	}
}

impl Hash for BlakeTwo256 {
	type Output = sp_core::H256;

	fn ordered_trie_root(input: Vec<Vec<u8>>, version: StateVersion) -> Self::Output {
		sp_io::trie::blake2_256_ordered_root(input, version)
	}

	fn trie_root(input: Vec<(Vec<u8>, Vec<u8>)>, version: StateVersion) -> Self::Output {
		sp_io::trie::blake2_256_root(input, version)
	}
}

/// Keccak-256 Hash implementation.
#[derive(PartialEq, Eq, Clone, RuntimeDebug, TypeInfo)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Keccak256;

impl Hasher for Keccak256 {
	type Out = sp_core::H256;
	type StdHasher = hash256_std_hasher::Hash256StdHasher;
	const LENGTH: usize = 32;

	fn hash(s: &[u8]) -> Self::Out {
		sp_io::hashing::keccak_256(s).into()
	}
}

impl Hash for Keccak256 {
	type Output = sp_core::H256;

	fn ordered_trie_root(input: Vec<Vec<u8>>, version: StateVersion) -> Self::Output {
		sp_io::trie::keccak_256_ordered_root(input, version)
	}

	fn trie_root(input: Vec<(Vec<u8>, Vec<u8>)>, version: StateVersion) -> Self::Output {
		sp_io::trie::keccak_256_root(input, version)
	}
}

/// Something that can be checked for equality and printed out to a debug channel if bad.
pub trait CheckEqual {
	/// Perform the equality check.
	fn check_equal(&self, other: &Self);
}

impl CheckEqual for sp_core::H256 {
	#[cfg(feature = "std")]
	fn check_equal(&self, other: &Self) {
		use sp_core::hexdisplay::HexDisplay;
		if self != other {
			println!(
				"Hash: given={}, expected={}",
				HexDisplay::from(self.as_fixed_bytes()),
				HexDisplay::from(other.as_fixed_bytes()),
			);
		}
	}

	#[cfg(not(feature = "std"))]
	fn check_equal(&self, other: &Self) {
		if self != other {
			"Hash not equal".print();
			self.as_bytes().print();
			other.as_bytes().print();
		}
	}
}

impl CheckEqual for super::generic::DigestItem {
	#[cfg(feature = "std")]
	fn check_equal(&self, other: &Self) {
		if self != other {
			println!("DigestItem: given={:?}, expected={:?}", self, other);
		}
	}

	#[cfg(not(feature = "std"))]
	fn check_equal(&self, other: &Self) {
		if self != other {
			"DigestItem not equal".print();
			(&Encode::encode(self)[..]).print();
			(&Encode::encode(other)[..]).print();
		}
	}
}

sp_core::impl_maybe_marker!(
	/// A type that implements Display when in std environment.
	trait MaybeDisplay: Display;

	/// A type that implements FromStr when in std environment.
	trait MaybeFromStr: FromStr;

	/// A type that implements Hash when in std environment.
	trait MaybeHash: core::hash::Hash;
);

sp_core::impl_maybe_marker_std_or_serde!(
	/// A type that implements Serialize when in std environment or serde feature is activated.
	trait MaybeSerialize: Serialize;

	/// A type that implements Serialize, DeserializeOwned and Debug when in std environment or serde feature is activated.
	trait MaybeSerializeDeserialize: DeserializeOwned, Serialize;
);

/// A type that can be used in runtime structures.
pub trait Member: Send + Sync + Sized + Debug + Eq + PartialEq + Clone + 'static {}
impl<T: Send + Sync + Sized + Debug + Eq + PartialEq + Clone + 'static> Member for T {}

/// Determine if a `MemberId` is a valid member.
pub trait IsMember<MemberId> {
	/// Is the given `MemberId` a valid member?
	fn is_member(member_id: &MemberId) -> bool;
}

/// Super trait with all the attributes for a block number.
pub trait BlockNumber:
	Member
	+ MaybeSerializeDeserialize
	+ MaybeFromStr
	+ Debug
	+ core::hash::Hash
	+ Copy
	+ MaybeDisplay
	+ AtLeast32BitUnsigned
	+ Into<U256>
	+ TryFrom<U256>
	+ Default
	+ TypeInfo
	+ MaxEncodedLen
	+ FullCodec
{
}

impl<
		T: Member
			+ MaybeSerializeDeserialize
			+ MaybeFromStr
			+ Debug
			+ core::hash::Hash
			+ Copy
			+ MaybeDisplay
			+ AtLeast32BitUnsigned
			+ Into<U256>
			+ TryFrom<U256>
			+ Default
			+ TypeInfo
			+ MaxEncodedLen
			+ FullCodec,
	> BlockNumber for T
{
}

/// Something which fulfills the abstract idea of a Substrate header. It has types for a `Number`,
/// a `Hash` and a `Hashing`. It provides access to an `extrinsics_root`, `state_root` and
/// `parent_hash`, as well as a `digest` and a block `number`.
///
/// You can also create a `new` one from those fields.
pub trait Header:
	Clone + Send + Sync + Codec + Eq + MaybeSerialize + Debug + TypeInfo + 'static
{
	/// Header number.
	type Number: BlockNumber;
	/// Header hash type
	type Hash: HashOutput;
	/// Hashing algorithm
	type Hashing: Hash<Output = Self::Hash>;

	/// Creates new header.
	fn new(
		number: Self::Number,
		extrinsics_root: Self::Hash,
		state_root: Self::Hash,
		parent_hash: Self::Hash,
		digest: Digest,
	) -> Self;

	/// Returns a reference to the header number.
	fn number(&self) -> &Self::Number;
	/// Sets the header number.
	fn set_number(&mut self, number: Self::Number);

	/// Returns a reference to the extrinsics root.
	fn extrinsics_root(&self) -> &Self::Hash;
	/// Sets the extrinsic root.
	fn set_extrinsics_root(&mut self, root: Self::Hash);

	/// Returns a reference to the state root.
	fn state_root(&self) -> &Self::Hash;
	/// Sets the state root.
	fn set_state_root(&mut self, root: Self::Hash);

	/// Returns a reference to the parent hash.
	fn parent_hash(&self) -> &Self::Hash;
	/// Sets the parent hash.
	fn set_parent_hash(&mut self, hash: Self::Hash);

