1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Trie recorder
//!
//! Provides an implementation of the [`TrieRecorder`](trie_db::TrieRecorder) trait. It can be used
//! to record storage accesses to the state to generate a [`StorageProof`].

use crate::{NodeCodec, StorageProof};
use codec::Encode;
use hash_db::Hasher;
use parking_lot::{Mutex, MutexGuard};
use std::{
	collections::{HashMap, HashSet},
	marker::PhantomData,
	mem,
	ops::DerefMut,
	sync::{
		atomic::{AtomicUsize, Ordering},
		Arc,
	},
};
use trie_db::{RecordedForKey, TrieAccess};

const LOG_TARGET: &str = "trie-recorder";

/// Stores all the information per transaction.
#[derive(Default)]
struct Transaction<H> {
	/// Stores transaction information about [`RecorderInner::recorded_keys`].
	///
	/// For each transaction we only store the `storage_root` and the old states per key. `None`
	/// state means that the key wasn't recorded before.
	recorded_keys: HashMap<H, HashMap<Arc<[u8]>, Option<RecordedForKey>>>,
	/// Stores transaction information about [`RecorderInner::accessed_nodes`].
	///
	/// For each transaction we only store the hashes of added nodes.
	accessed_nodes: HashSet<H>,
}

/// The internals of [`Recorder`].
struct RecorderInner<H> {
	/// The keys for that we have recorded the trie nodes and if we have recorded up to the value.
	///
	/// Mapping: `StorageRoot -> (Key -> RecordedForKey)`.
	recorded_keys: HashMap<H, HashMap<Arc<[u8]>, RecordedForKey>>,

	/// Currently active transactions.
	transactions: Vec<Transaction<H>>,

	/// The encoded nodes we accessed while recording.
	///
	/// Mapping: `Hash(Node) -> Node`.
	accessed_nodes: HashMap<H, Vec<u8>>,
}

impl<H> Default for RecorderInner<H> {
	fn default() -> Self {
		Self {
			recorded_keys: Default::default(),
			accessed_nodes: Default::default(),
			transactions: Vec::new(),
		}
	}
}

/// The trie recorder.
///
/// Owns the recorded data. Is used to transform data into a storage
/// proof and to provide transaction support. The `as_trie_recorder` method provides a
/// [`trie_db::TrieDB`] compatible recorder that implements the actual recording logic.
pub struct Recorder<H: Hasher> {
	inner: Arc<Mutex<RecorderInner<H::Out>>>,
	/// The estimated encoded size of the storage proof this recorder will produce.
	///
	/// We store this in an atomic to be able to fetch the value while the `inner` is may locked.
	encoded_size_estimation: Arc<AtomicUsize>,
}

impl<H: Hasher> Default for Recorder<H> {
	fn default() -> Self {
		Self { inner: Default::default(), encoded_size_estimation: Arc::new(0.into()) }
	}
}

impl<H: Hasher> Clone for Recorder<H> {
	fn clone(&self) -> Self {
		Self {
			inner: self.inner.clone(),
			encoded_size_estimation: self.encoded_size_estimation.clone(),
		}
	}
}

impl<H: Hasher> Recorder<H> {
	/// Returns [`RecordedForKey`] per recorded key per trie.
	///
	/// There are multiple tries when working with e.g. child tries.
	pub fn recorded_keys(&self) -> HashMap<<H as Hasher>::Out, HashMap<Arc<[u8]>, RecordedForKey>> {
		self.inner.lock().recorded_keys.clone()
	}

	/// Returns the recorder as [`TrieRecorder`](trie_db::TrieRecorder) compatible type.
	///
	/// - `storage_root`: The storage root of the trie for which accesses are recorded. This is
	///   important when recording access to different tries at once (like top and child tries).
	///
	/// NOTE: This locks a mutex that stays locked until the return value is dropped.
	#[inline]
	pub fn as_trie_recorder(&self, storage_root: H::Out) -> TrieRecorder<'_, H> {
		TrieRecorder::<H> {
			inner: self.inner.lock(),
			storage_root,
			encoded_size_estimation: self.encoded_size_estimation.clone(),
			_phantom: PhantomData,
		}
	}

