1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! State machine backends. These manage the code and storage of contracts.

#[cfg(feature = "std")]
use crate::trie_backend::TrieBackend;
use crate::{
	trie_backend_essence::TrieBackendStorage, ChildStorageCollection, StorageCollection,
	StorageKey, StorageValue, UsageInfo,
};
use alloc::vec::Vec;
use codec::Encode;
use core::marker::PhantomData;
use hash_db::Hasher;
use sp_core::storage::{ChildInfo, StateVersion, TrackedStorageKey};
#[cfg(feature = "std")]
use sp_core::traits::RuntimeCode;
use sp_trie::{MerkleValue, PrefixedMemoryDB};

/// A struct containing arguments for iterating over the storage.
#[derive(Default)]
#[non_exhaustive]
pub struct IterArgs<'a> {
	/// The prefix of the keys over which to iterate.
	pub prefix: Option<&'a [u8]>,

	/// The prefix from which to start the iteration from.
	///
	/// This is inclusive and the iteration will include the key which is specified here.
	pub start_at: Option<&'a [u8]>,

	/// If this is `true` then the iteration will *not* include
	/// the key specified in `start_at`, if there is such a key.
	pub start_at_exclusive: bool,

	/// The info of the child trie over which to iterate over.
	pub child_info: Option<ChildInfo>,

	/// Whether to stop iteration when a missing trie node is reached.
	///
	/// When a missing trie node is reached the iterator will:
	///   - return an error if this is set to `false` (default)
	///   - return `None` if this is set to `true`
	pub stop_on_incomplete_database: bool,
}

/// A trait for a raw storage iterator.
pub trait StorageIterator<H>
where
	H: Hasher,
{
	/// The state backend over which the iterator is iterating.
	type Backend;

	/// The error type.
	type Error;

	/// Fetches the next key from the storage.
	fn next_key(
		&mut self,
		backend: &Self::Backend,
	) -> Option<core::result::Result<StorageKey, Self::Error>>;

	/// Fetches the next key and value from the storage.
	fn next_pair(
		&mut self,
		backend: &Self::Backend,
	) -> Option<core::result::Result<(StorageKey, StorageValue), Self::Error>>;

	/// Returns whether the end of iteration was reached without an error.
	fn was_complete(&self) -> bool;
}

/// An iterator over storage keys and values.
pub struct PairsIter<'a, H, I>
where
	H: Hasher,
	I: StorageIterator<H>,
{
	backend: Option<&'a I::Backend>,
	raw_iter: I,
	_phantom: PhantomData<H>,
}

impl<'a, H, I> Iterator for PairsIter<'a, H, I>
where
	H: Hasher,
	I: StorageIterator<H>,
{
	type Item = Result<(Vec<u8>, Vec<u8>), <I as StorageIterator<H>>::Error>;
	fn next(&mut self) -> Option<Self::Item> {
		self.raw_iter.next_pair(self.backend.as_ref()?)
	}
}

impl<'a, H, I> Default for PairsIter<'a, H, I>
where
	H: Hasher,
	I: StorageIterator<H> + Default,
{
	fn default() -> Self {
		Self {
			backend: Default::default(),
			raw_iter: Default::default(),
			_phantom: Default::default(),
		}
	}
}

impl<'a, H, I> PairsIter<'a, H, I>
where
	H: Hasher,
	I: StorageIterator<H> + Default,
{
	#[cfg(feature = "std")]
	pub(crate) fn was_complete(&self) -> bool {
		self.raw_iter.was_complete()
	}
}

/// An iterator over storage keys.
pub struct KeysIter<'a, H, I>
where
	H: Hasher,
	I: StorageIterator<H>,
{
	backend: Option<&'a I::Backend>,
	raw_iter: I,
	_phantom: PhantomData<H>,
}

impl<'a, H, I> Iterator for KeysIter<'a, H, I>
where
	H: Hasher,
	I: StorageIterator<H>,
{
	type Item = Result<Vec<u8>, <I as StorageIterator<H>>::Error>;
	fn next(&mut self) -> Option<Self::Item> {
		self.raw_iter.next_key(self.backend.as_ref()?)
	}
}

impl<'a, H, I> Default for KeysIter<'a, H, I>
where
	H: Hasher,
	I: StorageIterator<H> + Default,
{
	fn default() -> Self {
		Self {
			backend: Default::default(),
			raw_iter: Default::default(),
			_phantom: Default::default(),
		}
	}
}

/// The transaction type used by [`Backend`].
///
/// This transaction contains all the changes that need to be applied to the backend to create the
/// state for a new block.
pub type BackendTransaction<H> = PrefixedMemoryDB<H>;