	/// Returns a reference to the digest.
	fn digest(&self) -> &Digest;
	/// Get a mutable reference to the digest.
	fn digest_mut(&mut self) -> &mut Digest;

	/// Returns the hash of the header.
	fn hash(&self) -> Self::Hash {
		<Self::Hashing as Hash>::hash_of(self)
	}
}

// Something that provides the Header Type. Only for internal usage and should only be used
// via `HeaderFor` or `BlockNumberFor`.
//
// This is needed to fix the "cyclical" issue in loading Header/BlockNumber as part of a
// `pallet::call`. Essentially, `construct_runtime` aggregates all calls to create a `RuntimeCall`
// that is then used to define `UncheckedExtrinsic`.
// ```ignore
// pub type UncheckedExtrinsic =
// 	generic::UncheckedExtrinsic<Address, RuntimeCall, Signature, SignedExtra>;
// ```
// This `UncheckedExtrinsic` is supplied to the `Block`.
// ```ignore
// pub type Block = generic::Block<Header, UncheckedExtrinsic>;
// ```
// So, if we do not create a trait outside of `Block` that doesn't have `Extrinsic`, we go into a
// recursive loop leading to a build error.
//
// Note that this is a workaround for a compiler bug and should be removed when the compiler
// bug is fixed.
#[doc(hidden)]
pub trait HeaderProvider {
	/// Header type.
	type HeaderT: Header;
}

/// Something which fulfills the abstract idea of a Substrate block. It has types for
/// `Extrinsic` pieces of information as well as a `Header`.
///
/// You can get an iterator over each of the `extrinsics` and retrieve the `header`.
pub trait Block:
	HeaderProvider<HeaderT = <Self as Block>::Header>
	+ Clone
	+ Send
	+ Sync
	+ Codec
	+ Eq
	+ MaybeSerialize
	+ Debug
	+ 'static
{
	/// Type for extrinsics.
	type Extrinsic: Member + Codec + Extrinsic + MaybeSerialize;
	/// Header type.
	type Header: Header<Hash = Self::Hash> + MaybeSerializeDeserialize;
	/// Block hash type.
	type Hash: HashOutput;

	/// Returns a reference to the header.
	fn header(&self) -> &Self::Header;
	/// Returns a reference to the list of extrinsics.
	fn extrinsics(&self) -> &[Self::Extrinsic];
	/// Split the block into header and list of extrinsics.
	fn deconstruct(self) -> (Self::Header, Vec<Self::Extrinsic>);
	/// Creates new block from header and extrinsics.
	fn new(header: Self::Header, extrinsics: Vec<Self::Extrinsic>) -> Self;
	/// Returns the hash of the block.
	fn hash(&self) -> Self::Hash {
		<<Self::Header as Header>::Hashing as Hash>::hash_of(self.header())
	}
	/// Creates an encoded block from the given `header` and `extrinsics` without requiring the
	/// creation of an instance.
	fn encode_from(header: &Self::Header, extrinsics: &[Self::Extrinsic]) -> Vec<u8>;
}

/// Something that acts like an `Extrinsic`.
pub trait Extrinsic: Sized {
	/// The function call.
	type Call: TypeInfo;

	/// The payload we carry for signed extrinsics.
	///
	/// Usually it will contain a `Signature` and
	/// may include some additional data that are specific to signed
	/// extrinsics.
	type SignaturePayload: SignaturePayload;

	/// Is this `Extrinsic` signed?
	/// If no information are available about signed/unsigned, `None` should be returned.
	fn is_signed(&self) -> Option<bool> {
		None
	}

	/// Create new instance of the extrinsic.
	///
	/// Extrinsics can be split into:
	/// 1. Inherents (no signature; created by validators during block production)
	/// 2. Unsigned Transactions (no signature; represent "system calls" or other special kinds of
	/// calls) 3. Signed Transactions (with signature; a regular transactions with known origin)
	fn new(_call: Self::Call, _signed_data: Option<Self::SignaturePayload>) -> Option<Self> {
		None
	}
}

/// Something that acts like a [`SignaturePayload`](Extrinsic::SignaturePayload) of an
/// [`Extrinsic`].
pub trait SignaturePayload {
	/// The type of the address that signed the extrinsic.
	///
	/// Particular to a signed extrinsic.
	type SignatureAddress: TypeInfo;

	/// The signature type of the extrinsic.
	///
	/// Particular to a signed extrinsic.
	type Signature: TypeInfo;

	/// The additional data that is specific to the signed extrinsic.
	///
	/// Particular to a signed extrinsic.
	type SignatureExtra: TypeInfo;
}

impl SignaturePayload for () {
	type SignatureAddress = ();
	type Signature = ();
	type SignatureExtra = ();
}

/// Implementor is an [`Extrinsic`] and provides metadata about this extrinsic.
pub trait ExtrinsicMetadata {
	/// The format version of the `Extrinsic`.
	///
	/// By format is meant the encoded representation of the `Extrinsic`.
	const VERSION: u8;

	/// Signed extensions attached to this `Extrinsic`.
	type SignedExtensions: SignedExtension;
}

/// Extract the hashing type for a block.
pub type HashingFor<B> = <<B as Block>::Header as Header>::Hashing;
/// Extract the number type for a block.
pub type NumberFor<B> = <<B as Block>::Header as Header>::Number;
/// Extract the digest type for a block.