	/// Drain the recording into a [`StorageProof`].
	///
	/// While a recorder can be cloned, all share the same internal state. After calling this
	/// function, all other instances will have their internal state reset as well.
	///
	/// If you don't want to drain the recorded state, use [`Self::to_storage_proof`].
	///
	/// Returns the [`StorageProof`].
	pub fn drain_storage_proof(self) -> StorageProof {
		let mut recorder = mem::take(&mut *self.inner.lock());
		StorageProof::new(recorder.accessed_nodes.drain().map(|(_, v)| v))
	}

	/// Convert the recording to a [`StorageProof`].
	///
	/// In contrast to [`Self::drain_storage_proof`] this doesn't consume and doesn't clear the
	/// recordings.
	///
	/// Returns the [`StorageProof`].
	pub fn to_storage_proof(&self) -> StorageProof {
		let recorder = self.inner.lock();
		StorageProof::new(recorder.accessed_nodes.values().cloned())
	}

	/// Returns the estimated encoded size of the proof.
	///
	/// The estimation is based on all the nodes that were accessed until now while
	/// accessing the trie.
	pub fn estimate_encoded_size(&self) -> usize {
		self.encoded_size_estimation.load(Ordering::Relaxed)
	}

	/// Reset the state.
	///
	/// This discards all recorded data.
	pub fn reset(&self) {
		mem::take(&mut *self.inner.lock());
		self.encoded_size_estimation.store(0, Ordering::Relaxed);
	}

	/// Start a new transaction.
	pub fn start_transaction(&self) {
		let mut inner = self.inner.lock();
		inner.transactions.push(Default::default());
	}

	/// Rollback the latest transaction.
	///
	/// Returns an error if there wasn't any active transaction.
	pub fn rollback_transaction(&self) -> Result<(), ()> {
		let mut inner = self.inner.lock();

		// We locked `inner` and can just update the encoded size locally and then store it back to
		// the atomic.
		let mut new_encoded_size_estimation = self.encoded_size_estimation.load(Ordering::Relaxed);
		let transaction = inner.transactions.pop().ok_or(())?;

		transaction.accessed_nodes.into_iter().for_each(|n| {
			if let Some(old) = inner.accessed_nodes.remove(&n) {
				new_encoded_size_estimation =
					new_encoded_size_estimation.saturating_sub(old.encoded_size());
			}
		});

		transaction.recorded_keys.into_iter().for_each(|(storage_root, keys)| {
			keys.into_iter().for_each(|(k, old_state)| {
				if let Some(state) = old_state {
					inner.recorded_keys.entry(storage_root).or_default().insert(k, state);
				} else {
					inner.recorded_keys.entry(storage_root).or_default().remove(&k);
				}
			});
		});

		self.encoded_size_estimation
			.store(new_encoded_size_estimation, Ordering::Relaxed);

		Ok(())
	}

	/// Commit the latest transaction.
	///
	/// Returns an error if there wasn't any active transaction.
	pub fn commit_transaction(&self) -> Result<(), ()> {
		let mut inner = self.inner.lock();

		let transaction = inner.transactions.pop().ok_or(())?;

		if let Some(parent_transaction) = inner.transactions.last_mut() {
			parent_transaction.accessed_nodes.extend(transaction.accessed_nodes);

			transaction.recorded_keys.into_iter().for_each(|(storage_root, keys)| {
				keys.into_iter().for_each(|(k, old_state)| {
					parent_transaction
						.recorded_keys
						.entry(storage_root)
						.or_default()
						.entry(k)
						.or_insert(old_state);
				})
			});
		}

		Ok(())
	}
}

impl<H: Hasher> crate::ProofSizeProvider for Recorder<H> {
	fn estimate_encoded_size(&self) -> usize {
		Recorder::estimate_encoded_size(self)
	}
}

