1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
// This implementation is based on:
// https://github.com/Amanieu/parking_lot/tree/fa294cd677936bf365afa0497039953b10c722f5/lock_api
// and
// https://github.com/mvdnes/spin-rs/tree/7516c8037d3d15712ba4d8499ab075e97a19d778
use core::marker::PhantomData;
use core::sync::atomic::{AtomicBool, Ordering};
use lock_api::{GuardSend, RawMutex};
use crate::relax::{Backoff, Relax, Spin};
/// Provides mutual exclusion based on spinning on an `AtomicBool`.
///
/// It's recommended to use this type either combination with [`lock_api::Mutex`] or
/// through the [`Spinlock`] type.
///
/// ## Example
///
/// ```rust
/// use lock_api::RawMutex;
/// use spinning_top::RawSpinlock;
///
/// let lock: RawSpinlock = RawSpinlock::INIT;
/// assert_eq!(lock.try_lock(), true); // lock it
/// assert_eq!(lock.try_lock(), false); // can't be locked a second time
/// unsafe { lock.unlock(); } // unlock it
/// assert_eq!(lock.try_lock(), true); // now it can be locked again
#[derive(Debug)]
pub struct RawSpinlock<R: Relax = Spin> {
/// Whether the spinlock is locked.
locked: AtomicBool,
relax: PhantomData<R>,
}
impl<R: Relax> RawSpinlock<R> {
// Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
// when called in a loop.
#[inline]
fn try_lock_weak(&self) -> bool {
// The Orderings are the same as try_lock, and are still correct here.
self.locked
.compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
}
}
unsafe impl<R: Relax> RawMutex for RawSpinlock<R> {
const INIT: RawSpinlock<R> = RawSpinlock {
locked: AtomicBool::new(false),
relax: PhantomData,
};
// A spinlock guard can be sent to another thread and unlocked there
type GuardMarker = GuardSend;
#[inline]
fn lock(&self) {
let mut relax = R::default();
while !self.try_lock_weak() {
// Wait until the lock looks unlocked before retrying
// Code from https://github.com/mvdnes/spin-rs/commit/d3e60d19adbde8c8e9d3199c7c51e51ee5a20bf6
while self.is_locked() {
// Tell the CPU that we're inside a busy-wait loop
relax.relax();
}
}
}
#[inline]
fn try_lock(&self) -> bool {
// Code taken from:
// https://github.com/Amanieu/parking_lot/blob/fa294cd677936bf365afa0497039953b10c722f5/lock_api/src/lib.rs#L49-L53
//
// The reason for using a strong compare_exchange is explained here:
// https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
//
// The second Ordering argument specfies the ordering when the compare_exchange
// fails. Since we don't access any critical data if we fail to acquire the lock,
// we can use a Relaxed ordering in this case.
self.locked
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
}
#[inline]
unsafe fn unlock(&self) {
self.locked.store(false, Ordering::Release);
}
#[inline]
fn is_locked(&self) -> bool {
// Relaxed is sufficient because this operation does not provide synchronization, only atomicity.
self.locked.load(Ordering::Relaxed)
}
}
/// A mutual exclusion (Mutex) type based on busy-waiting.
///
/// Calling `lock` (or `try_lock`) on this type returns a [`SpinlockGuard`], which
/// automatically frees the lock when it goes out of scope.
///
/// ## Example
///
/// ```rust
/// use spinning_top::Spinlock;
///
/// fn main() {
/// // Wrap some data in a spinlock
/// let data = String::from("Hello");
/// let spinlock = Spinlock::new(data);
/// make_uppercase(&spinlock); // only pass a shared reference
///
/// // We have ownership of the spinlock, so we can extract the data without locking
/// // Note: this consumes the spinlock
/// let data = spinlock.into_inner();
/// assert_eq!(data.as_str(), "HELLO");
/// }
///
/// fn make_uppercase(spinlock: &Spinlock<String>) {
/// // Lock the spinlock to get a mutable reference to the data
/// let mut locked_data = spinlock.lock();
/// assert_eq!(locked_data.as_str(), "Hello");
/// locked_data.make_ascii_uppercase();
///
/// // the lock is automatically freed at the end of the scope
/// }
/// ```
///
/// ## Usage in statics
///
/// `Spinlock::new` is a `const` function. This makes the `Spinlock` type
/// usable in statics:
///
/// ```rust
/// use spinning_top::Spinlock;
///
/// static DATA: Spinlock<u32> = Spinlock::new(0);
///
/// fn main() {
/// let mut data = DATA.lock();
/// *data += 1;
/// assert_eq!(*data, 1);
/// }
/// ```
pub type Spinlock<T> = lock_api::Mutex<RawSpinlock<Spin>, T>;
/// A RAII guard that frees the spinlock when it goes out of scope.