/// A "checkable" piece of information, used by the standard Substrate Executive in order to
/// check the validity of a piece of extrinsic information, usually by verifying the signature.
/// Implement for pieces of information that require some additional context `Context` in order to
/// be checked.
pub trait Checkable<Context>: Sized {
	/// Returned if `check` succeeds.
	type Checked;

	/// Check self, given an instance of Context.
	fn check(self, c: &Context) -> Result<Self::Checked, TransactionValidityError>;

	/// Blindly check self.
	///
	/// ## WARNING
	///
	/// DO NOT USE IN PRODUCTION. This is only meant to be used in testing environments. A runtime
	/// compiled with `try-runtime` should never be in production. Moreover, the name of this
	/// function is deliberately chosen to prevent developers from ever calling it in consensus
	/// code-paths.
	#[cfg(feature = "try-runtime")]
	fn unchecked_into_checked_i_know_what_i_am_doing(
		self,
		c: &Context,
	) -> Result<Self::Checked, TransactionValidityError>;
}

/// A "checkable" piece of information, used by the standard Substrate Executive in order to
/// check the validity of a piece of extrinsic information, usually by verifying the signature.
/// Implement for pieces of information that don't require additional context in order to be
/// checked.
pub trait BlindCheckable: Sized {
	/// Returned if `check` succeeds.
	type Checked;

	/// Check self.
	fn check(self) -> Result<Self::Checked, TransactionValidityError>;
}

// Every `BlindCheckable` is also a `StaticCheckable` for arbitrary `Context`.
impl<T: BlindCheckable, Context> Checkable<Context> for T {
	type Checked = <Self as BlindCheckable>::Checked;

	fn check(self, _c: &Context) -> Result<Self::Checked, TransactionValidityError> {
		BlindCheckable::check(self)
	}

	#[cfg(feature = "try-runtime")]
	fn unchecked_into_checked_i_know_what_i_am_doing(
		self,
		_: &Context,
	) -> Result<Self::Checked, TransactionValidityError> {
		unreachable!();
	}
}

/// A lazy call (module function and argument values) that can be executed via its `dispatch`
/// method.
pub trait Dispatchable {
	/// Every function call from your runtime has an origin, which specifies where the extrinsic was
	/// generated from. In the case of a signed extrinsic (transaction), the origin contains an
	/// identifier for the caller. The origin can be empty in the case of an inherent extrinsic.
	type RuntimeOrigin: Debug;
	/// ...
	type Config;
	/// An opaque set of information attached to the transaction. This could be constructed anywhere
	/// down the line in a runtime. The current Substrate runtime uses a struct with the same name
	/// to represent the dispatch class and weight.
	type Info;
	/// Additional information that is returned by `dispatch`. Can be used to supply the caller
	/// with information about a `Dispatchable` that is only known post dispatch.
	type PostInfo: Eq + PartialEq + Clone + Copy + Encode + Decode + Printable;
	/// Actually dispatch this call and return the result of it.
	fn dispatch(self, origin: Self::RuntimeOrigin)
		-> crate::DispatchResultWithInfo<Self::PostInfo>;
}

/// Shortcut to reference the `Info` type of a `Dispatchable`.
pub type DispatchInfoOf<T> = <T as Dispatchable>::Info;
/// Shortcut to reference the `PostInfo` type of a `Dispatchable`.
pub type PostDispatchInfoOf<T> = <T as Dispatchable>::PostInfo;

impl Dispatchable for () {
	type RuntimeOrigin = ();
	type Config = ();
	type Info = ();
	type PostInfo = ();
	fn dispatch(
		self,
		_origin: Self::RuntimeOrigin,
	) -> crate::DispatchResultWithInfo<Self::PostInfo> {
		panic!("This implementation should not be used for actual dispatch.");
	}
}

/// Means by which a transaction may be extended. This type embodies both the data and the logic
/// that should be additionally associated with the transaction. It should be plain old data.
pub trait SignedExtension:
	Codec + Debug + Sync + Send + Clone + Eq + PartialEq + StaticTypeInfo
{
	/// Unique identifier of this signed extension.
	///
	/// This will be exposed in the metadata to identify the signed extension used
	/// in an extrinsic.
	const IDENTIFIER: &'static str;

	/// The type which encodes the sender identity.
	type AccountId;

	/// The type which encodes the call to be dispatched.
	type Call: Dispatchable;

	/// Any additional data that will go into the signed payload. This may be created dynamically
	/// from the transaction using the `additional_signed` function.
	type AdditionalSigned: Encode + TypeInfo;

	/// The type that encodes information that can be passed from pre_dispatch to post-dispatch.
	type Pre;

	/// Construct any additional data that should be in the signed payload of the transaction. Can
	/// also perform any pre-signature-verification checks and return an error if needed.
	fn additional_signed(&self) -> Result<Self::AdditionalSigned, TransactionValidityError>;

	/// Validate a signed transaction for the transaction queue.
	///
	/// This function can be called frequently by the transaction queue,
	/// to obtain transaction validity against current state.
	/// It should perform all checks that determine a valid transaction,
	/// that can pay for its execution and quickly eliminate ones
	/// that are stale or incorrect.
	///
	/// Make sure to perform the same checks in `pre_dispatch` function.
	fn validate(
		&self,
		_who: &Self::AccountId,
		_call: &Self::Call,
		_info: &DispatchInfoOf<Self::Call>,
		_len: usize,
	) -> TransactionValidity {
		Ok(ValidTransaction::default())
	}

	/// Do any pre-flight stuff for a signed transaction.
	///
	/// Make sure to perform the same checks as in [`Self::validate`].
	fn pre_dispatch(
		self,
		who: &Self::AccountId,
		call: &Self::Call,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> Result<Self::Pre, TransactionValidityError>;

	/// Validate an unsigned transaction for the transaction queue.
	///
	/// This function can be called frequently by the transaction queue
	/// to obtain transaction validity against current state.
	/// It should perform all checks that determine a valid unsigned transaction,
	/// and quickly eliminate ones that are stale or incorrect.
	///
	/// Make sure to perform the same checks in `pre_dispatch_unsigned` function.
	fn validate_unsigned(
		_call: &Self::Call,
		_info: &DispatchInfoOf<Self::Call>,
		_len: usize,
	) -> TransactionValidity {
		Ok(ValidTransaction::default())
	}

	/// Do any pre-flight stuff for a unsigned transaction.
	///
	/// Note this function by default delegates to `validate_unsigned`, so that
	/// all checks performed for the transaction queue are also performed during
	/// the dispatch phase (applying the extrinsic).
	///
	/// If you ever override this function, you need to make sure to always
	/// perform the same validation as in `validate_unsigned`.
	fn pre_dispatch_unsigned(
		call: &Self::Call,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> Result<(), TransactionValidityError> {
		Self::validate_unsigned(call, info, len).map(|_| ()).map_err(Into::into)
	}