/// The [`TrieRecorder`](trie_db::TrieRecorder) implementation.
pub struct TrieRecorder<'a, H: Hasher> {
	inner: MutexGuard<'a, RecorderInner<H::Out>>,
	storage_root: H::Out,
	encoded_size_estimation: Arc<AtomicUsize>,
	_phantom: PhantomData<H>,
}

impl<H: Hasher> crate::TrieRecorderProvider<H> for Recorder<H> {
	type Recorder<'a> = TrieRecorder<'a, H> where H: 'a;

	fn drain_storage_proof(self) -> Option<StorageProof> {
		Some(Recorder::drain_storage_proof(self))
	}

	fn as_trie_recorder(&self, storage_root: H::Out) -> Self::Recorder<'_> {
		Recorder::as_trie_recorder(&self, storage_root)
	}
}

impl<'a, H: Hasher> TrieRecorder<'a, H> {
	/// Update the recorded keys entry for the given `full_key`.
	fn update_recorded_keys(&mut self, full_key: &[u8], access: RecordedForKey) {
		let inner = self.inner.deref_mut();

		let entry =
			inner.recorded_keys.entry(self.storage_root).or_default().entry(full_key.into());

		let key = entry.key().clone();

		// We don't need to update the record if we only accessed the `Hash` for the given
		// `full_key`. Only `Value` access can be an upgrade from `Hash`.
		let entry = if matches!(access, RecordedForKey::Value) {
			entry.and_modify(|e| {
				if let Some(tx) = inner.transactions.last_mut() {
					// Store the previous state only once per transaction.
					tx.recorded_keys
						.entry(self.storage_root)
						.or_default()
						.entry(key.clone())
						.or_insert(Some(*e));
				}

				*e = access;
			})
		} else {
			entry
		};

		entry.or_insert_with(|| {
			if let Some(tx) = inner.transactions.last_mut() {
				// The key wasn't yet recorded, so there isn't any old state.
				tx.recorded_keys
					.entry(self.storage_root)
					.or_default()
					.entry(key)
					.or_insert(None);
			}

			access
		});
	}
}

impl<'a, H: Hasher> trie_db::TrieRecorder<H::Out> for TrieRecorder<'a, H> {
	fn record(&mut self, access: TrieAccess<H::Out>) {
		let mut encoded_size_update = 0;

		match access {
			TrieAccess::NodeOwned { hash, node_owned } => {
				tracing::trace!(
					target: LOG_TARGET,
					hash = ?hash,
					"Recording node",
				);

				let inner = self.inner.deref_mut();

				inner.accessed_nodes.entry(hash).or_insert_with(|| {
					let node = node_owned.to_encoded::<NodeCodec<H>>();

					encoded_size_update += node.encoded_size();

					if let Some(tx) = inner.transactions.last_mut() {
						tx.accessed_nodes.insert(hash);
					}

					node
				});
			},
			TrieAccess::EncodedNode { hash, encoded_node } => {
				tracing::trace!(
					target: LOG_TARGET,
					hash = ?hash,
					"Recording node",
				);

				let inner = self.inner.deref_mut();

				inner.accessed_nodes.entry(hash).or_insert_with(|| {
					let node = encoded_node.into_owned();

					encoded_size_update += node.encoded_size();

					if let Some(tx) = inner.transactions.last_mut() {
						tx.accessed_nodes.insert(hash);
					}

					node
				});
			},
			TrieAccess::Value { hash, value, full_key } => {
				tracing::trace!(
					target: LOG_TARGET,
					hash = ?hash,
					key = ?sp_core::hexdisplay::HexDisplay::from(&full_key),
					"Recording value",
				);

				let inner = self.inner.deref_mut();

				inner.accessed_nodes.entry(hash).or_insert_with(|| {
					let value = value.into_owned();

					encoded_size_update += value.encoded_size();

					if let Some(tx) = inner.transactions.last_mut() {
						tx.accessed_nodes.insert(hash);
					}

					value
				});

				self.update_recorded_keys(full_key, RecordedForKey::Value);
			},
			TrieAccess::Hash { full_key } => {
				tracing::trace!(
					target: LOG_TARGET,
					key = ?sp_core::hexdisplay::HexDisplay::from(&full_key),
					"Recorded hash access for key",
				);