/// A state backend is used to read state data and can have changes committed
/// to it.
///
/// The clone operation (if implemented) should be cheap.
pub trait Backend<H: Hasher>: core::fmt::Debug {
	/// An error type when fetching data is not possible.
	type Error: super::Error;

	/// Type of trie backend storage.
	type TrieBackendStorage: TrieBackendStorage<H>;

	/// Type of the raw storage iterator.
	type RawIter: StorageIterator<H, Backend = Self, Error = Self::Error>;

	/// Get keyed storage or None if there is nothing associated.
	fn storage(&self, key: &[u8]) -> Result<Option<StorageValue>, Self::Error>;

	/// Get keyed storage value hash or None if there is nothing associated.
	fn storage_hash(&self, key: &[u8]) -> Result<Option<H::Out>, Self::Error>;

	/// Get the merkle value or None if there is nothing associated.
	fn closest_merkle_value(&self, key: &[u8]) -> Result<Option<MerkleValue<H::Out>>, Self::Error>;

	/// Get the child merkle value or None if there is nothing associated.
	fn child_closest_merkle_value(
		&self,
		child_info: &ChildInfo,
		key: &[u8],
	) -> Result<Option<MerkleValue<H::Out>>, Self::Error>;

	/// Get child keyed child storage or None if there is nothing associated.
	fn child_storage(
		&self,
		child_info: &ChildInfo,
		key: &[u8],
	) -> Result<Option<StorageValue>, Self::Error>;

	/// Get child keyed storage value hash or None if there is nothing associated.
	fn child_storage_hash(
		&self,
		child_info: &ChildInfo,
		key: &[u8],
	) -> Result<Option<H::Out>, Self::Error>;

	/// true if a key exists in storage.
	fn exists_storage(&self, key: &[u8]) -> Result<bool, Self::Error> {
		Ok(self.storage_hash(key)?.is_some())
	}

	/// true if a key exists in child storage.
	fn exists_child_storage(
		&self,
		child_info: &ChildInfo,
		key: &[u8],
	) -> Result<bool, Self::Error> {
		Ok(self.child_storage_hash(child_info, key)?.is_some())
	}

	/// Return the next key in storage in lexicographic order or `None` if there is no value.
	fn next_storage_key(&self, key: &[u8]) -> Result<Option<StorageKey>, Self::Error>;

	/// Return the next key in child storage in lexicographic order or `None` if there is no value.
	fn next_child_storage_key(
		&self,
		child_info: &ChildInfo,
		key: &[u8],
	) -> Result<Option<StorageKey>, Self::Error>;

	/// Calculate the storage root, with given delta over what is already stored in
	/// the backend, and produce a "transaction" that can be used to commit.
	/// Does not include child storage updates.
	fn storage_root<'a>(
		&self,
		delta: impl Iterator<Item = (&'a [u8], Option<&'a [u8]>)>,
		state_version: StateVersion,
	) -> (H::Out, BackendTransaction<H>)
	where
		H::Out: Ord;

	/// Calculate the child storage root, with given delta over what is already stored in
	/// the backend, and produce a "transaction" that can be used to commit. The second argument
	/// is true if child storage root equals default storage root.
	fn child_storage_root<'a>(
		&self,
		child_info: &ChildInfo,
		delta: impl Iterator<Item = (&'a [u8], Option<&'a [u8]>)>,
		state_version: StateVersion,
	) -> (H::Out, bool, BackendTransaction<H>)
	where
		H::Out: Ord;

	/// Returns a lifetimeless raw storage iterator.
	fn raw_iter(&self, args: IterArgs) -> Result<Self::RawIter, Self::Error>;

	/// Get an iterator over key/value pairs.
	fn pairs<'a>(&'a self, args: IterArgs) -> Result<PairsIter<'a, H, Self::RawIter>, Self::Error> {
		Ok(PairsIter {
			backend: Some(self),
			raw_iter: self.raw_iter(args)?,
			_phantom: Default::default(),
		})
	}

	/// Get an iterator over keys.
	fn keys<'a>(&'a self, args: IterArgs) -> Result<KeysIter<'a, H, Self::RawIter>, Self::Error> {
		Ok(KeysIter {
			backend: Some(self),
			raw_iter: self.raw_iter(args)?,
			_phantom: Default::default(),
		})
	}