	/// Do any post-flight stuff for an extrinsic.
	///
	/// If the transaction is signed, then `_pre` will contain the output of `pre_dispatch`,
	/// and `None` otherwise.
	///
	/// This gets given the `DispatchResult` `_result` from the extrinsic and can, if desired,
	/// introduce a `TransactionValidityError`, causing the block to become invalid for including
	/// it.
	///
	/// WARNING: It is dangerous to return an error here. To do so will fundamentally invalidate the
	/// transaction and any block that it is included in, causing the block author to not be
	/// compensated for their work in validating the transaction or producing the block so far.
	///
	/// It can only be used safely when you *know* that the extrinsic is one that can only be
	/// introduced by the current block author; generally this implies that it is an inherent and
	/// will come from either an offchain-worker or via `InherentData`.
	fn post_dispatch(
		_pre: Option<Self::Pre>,
		_info: &DispatchInfoOf<Self::Call>,
		_post_info: &PostDispatchInfoOf<Self::Call>,
		_len: usize,
		_result: &DispatchResult,
	) -> Result<(), TransactionValidityError> {
		Ok(())
	}

	/// Returns the metadata for this signed extension.
	///
	/// As a [`SignedExtension`] can be a tuple of [`SignedExtension`]s we need to return a `Vec`
	/// that holds the metadata of each one. Each individual `SignedExtension` must return
	/// *exactly* one [`SignedExtensionMetadata`].
	///
	/// This method provides a default implementation that returns a vec containing a single
	/// [`SignedExtensionMetadata`].
	fn metadata() -> Vec<SignedExtensionMetadata> {
		alloc::vec![SignedExtensionMetadata {
			identifier: Self::IDENTIFIER,
			ty: scale_info::meta_type::<Self>(),
			additional_signed: scale_info::meta_type::<Self::AdditionalSigned>()
		}]
	}
}

/// Information about a [`SignedExtension`] for the runtime metadata.
pub struct SignedExtensionMetadata {
	/// The unique identifier of the [`SignedExtension`].
	pub identifier: &'static str,
	/// The type of the [`SignedExtension`].
	pub ty: MetaType,
	/// The type of the [`SignedExtension`] additional signed data for the payload.
	pub additional_signed: MetaType,
}

#[impl_for_tuples(1, 12)]
impl<AccountId, Call: Dispatchable> SignedExtension for Tuple {
	for_tuples!( where #( Tuple: SignedExtension<AccountId=AccountId, Call=Call,> )* );
	type AccountId = AccountId;
	type Call = Call;
	const IDENTIFIER: &'static str = "You should call `identifier()`!";
	for_tuples!( type AdditionalSigned = ( #( Tuple::AdditionalSigned ),* ); );
	for_tuples!( type Pre = ( #( Tuple::Pre ),* ); );

	fn additional_signed(&self) -> Result<Self::AdditionalSigned, TransactionValidityError> {
		Ok(for_tuples!( ( #( Tuple.additional_signed()? ),* ) ))
	}

	fn validate(
		&self,
		who: &Self::AccountId,
		call: &Self::Call,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> TransactionValidity {
		let valid = ValidTransaction::default();
		for_tuples!( #( let valid = valid.combine_with(Tuple.validate(who, call, info, len)?); )* );
		Ok(valid)
	}

	fn pre_dispatch(
		self,
		who: &Self::AccountId,
		call: &Self::Call,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> Result<Self::Pre, TransactionValidityError> {
		Ok(for_tuples!( ( #( Tuple.pre_dispatch(who, call, info, len)? ),* ) ))
	}

	fn validate_unsigned(
		call: &Self::Call,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> TransactionValidity {
		let valid = ValidTransaction::default();
		for_tuples!( #( let valid = valid.combine_with(Tuple::validate_unsigned(call, info, len)?); )* );
		Ok(valid)
	}

	fn pre_dispatch_unsigned(
		call: &Self::Call,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> Result<(), TransactionValidityError> {
		for_tuples!( #( Tuple::pre_dispatch_unsigned(call, info, len)?; )* );
		Ok(())
	}

	fn post_dispatch(
		pre: Option<Self::Pre>,
		info: &DispatchInfoOf<Self::Call>,
		post_info: &PostDispatchInfoOf<Self::Call>,
		len: usize,
		result: &DispatchResult,
	) -> Result<(), TransactionValidityError> {
		match pre {
			Some(x) => {
				for_tuples!( #( Tuple::post_dispatch(Some(x.Tuple), info, post_info, len, result)?; )* );
			},
			None => {
				for_tuples!( #( Tuple::post_dispatch(None, info, post_info, len, result)?; )* );
			},
		}
		Ok(())
	}

	fn metadata() -> Vec<SignedExtensionMetadata> {
		let mut ids = Vec::new();
		for_tuples!( #( ids.extend(Tuple::metadata()); )* );
		ids
	}
}

impl SignedExtension for () {
	type AccountId = u64;
	type AdditionalSigned = ();
	type Call = ();
	type Pre = ();
	const IDENTIFIER: &'static str = "UnitSignedExtension";
	fn additional_signed(&self) -> core::result::Result<(), TransactionValidityError> {
		Ok(())
	}
	fn pre_dispatch(
		self,
		who: &Self::AccountId,
		call: &Self::Call,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> Result<Self::Pre, TransactionValidityError> {
		self.validate(who, call, info, len).map(|_| ())
	}
}

/// An "executable" piece of information, used by the standard Substrate Executive in order to
/// enact a piece of extrinsic information by marshalling and dispatching to a named function
/// call.
///
/// Also provides information on to whom this information is attributable and an index that allows
/// each piece of attributable information to be disambiguated.
pub trait Applyable: Sized + Send + Sync {
	/// Type by which we can dispatch. Restricts the `UnsignedValidator` type.
	type Call: Dispatchable;

	/// Checks to see if this is a valid *transaction*. It returns information on it if so.
	fn validate<V: ValidateUnsigned<Call = Self::Call>>(
		&self,
		source: TransactionSource,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> TransactionValidity;

	/// Executes all necessary logic needed prior to dispatch and deconstructs into function call,
	/// index and sender.
	fn apply<V: ValidateUnsigned<Call = Self::Call>>(
		self,
		info: &DispatchInfoOf<Self::Call>,
		len: usize,
	) -> crate::ApplyExtrinsicResultWithInfo<PostDispatchInfoOf<Self::Call>>;
}