				// We don't need to update the `encoded_size_update` as the hash was already
				// accounted for by the recorded node that holds the hash.
				self.update_recorded_keys(full_key, RecordedForKey::Hash);
			},
			TrieAccess::NonExisting { full_key } => {
				tracing::trace!(
					target: LOG_TARGET,
					key = ?sp_core::hexdisplay::HexDisplay::from(&full_key),
					"Recorded non-existing value access for key",
				);

				// Non-existing access means we recorded all trie nodes up to the value.
				// Not the actual value, as it doesn't exist, but all trie nodes to know
				// that the value doesn't exist in the trie.
				self.update_recorded_keys(full_key, RecordedForKey::Value);
			},
			TrieAccess::InlineValue { full_key } => {
				tracing::trace!(
					target: LOG_TARGET,
					key = ?sp_core::hexdisplay::HexDisplay::from(&full_key),
					"Recorded inline value access for key",
				);

				// A value was accessed that is stored inline a node and we recorded all trie nodes
				// to access this value.
				self.update_recorded_keys(full_key, RecordedForKey::Value);
			},
		};

		self.encoded_size_estimation.fetch_add(encoded_size_update, Ordering::Relaxed);
	}

	fn trie_nodes_recorded_for_key(&self, key: &[u8]) -> RecordedForKey {
		self.inner
			.recorded_keys
			.get(&self.storage_root)
			.and_then(|k| k.get(key).copied())
			.unwrap_or(RecordedForKey::None)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::tests::create_trie;
	use trie_db::{Trie, TrieDBBuilder, TrieRecorder};

	type MemoryDB = crate::MemoryDB<sp_core::Blake2Hasher>;
	type Layout = crate::LayoutV1<sp_core::Blake2Hasher>;
	type Recorder = super::Recorder<sp_core::Blake2Hasher>;

	const TEST_DATA: &[(&[u8], &[u8])] =
		&[(b"key1", &[1; 64]), (b"key2", &[2; 64]), (b"key3", &[3; 64]), (b"key4", &[4; 64])];

	#[test]
	fn recorder_works() {
		let (db, root) = create_trie::<Layout>(TEST_DATA);

		let recorder = Recorder::default();

		{
			let mut trie_recorder = recorder.as_trie_recorder(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root)
				.with_recorder(&mut trie_recorder)
				.build();
			assert_eq!(TEST_DATA[0].1.to_vec(), trie.get(TEST_DATA[0].0).unwrap().unwrap());
		}

		let storage_proof = recorder.drain_storage_proof();
		let memory_db: MemoryDB = storage_proof.into_memory_db();

		// Check that we recorded the required data
		let trie = TrieDBBuilder::<Layout>::new(&memory_db, &root).build();
		assert_eq!(TEST_DATA[0].1.to_vec(), trie.get(TEST_DATA[0].0).unwrap().unwrap());
	}

	#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
	struct RecorderStats {
		accessed_nodes: usize,
		recorded_keys: usize,
		estimated_size: usize,
	}

	impl RecorderStats {
		fn extract(recorder: &Recorder) -> Self {
			let inner = recorder.inner.lock();

			let recorded_keys =
				inner.recorded_keys.iter().flat_map(|(_, keys)| keys.keys()).count();

			Self {
				recorded_keys,
				accessed_nodes: inner.accessed_nodes.len(),
				estimated_size: recorder.estimate_encoded_size(),
			}
		}
	}