	/// Calculate the storage root, with given delta over what is already stored
	/// in the backend, and produce a "transaction" that can be used to commit.
	/// Does include child storage updates.
	fn full_storage_root<'a>(
		&self,
		delta: impl Iterator<Item = (&'a [u8], Option<&'a [u8]>)>,
		child_deltas: impl Iterator<
			Item = (&'a ChildInfo, impl Iterator<Item = (&'a [u8], Option<&'a [u8]>)>),
		>,
		state_version: StateVersion,
	) -> (H::Out, BackendTransaction<H>)
	where
		H::Out: Ord + Encode,
	{
		let mut txs = BackendTransaction::default();
		let mut child_roots: Vec<_> = Default::default();
		// child first
		for (child_info, child_delta) in child_deltas {
			let (child_root, empty, child_txs) =
				self.child_storage_root(child_info, child_delta, state_version);
			let prefixed_storage_key = child_info.prefixed_storage_key();
			txs.consolidate(child_txs);
			if empty {
				child_roots.push((prefixed_storage_key.into_inner(), None));
			} else {
				child_roots.push((prefixed_storage_key.into_inner(), Some(child_root.encode())));
			}
		}
		let (root, parent_txs) = self.storage_root(
			delta
				.map(|(k, v)| (k, v.as_ref().map(|v| &v[..])))
				.chain(child_roots.iter().map(|(k, v)| (&k[..], v.as_ref().map(|v| &v[..])))),
			state_version,
		);
		txs.consolidate(parent_txs);

		(root, txs)
	}

	/// Register stats from overlay of state machine.
	///
	/// By default nothing is registered.
	fn register_overlay_stats(&self, _stats: &crate::stats::StateMachineStats);

	/// Query backend usage statistics (i/o, memory)
	///
	/// Not all implementations are expected to be able to do this. In the
	/// case when they don't, empty statistics is returned.
	fn usage_info(&self) -> UsageInfo;

	/// Wipe the state database.
	fn wipe(&self) -> Result<(), Self::Error> {
		unimplemented!()
	}

	/// Commit given transaction to storage.
	fn commit(
		&self,
		_: H::Out,
		_: BackendTransaction<H>,
		_: StorageCollection,
		_: ChildStorageCollection,
	) -> Result<(), Self::Error> {
		unimplemented!()
	}

	/// Get the read/write count of the db
	fn read_write_count(&self) -> (u32, u32, u32, u32) {
		unimplemented!()
	}

	/// Get the read/write count of the db
	fn reset_read_write_count(&self) {
		unimplemented!()
	}

	/// Get the whitelist for tracking db reads/writes
	fn get_whitelist(&self) -> Vec<TrackedStorageKey> {
		Default::default()
	}

	/// Update the whitelist for tracking db reads/writes
	fn set_whitelist(&self, _: Vec<TrackedStorageKey>) {}

	/// Estimate proof size
	fn proof_size(&self) -> Option<u32> {
		unimplemented!()
	}

	/// Extend storage info for benchmarking db
	fn get_read_and_written_keys(&self) -> Vec<(Vec<u8>, u32, u32, bool)> {
		unimplemented!()
	}
}

/// Something that can be converted into a [`TrieBackend`].
#[cfg(feature = "std")]
pub trait AsTrieBackend<H: Hasher, C = sp_trie::cache::LocalTrieCache<H>> {
	/// Type of trie backend storage.
	type TrieBackendStorage: TrieBackendStorage<H>;

	/// Return the type as [`TrieBackend`].
	fn as_trie_backend(&self) -> &TrieBackend<Self::TrieBackendStorage, H, C>;
}

/// Wrapper to create a [`RuntimeCode`] from a type that implements [`Backend`].
#[cfg(feature = "std")]
pub struct BackendRuntimeCode<'a, B, H> {
	backend: &'a B,
	_marker: PhantomData<H>,
}

#[cfg(feature = "std")]
impl<'a, B: Backend<H>, H: Hasher> sp_core::traits::FetchRuntimeCode
	for BackendRuntimeCode<'a, B, H>
{
	fn fetch_runtime_code(&self) -> Option<std::borrow::Cow<[u8]>> {
		self.backend
			.storage(sp_core::storage::well_known_keys::CODE)
			.ok()
			.flatten()
			.map(Into::into)
	}
}

#[cfg(feature = "std")]
impl<'a, B: Backend<H>, H: Hasher> BackendRuntimeCode<'a, B, H>
where
	H::Out: Encode,
{
	/// Create a new instance.
	pub fn new(backend: &'a B) -> Self {
		Self { backend, _marker: PhantomData }
	}

	/// Return the [`RuntimeCode`] build from the wrapped `backend`.
	pub fn runtime_code(&self) -> Result<RuntimeCode, &'static str> {
		let hash = self
			.backend
			.storage_hash(sp_core::storage::well_known_keys::CODE)
			.ok()
			.flatten()
			.ok_or("`:code` hash not found")?
			.encode();
		let heap_pages = self
			.backend
			.storage(sp_core::storage::well_known_keys::HEAP_PAGES)
			.ok()
			.flatten()
			.and_then(|d| codec::Decode::decode(&mut &d[..]).ok());

		Ok(RuntimeCode { code_fetcher: self, hash, heap_pages })
	}
}