/// A marker trait for something that knows the type of the runtime block.
pub trait GetRuntimeBlockType {
	/// The `RuntimeBlock` type.
	type RuntimeBlock: self::Block;
}

/// A marker trait for something that knows the type of the node block.
pub trait GetNodeBlockType {
	/// The `NodeBlock` type.
	type NodeBlock: self::Block;
}

/// Provide validation for unsigned extrinsics.
///
/// This trait provides two functions [`pre_dispatch`](Self::pre_dispatch) and
/// [`validate_unsigned`](Self::validate_unsigned). The [`pre_dispatch`](Self::pre_dispatch)
/// function is called right before dispatching the call wrapped by an unsigned extrinsic. The
/// [`validate_unsigned`](Self::validate_unsigned) function is mainly being used in the context of
/// the transaction pool to check the validity of the call wrapped by an unsigned extrinsic.
pub trait ValidateUnsigned {
	/// The call to validate
	type Call;

	/// Validate the call right before dispatch.
	///
	/// This method should be used to prevent transactions already in the pool
	/// (i.e. passing [`validate_unsigned`](Self::validate_unsigned)) from being included in blocks
	/// in case they became invalid since being added to the pool.
	///
	/// By default it's a good idea to call [`validate_unsigned`](Self::validate_unsigned) from
	/// within this function again to make sure we never include an invalid transaction. Otherwise
	/// the implementation of the call or this method will need to provide proper validation to
	/// ensure that the transaction is valid.
	///
	/// Changes made to storage *WILL* be persisted if the call returns `Ok`.
	fn pre_dispatch(call: &Self::Call) -> Result<(), TransactionValidityError> {
		Self::validate_unsigned(TransactionSource::InBlock, call)
			.map(|_| ())
			.map_err(Into::into)
	}

	/// Return the validity of the call
	///
	/// This method has no side-effects. It merely checks whether the call would be rejected
	/// by the runtime in an unsigned extrinsic.
	///
	/// The validity checks should be as lightweight as possible because every node will execute
	/// this code before the unsigned extrinsic enters the transaction pool and also periodically
	/// afterwards to ensure the validity. To prevent dos-ing a network with unsigned
	/// extrinsics, these validity checks should include some checks around uniqueness, for example,
	/// checking that the unsigned extrinsic was sent by an authority in the active set.
	///
	/// Changes made to storage should be discarded by caller.
	fn validate_unsigned(source: TransactionSource, call: &Self::Call) -> TransactionValidity;
}

/// Opaque data type that may be destructured into a series of raw byte slices (which represent
/// individual keys).
pub trait OpaqueKeys: Clone {
	/// Types bound to this opaque keys that provide the key type ids returned.
	type KeyTypeIdProviders;

	/// Return the key-type IDs supported by this set.
	fn key_ids() -> &'static [crate::KeyTypeId];
	/// Get the raw bytes of key with key-type ID `i`.
	fn get_raw(&self, i: super::KeyTypeId) -> &[u8];
	/// Get the decoded key with key-type ID `i`.
	fn get<T: Decode>(&self, i: super::KeyTypeId) -> Option<T> {
		T::decode(&mut self.get_raw(i)).ok()
	}
	/// Verify a proof of ownership for the keys.
	fn ownership_proof_is_valid(&self, _proof: &[u8]) -> bool {
		true
	}
}

/// Input that adds infinite number of zero after wrapped input.
///
/// This can add an infinite stream of zeros onto any input, not just a slice as with
/// `TrailingZerosInput`.
pub struct AppendZerosInput<'a, T>(&'a mut T);

impl<'a, T> AppendZerosInput<'a, T> {
	/// Create a new instance from the given byte array.
	pub fn new(input: &'a mut T) -> Self {
		Self(input)
	}
}

impl<'a, T: codec::Input> codec::Input for AppendZerosInput<'a, T> {
	fn remaining_len(&mut self) -> Result<Option<usize>, codec::Error> {
		Ok(None)
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), codec::Error> {
		let remaining = self.0.remaining_len()?;
		let completed = if let Some(n) = remaining {
			let readable = into.len().min(n);
			// this should never fail if `remaining_len` API is implemented correctly.
			self.0.read(&mut into[..readable])?;
			readable
		} else {
			// Fill it byte-by-byte.
			let mut i = 0;
			while i < into.len() {
				if let Ok(b) = self.0.read_byte() {
					into[i] = b;
					i += 1;
				} else {
					break
				}
			}
			i
		};
		// Fill the rest with zeros.
		for i in &mut into[completed..] {
			*i = 0;
		}
		Ok(())
	}
}

/// Input that adds infinite number of zero after wrapped input.
pub struct TrailingZeroInput<'a>(&'a [u8]);

impl<'a> TrailingZeroInput<'a> {
	/// Create a new instance from the given byte array.
	pub fn new(data: &'a [u8]) -> Self {
		Self(data)
	}

	/// Create a new instance which only contains zeroes as input.
	pub fn zeroes() -> Self {
		Self::new(&[][..])
	}
}

impl<'a> codec::Input for TrailingZeroInput<'a> {
	fn remaining_len(&mut self) -> Result<Option<usize>, codec::Error> {
		Ok(None)
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), codec::Error> {
		let len_from_inner = into.len().min(self.0.len());
		into[..len_from_inner].copy_from_slice(&self.0[..len_from_inner]);
		for i in &mut into[len_from_inner..] {
			*i = 0;
		}
		self.0 = &self.0[len_from_inner..];

		Ok(())
	}
}

/// This type can be converted into and possibly from an AccountId (which itself is generic).
pub trait AccountIdConversion<AccountId>: Sized {
	/// Convert into an account ID. This is infallible, and may truncate bytes to provide a result.
	/// This may lead to duplicate accounts if the size of `AccountId` is less than the seed.
	fn into_account_truncating(&self) -> AccountId {
		self.into_sub_account_truncating(&())
	}

	/// Convert into an account ID, checking that all bytes of the seed are being used in the final
	/// `AccountId` generated. If any bytes are dropped, this returns `None`.
	fn try_into_account(&self) -> Option<AccountId> {
		self.try_into_sub_account(&())
	}