	#[test]
	fn recorder_transactions_rollback_work() {
		let (db, root) = create_trie::<Layout>(TEST_DATA);

		let recorder = Recorder::default();
		let mut stats = vec![RecorderStats::default()];

		for i in 0..4 {
			recorder.start_transaction();
			{
				let mut trie_recorder = recorder.as_trie_recorder(root);
				let trie = TrieDBBuilder::<Layout>::new(&db, &root)
					.with_recorder(&mut trie_recorder)
					.build();

				assert_eq!(TEST_DATA[i].1.to_vec(), trie.get(TEST_DATA[i].0).unwrap().unwrap());
			}
			stats.push(RecorderStats::extract(&recorder));
		}

		assert_eq!(4, recorder.inner.lock().transactions.len());

		for i in 0..5 {
			assert_eq!(stats[4 - i], RecorderStats::extract(&recorder));

			let storage_proof = recorder.to_storage_proof();
			let memory_db: MemoryDB = storage_proof.into_memory_db();

			// Check that we recorded the required data
			let trie = TrieDBBuilder::<Layout>::new(&memory_db, &root).build();

			// Check that the required data is still present.
			for a in 0..4 {
				if a < 4 - i {
					assert_eq!(TEST_DATA[a].1.to_vec(), trie.get(TEST_DATA[a].0).unwrap().unwrap());
				} else {
					// All the data that we already rolled back, should be gone!
					assert!(trie.get(TEST_DATA[a].0).is_err());
				}
			}

			if i < 4 {
				recorder.rollback_transaction().unwrap();
			}
		}

		assert_eq!(0, recorder.inner.lock().transactions.len());
	}

	#[test]
	fn recorder_transactions_commit_work() {
		let (db, root) = create_trie::<Layout>(TEST_DATA);

		let recorder = Recorder::default();

		for i in 0..4 {
			recorder.start_transaction();
			{
				let mut trie_recorder = recorder.as_trie_recorder(root);
				let trie = TrieDBBuilder::<Layout>::new(&db, &root)
					.with_recorder(&mut trie_recorder)
					.build();

				assert_eq!(TEST_DATA[i].1.to_vec(), trie.get(TEST_DATA[i].0).unwrap().unwrap());
			}
		}

		let stats = RecorderStats::extract(&recorder);
		assert_eq!(4, recorder.inner.lock().transactions.len());

		for _ in 0..4 {
			recorder.commit_transaction().unwrap();
		}
		assert_eq!(0, recorder.inner.lock().transactions.len());
		assert_eq!(stats, RecorderStats::extract(&recorder));

		let storage_proof = recorder.to_storage_proof();
		let memory_db: MemoryDB = storage_proof.into_memory_db();

		// Check that we recorded the required data
		let trie = TrieDBBuilder::<Layout>::new(&memory_db, &root).build();

		// Check that the required data is still present.
		for i in 0..4 {
			assert_eq!(TEST_DATA[i].1.to_vec(), trie.get(TEST_DATA[i].0).unwrap().unwrap());
		}
	}

	#[test]
	fn recorder_transactions_commit_and_rollback_work() {
		let (db, root) = create_trie::<Layout>(TEST_DATA);

		let recorder = Recorder::default();

		for i in 0..2 {
			recorder.start_transaction();
			{
				let mut trie_recorder = recorder.as_trie_recorder(root);
				let trie = TrieDBBuilder::<Layout>::new(&db, &root)
					.with_recorder(&mut trie_recorder)
					.build();

				assert_eq!(TEST_DATA[i].1.to_vec(), trie.get(TEST_DATA[i].0).unwrap().unwrap());
			}
		}

		recorder.rollback_transaction().unwrap();

		for i in 2..4 {
			recorder.start_transaction();
			{
				let mut trie_recorder = recorder.as_trie_recorder(root);
				let trie = TrieDBBuilder::<Layout>::new(&db, &root)
					.with_recorder(&mut trie_recorder)
					.build();

				assert_eq!(TEST_DATA[i].1.to_vec(), trie.get(TEST_DATA[i].0).unwrap().unwrap());
			}
		}

		recorder.rollback_transaction().unwrap();

		assert_eq!(2, recorder.inner.lock().transactions.len());

		for _ in 0..2 {
			recorder.commit_transaction().unwrap();
		}

		assert_eq!(0, recorder.inner.lock().transactions.len());

		let storage_proof = recorder.to_storage_proof();
		let memory_db: MemoryDB = storage_proof.into_memory_db();