	/// Try to convert an account ID into this type. Might not succeed.
	fn try_from_account(a: &AccountId) -> Option<Self> {
		Self::try_from_sub_account::<()>(a).map(|x| x.0)
	}

	/// Convert this value amalgamated with the a secondary "sub" value into an account ID,
	/// truncating any unused bytes. This is infallible.
	///
	/// NOTE: The account IDs from this and from `into_account` are *not* guaranteed to be distinct
	/// for any given value of `self`, nor are different invocations to this with different types
	/// `T`. For example, the following will all encode to the same account ID value:
	/// - `self.into_sub_account(0u32)`
	/// - `self.into_sub_account(vec![0u8; 0])`
	/// - `self.into_account()`
	///
	/// Also, if the seed provided to this function is greater than the number of bytes which fit
	/// into this `AccountId` type, then it will lead to truncation of the seed, and potentially
	/// non-unique accounts.
	fn into_sub_account_truncating<S: Encode>(&self, sub: S) -> AccountId;

	/// Same as `into_sub_account_truncating`, but ensuring that all bytes of the account's seed are
	/// used when generating an account. This can help guarantee that different accounts are unique,
	/// besides types which encode the same as noted above.
	fn try_into_sub_account<S: Encode>(&self, sub: S) -> Option<AccountId>;

	/// Try to convert an account ID into this type. Might not succeed.
	fn try_from_sub_account<S: Decode>(x: &AccountId) -> Option<(Self, S)>;
}

/// Format is TYPE_ID ++ encode(sub-seed) ++ 00.... where 00... is indefinite trailing zeroes to
/// fill AccountId.
impl<T: Encode + Decode, Id: Encode + Decode + TypeId> AccountIdConversion<T> for Id {
	// Take the `sub` seed, and put as much of it as possible into the generated account, but
	// allowing truncation of the seed if it would not fit into the account id in full. This can
	// lead to two different `sub` seeds with the same account generated.
	fn into_sub_account_truncating<S: Encode>(&self, sub: S) -> T {
		(Id::TYPE_ID, self, sub)
			.using_encoded(|b| T::decode(&mut TrailingZeroInput(b)))
			.expect("All byte sequences are valid `AccountIds`; qed")
	}

	// Same as `into_sub_account_truncating`, but returns `None` if any bytes would be truncated.
	fn try_into_sub_account<S: Encode>(&self, sub: S) -> Option<T> {
		let encoded_seed = (Id::TYPE_ID, self, sub).encode();
		let account = T::decode(&mut TrailingZeroInput(&encoded_seed))
			.expect("All byte sequences are valid `AccountIds`; qed");
		// If the `account` generated has less bytes than the `encoded_seed`, then we know that
		// bytes were truncated, and we return `None`.
		if encoded_seed.len() <= account.encoded_size() {
			Some(account)
		} else {
			None
		}
	}

	fn try_from_sub_account<S: Decode>(x: &T) -> Option<(Self, S)> {
		x.using_encoded(|d| {
			if d[0..4] != Id::TYPE_ID {
				return None
			}
			let mut cursor = &d[4..];
			let result = Decode::decode(&mut cursor).ok()?;
			if cursor.iter().all(|x| *x == 0) {
				Some(result)
			} else {
				None
			}
		})
	}
}

/// Calls a given macro a number of times with a set of fixed params and an incrementing numeral.
/// e.g.
/// ```nocompile
/// count!(println ("{}",) foo, bar, baz);
/// // Will result in three `println!`s: "0", "1" and "2".
/// ```
#[macro_export]
macro_rules! count {
	($f:ident ($($x:tt)*) ) => ();
	($f:ident ($($x:tt)*) $x1:tt) => { $f!($($x)* 0); };
	($f:ident ($($x:tt)*) $x1:tt, $x2:tt) => { $f!($($x)* 0); $f!($($x)* 1); };
	($f:ident ($($x:tt)*) $x1:tt, $x2:tt, $x3:tt) => { $f!($($x)* 0); $f!($($x)* 1); $f!($($x)* 2); };
	($f:ident ($($x:tt)*) $x1:tt, $x2:tt, $x3:tt, $x4:tt) => {
		$f!($($x)* 0); $f!($($x)* 1); $f!($($x)* 2); $f!($($x)* 3);
	};
	($f:ident ($($x:tt)*) $x1:tt, $x2:tt, $x3:tt, $x4:tt, $x5:tt) => {
		$f!($($x)* 0); $f!($($x)* 1); $f!($($x)* 2); $f!($($x)* 3); $f!($($x)* 4);
	};
}

#[doc(hidden)]
#[macro_export]
macro_rules! impl_opaque_keys_inner {
	(
		$( #[ $attr:meta ] )*
		pub struct $name:ident {
			$(
				$( #[ $inner_attr:meta ] )*
				pub $field:ident: $type:ty,
			)*
		}
	) => {
		$( #[ $attr ] )*
		#[derive(
			Clone, PartialEq, Eq,
			$crate::codec::Encode,
			$crate::codec::Decode,
			$crate::scale_info::TypeInfo,
			$crate::RuntimeDebug,
		)]
		pub struct $name {
			$(
				$( #[ $inner_attr ] )*
				pub $field: <$type as $crate::BoundToRuntimeAppPublic>::Public,
			)*
		}

		impl $name {
			/// Generate a set of keys with optionally using the given seed.
			///
			/// The generated key pairs are stored in the keystore.
			///
			/// Returns the concatenated SCALE encoded public keys.
			pub fn generate(seed: Option<$crate::Vec<u8>>) -> $crate::Vec<u8> {
				let keys = Self{
					$(
						$field: <
							<
								$type as $crate::BoundToRuntimeAppPublic
							>::Public as $crate::RuntimeAppPublic
						>::generate_pair(seed.clone()),
					)*
				};
				$crate::codec::Encode::encode(&keys)
			}

			/// Converts `Self` into a `Vec` of `(raw public key, KeyTypeId)`.
			pub fn into_raw_public_keys(
				self,
			) -> $crate::Vec<($crate::Vec<u8>, $crate::KeyTypeId)> {
				let mut keys = Vec::new();
				$(
					keys.push((
						$crate::RuntimeAppPublic::to_raw_vec(&self.$field),
						<
							<
								$type as $crate::BoundToRuntimeAppPublic
							>::Public as $crate::RuntimeAppPublic
						>::ID,
					));
				)*

				keys
			}

			/// Decode `Self` from the given `encoded` slice and convert `Self` into the raw public
			/// keys (see [`Self::into_raw_public_keys`]).
			///
			/// Returns `None` when the decoding failed, otherwise `Some(_)`.
			pub fn decode_into_raw_public_keys(
				encoded: &[u8],
			) -> Option<$crate::Vec<($crate::Vec<u8>, $crate::KeyTypeId)>> {
				<Self as $crate::codec::Decode>::decode(&mut &encoded[..])
					.ok()
					.map(|s| s.into_raw_public_keys())
			}
		}

		impl $crate::traits::OpaqueKeys for $name {
			type KeyTypeIdProviders = ( $( $type, )* );

			fn key_ids() -> &'static [$crate::KeyTypeId] {
				&[
					$(
						<
							<
								$type as $crate::BoundToRuntimeAppPublic
							>::Public as $crate::RuntimeAppPublic
						>::ID
					),*
				]
			}

			fn get_raw(&self, i: $crate::KeyTypeId) -> &[u8] {
				match i {
					$(
						i if i == <
							<
								$type as $crate::BoundToRuntimeAppPublic
							>::Public as $crate::RuntimeAppPublic
						>::ID =>
							self.$field.as_ref(),
					)*
					_ => &[],
				}
			}
		}
	};
}

/// Implement `OpaqueKeys` for a described struct.
///
/// Every field type must implement [`BoundToRuntimeAppPublic`](crate::BoundToRuntimeAppPublic).
/// `KeyTypeIdProviders` is set to the types given as fields.
///
/// ```rust
/// use sp_runtime::{
/// 	impl_opaque_keys, KeyTypeId, BoundToRuntimeAppPublic, app_crypto::{sr25519, ed25519}
/// };
///
/// pub struct KeyModule;
/// impl BoundToRuntimeAppPublic for KeyModule { type Public = ed25519::AppPublic; }
///
/// pub struct KeyModule2;
/// impl BoundToRuntimeAppPublic for KeyModule2 { type Public = sr25519::AppPublic; }
///
/// impl_opaque_keys! {
/// 	pub struct Keys {
/// 		pub key_module: KeyModule,
/// 		pub key_module2: KeyModule2,
/// 	}
/// }
/// ```
#[macro_export]
#[cfg(any(feature = "serde", feature = "std"))]
macro_rules! impl_opaque_keys {
	{
		$( #[ $attr:meta ] )*
		pub struct $name:ident {
			$(
				$( #[ $inner_attr:meta ] )*
				pub $field:ident: $type:ty,
			)*
		}
	} => {
		$crate::paste::paste! {
			use $crate::serde as [< __opaque_keys_serde_import__ $name >];

			$crate::impl_opaque_keys_inner! {
				$( #[ $attr ] )*
				#[derive($crate::serde::Serialize, $crate::serde::Deserialize)]
				#[serde(crate = "__opaque_keys_serde_import__" $name)]
				pub struct $name {
					$(
						$( #[ $inner_attr ] )*
						pub $field: $type,
					)*
				}
			}
		}
	}
}

#[macro_export]
#[cfg(all(not(feature = "std"), not(feature = "serde")))]
#[doc(hidden)]
macro_rules! impl_opaque_keys {
	{
		$( #[ $attr:meta ] )*
		pub struct $name:ident {
			$(
				$( #[ $inner_attr:meta ] )*
				pub $field:ident: $type:ty,
			)*
		}
	} => {
		$crate::impl_opaque_keys_inner! {
			$( #[ $attr ] )*
			pub struct $name {
				$(
					$( #[ $inner_attr ] )*
					pub $field: $type,
				)*
			}
		}
	}
}

/// Trait for things which can be printed from the runtime.
pub trait Printable {
	/// Print the object.
	fn print(&self);
}

impl<T: Printable> Printable for &T {
	fn print(&self) {
		(*self).print()
	}
}

impl Printable for u8 {
	fn print(&self) {
		(*self as u64).print()
	}
}

impl Printable for u32 {
	fn print(&self) {
		(*self as u64).print()
	}
}

impl Printable for usize {
	fn print(&self) {
		(*self as u64).print()
	}
}

impl Printable for u64 {
	fn print(&self) {
		sp_io::misc::print_num(*self);
	}
}

impl Printable for &[u8] {
	fn print(&self) {
		sp_io::misc::print_hex(self);
	}
}

impl<const N: usize> Printable for [u8; N] {
	fn print(&self) {
		sp_io::misc::print_hex(&self[..]);
	}
}

impl Printable for &str {
	fn print(&self) {
		sp_io::misc::print_utf8(self.as_bytes());
	}
}

impl Printable for bool {
	fn print(&self) {
		if *self {
			"true".print()
		} else {
			"false".print()
		}
	}
}

impl Printable for sp_weights::Weight {
	fn print(&self) {
		self.ref_time().print()
	}
}

impl Printable for () {
	fn print(&self) {
		"()".print()
	}
}

#[impl_for_tuples(1, 12)]
impl Printable for Tuple {
	fn print(&self) {
		for_tuples!( #( Tuple.print(); )* )
	}
}

/// Something that can convert a [`BlockId`](crate::generic::BlockId) to a number or a hash.
#[cfg(feature = "std")]
pub trait BlockIdTo<Block: self::Block> {
	/// The error type that will be returned by the functions.
	type Error: std::error::Error;

	/// Convert the given `block_id` to the corresponding block hash.
	fn to_hash(
		&self,
		block_id: &crate::generic::BlockId<Block>,
	) -> Result<Option<Block::Hash>, Self::Error>;

	/// Convert the given `block_id` to the corresponding block number.
	fn to_number(
		&self,
		block_id: &crate::generic::BlockId<Block>,
	) -> Result<Option<NumberFor<Block>>, Self::Error>;
}

/// Get current block number
pub trait BlockNumberProvider {
	/// Type of `BlockNumber` to provide.
	type BlockNumber: Codec
		+ Clone
		+ Ord
		+ Eq
		+ AtLeast32BitUnsigned
		+ TypeInfo
		+ Debug
		+ MaxEncodedLen
		+ Copy;