		// Check that we recorded the required data
		let trie = TrieDBBuilder::<Layout>::new(&memory_db, &root).build();

		// Check that the required data is still present.
		for i in 0..4 {
			if i % 2 == 0 {
				assert_eq!(TEST_DATA[i].1.to_vec(), trie.get(TEST_DATA[i].0).unwrap().unwrap());
			} else {
				assert!(trie.get(TEST_DATA[i].0).is_err());
			}
		}
	}

	#[test]
	fn recorder_transaction_accessed_keys_works() {
		let key = TEST_DATA[0].0;
		let (db, root) = create_trie::<Layout>(TEST_DATA);

		let recorder = Recorder::default();

		{
			let trie_recorder = recorder.as_trie_recorder(root);
			assert!(matches!(trie_recorder.trie_nodes_recorded_for_key(key), RecordedForKey::None));
		}

		recorder.start_transaction();
		{
			let mut trie_recorder = recorder.as_trie_recorder(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root)
				.with_recorder(&mut trie_recorder)
				.build();

			assert_eq!(
				sp_core::Blake2Hasher::hash(TEST_DATA[0].1),
				trie.get_hash(TEST_DATA[0].0).unwrap().unwrap()
			);
			assert!(matches!(trie_recorder.trie_nodes_recorded_for_key(key), RecordedForKey::Hash));
		}

		recorder.start_transaction();
		{
			let mut trie_recorder = recorder.as_trie_recorder(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root)
				.with_recorder(&mut trie_recorder)
				.build();

			assert_eq!(TEST_DATA[0].1.to_vec(), trie.get(TEST_DATA[0].0).unwrap().unwrap());
			assert!(matches!(
				trie_recorder.trie_nodes_recorded_for_key(key),
				RecordedForKey::Value,
			));
		}

		recorder.rollback_transaction().unwrap();
		{
			let trie_recorder = recorder.as_trie_recorder(root);
			assert!(matches!(trie_recorder.trie_nodes_recorded_for_key(key), RecordedForKey::Hash));
		}

		recorder.rollback_transaction().unwrap();
		{
			let trie_recorder = recorder.as_trie_recorder(root);
			assert!(matches!(trie_recorder.trie_nodes_recorded_for_key(key), RecordedForKey::None));
		}

		recorder.start_transaction();
		{
			let mut trie_recorder = recorder.as_trie_recorder(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root)
				.with_recorder(&mut trie_recorder)
				.build();

			assert_eq!(TEST_DATA[0].1.to_vec(), trie.get(TEST_DATA[0].0).unwrap().unwrap());
			assert!(matches!(
				trie_recorder.trie_nodes_recorded_for_key(key),
				RecordedForKey::Value,
			));
		}

		recorder.start_transaction();
		{
			let mut trie_recorder = recorder.as_trie_recorder(root);
			let trie = TrieDBBuilder::<Layout>::new(&db, &root)
				.with_recorder(&mut trie_recorder)
				.build();

			assert_eq!(
				sp_core::Blake2Hasher::hash(TEST_DATA[0].1),
				trie.get_hash(TEST_DATA[0].0).unwrap().unwrap()
			);
			assert!(matches!(
				trie_recorder.trie_nodes_recorded_for_key(key),
				RecordedForKey::Value
			));
		}

		recorder.rollback_transaction().unwrap();
		{
			let trie_recorder = recorder.as_trie_recorder(root);
			assert!(matches!(
				trie_recorder.trie_nodes_recorded_for_key(key),
				RecordedForKey::Value
			));
		}

		recorder.rollback_transaction().unwrap();
		{
			let trie_recorder = recorder.as_trie_recorder(root);
			assert!(matches!(trie_recorder.trie_nodes_recorded_for_key(key), RecordedForKey::None));
		}
	}
}