	/// Returns the current block number.
	///
	/// Provides an abstraction over an arbitrary way of providing the
	/// current block number.
	///
	/// In case of using crate `sp_runtime` with the crate `frame-system`,
	/// it is already implemented for
	/// `frame_system::Pallet<T: Config>` as:
	///
	/// ```ignore
	/// fn current_block_number() -> Self {
	///     frame_system::Pallet<Config>::block_number()
	/// }
	/// ```
	/// .
	fn current_block_number() -> Self::BlockNumber;

	/// Utility function only to be used in benchmarking scenarios or tests, to be implemented
	/// optionally, else a noop.
	///
	/// It allows for setting the block number that will later be fetched
	/// This is useful in case the block number provider is different than System
	#[cfg(any(feature = "std", feature = "runtime-benchmarks"))]
	fn set_block_number(_block: Self::BlockNumber) {}
}

impl BlockNumberProvider for () {
	type BlockNumber = u32;
	fn current_block_number() -> Self::BlockNumber {
		0
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::codec::{Decode, Encode, Input};
	use sp_core::{
		crypto::{Pair, UncheckedFrom},
		ecdsa, ed25519, sr25519,
	};

	macro_rules! signature_verify_test {
		($algorithm:ident) => {
			let msg = &b"test-message"[..];
			let wrong_msg = &b"test-msg"[..];
			let (pair, _) = $algorithm::Pair::generate();

			let signature = pair.sign(&msg);
			assert!($algorithm::Pair::verify(&signature, msg, &pair.public()));

			assert!(signature.verify(msg, &pair.public()));
			assert!(!signature.verify(wrong_msg, &pair.public()));
		};
	}

	mod t {
		use sp_application_crypto::{app_crypto, sr25519};
		use sp_core::crypto::KeyTypeId;
		app_crypto!(sr25519, KeyTypeId(*b"test"));
	}

	#[test]
	fn app_verify_works() {
		use super::AppVerify;
		use t::*;

		let s = Signature::try_from(vec![0; 64]).unwrap();
		let _ = s.verify(&[0u8; 100][..], &Public::unchecked_from([0; 32]));
	}

	#[derive(Encode, Decode, Default, PartialEq, Debug)]
	struct U128Value(u128);
	impl super::TypeId for U128Value {
		const TYPE_ID: [u8; 4] = [0x0d, 0xf0, 0x0d, 0xf0];
	}
	// f00df00d

	#[derive(Encode, Decode, Default, PartialEq, Debug)]
	struct U32Value(u32);
	impl super::TypeId for U32Value {
		const TYPE_ID: [u8; 4] = [0x0d, 0xf0, 0xfe, 0xca];
	}
	// cafef00d

	#[derive(Encode, Decode, Default, PartialEq, Debug)]
	struct U16Value(u16);
	impl super::TypeId for U16Value {
		const TYPE_ID: [u8; 4] = [0xfe, 0xca, 0x0d, 0xf0];
	}
	// f00dcafe

	type AccountId = u64;

	#[test]
	fn into_account_truncating_should_work() {
		let r: AccountId = U32Value::into_account_truncating(&U32Value(0xdeadbeef));
		assert_eq!(r, 0x_deadbeef_cafef00d);
	}

	#[test]
	fn try_into_account_should_work() {
		let r: AccountId = U32Value::try_into_account(&U32Value(0xdeadbeef)).unwrap();
		assert_eq!(r, 0x_deadbeef_cafef00d);

		// u128 is bigger than u64 would fit
		let maybe: Option<AccountId> = U128Value::try_into_account(&U128Value(u128::MAX));
		assert!(maybe.is_none());
	}

	#[test]
	fn try_from_account_should_work() {
		let r = U32Value::try_from_account(&0x_deadbeef_cafef00d_u64);
		assert_eq!(r.unwrap(), U32Value(0xdeadbeef));
	}

	#[test]
	fn into_account_truncating_with_fill_should_work() {
		let r: AccountId = U16Value::into_account_truncating(&U16Value(0xc0da));
		assert_eq!(r, 0x_0000_c0da_f00dcafe);
	}

	#[test]
	fn try_into_sub_account_should_work() {
		let r: AccountId = U16Value::try_into_account(&U16Value(0xc0da)).unwrap();
		assert_eq!(r, 0x_0000_c0da_f00dcafe);

		let maybe: Option<AccountId> = U16Value::try_into_sub_account(
			&U16Value(0xc0da),
			"a really large amount of additional encoded information which will certainly overflow the account id type ;)"
		);

		assert!(maybe.is_none())
	}

	#[test]
	fn try_from_account_with_fill_should_work() {
		let r = U16Value::try_from_account(&0x0000_c0da_f00dcafe_u64);
		assert_eq!(r.unwrap(), U16Value(0xc0da));
	}

	#[test]
	fn bad_try_from_account_should_fail() {
		let r = U16Value::try_from_account(&0x0000_c0de_baadcafe_u64);
		assert!(r.is_none());
		let r = U16Value::try_from_account(&0x0100_c0da_f00dcafe_u64);
		assert!(r.is_none());
	}

	#[test]
	fn trailing_zero_should_work() {
		let mut t = super::TrailingZeroInput(&[1, 2, 3]);
		assert_eq!(t.remaining_len(), Ok(None));
		let mut buffer = [0u8; 2];
		assert_eq!(t.read(&mut buffer), Ok(()));
		assert_eq!(t.remaining_len(), Ok(None));
		assert_eq!(buffer, [1, 2]);
		assert_eq!(t.read(&mut buffer), Ok(()));
		assert_eq!(t.remaining_len(), Ok(None));
		assert_eq!(buffer, [3, 0]);
		assert_eq!(t.read(&mut buffer), Ok(()));
		assert_eq!(t.remaining_len(), Ok(None));
		assert_eq!(buffer, [0, 0]);
	}

	#[test]
	fn ed25519_verify_works() {
		signature_verify_test!(ed25519);
	}

	#[test]
	fn sr25519_verify_works() {
		signature_verify_test!(sr25519);
	}

	#[test]
	fn ecdsa_verify_works() {
		signature_verify_test!(ecdsa);
	}
}