///
/// Allows access to the locked data through the [`core::ops::Deref`] and [`core::ops::DerefMut`] operations.
///
/// ## Example
///
/// ```rust
/// use spinning_top::{guard::SpinlockGuard, Spinlock};
///
/// let spinlock = Spinlock::new(Vec::new());
///
/// // begin a new scope
/// {
/// // lock the spinlock to create a `SpinlockGuard`
/// let mut guard: SpinlockGuard<_> = spinlock.lock();
///
/// // guard can be used like a `&mut Vec` since it implements `DerefMut`
/// guard.push(1);
/// guard.push(2);
/// assert_eq!(guard.len(), 2);
/// } // guard is dropped -> frees the spinlock again
///
/// // spinlock is unlocked again
/// assert!(spinlock.try_lock().is_some());
/// ```
pub type SpinlockGuard<'a, T> = lock_api::MutexGuard<'a, RawSpinlock<Spin>, T>;
/// A RAII guard returned by `SpinlockGuard::map`.
///
/// ## Example
/// ```rust
/// use spinning_top::{
/// guard::{MappedSpinlockGuard, SpinlockGuard},
/// Spinlock,
/// };
///
/// let spinlock = Spinlock::new(Some(3));
///
/// // Begin a new scope.
/// {
/// // Lock the spinlock to create a `SpinlockGuard`.
/// let mut guard: SpinlockGuard<_> = spinlock.lock();
///
/// // Map the internal value of `guard`. `guard` is moved.
/// let mut mapped: MappedSpinlockGuard<'_, _> =
/// SpinlockGuard::map(guard, |g| g.as_mut().unwrap());
/// assert_eq!(*mapped, 3);
///
/// *mapped = 5;
/// assert_eq!(*mapped, 5);
/// } // `mapped` is dropped -> frees the spinlock again.
///
/// // The operation is reflected to the original lock.
/// assert_eq!(*spinlock.lock(), Some(5));
/// ```
pub type MappedSpinlockGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawSpinlock<Spin>, T>;
/// A [`lock_api::ArcMutexGuard`] based on [`RawSpinlock`]`.
#[cfg(feature = "arc_lock")]
pub type ArcSpinlockGuard<T> = lock_api::ArcMutexGuard<RawSpinlock<Spin>, T>;
/// A mutual exclusion (Mutex) type based on busy-waiting with exponential backoff.
///
/// Calling `lock` (or `try_lock`) on this type returns a [`BackoffSpinlockGuard`], which
/// automatically frees the lock when it goes out of scope.
///
/// ## Example
///
/// ```rust
/// use spinning_top::BackoffSpinlock;
///
/// fn main() {
/// // Wrap some data in a spinlock
/// let data = String::from("Hello");
/// let spinlock = BackoffSpinlock::new(data);
/// make_uppercase(&spinlock); // only pass a shared reference
///
/// // We have ownership of the spinlock, so we can extract the data without locking
/// // Note: this consumes the spinlock
/// let data = spinlock.into_inner();
/// assert_eq!(data.as_str(), "HELLO");
/// }
///
/// fn make_uppercase(spinlock: &BackoffSpinlock<String>) {
/// // Lock the spinlock to get a mutable reference to the data
/// let mut locked_data = spinlock.lock();
/// assert_eq!(locked_data.as_str(), "Hello");
/// locked_data.make_ascii_uppercase();
///
/// // the lock is automatically freed at the end of the scope
/// }
/// ```
///
/// ## Usage in statics
///
/// `BackoffSpinlock::new` is a `const` function. This makes the `BackoffSpinlock` type
/// usable in statics:
///
/// ```rust
/// use spinning_top::BackoffSpinlock;
///
/// static DATA: BackoffSpinlock<u32> = BackoffSpinlock::new(0);
///
/// fn main() {
/// let mut data = DATA.lock();
/// *data += 1;
/// assert_eq!(*data, 1);
/// }
/// ```
pub type BackoffSpinlock<T> = lock_api::Mutex<RawSpinlock<Backoff>, T>;
/// A RAII guard that frees the exponential backoff spinlock when it goes out of scope.
///
/// Allows access to the locked data through the [`core::ops::Deref`] and [`core::ops::DerefMut`] operations.
///
/// ## Example
///
/// ```rust
/// use spinning_top::{guard::BackoffSpinlockGuard, BackoffSpinlock};
///
/// let spinlock = BackoffSpinlock::new(Vec::new());
///
/// // begin a new scope
/// {
/// // lock the spinlock to create a `BackoffSpinlockGuard`
/// let mut guard: BackoffSpinlockGuard<_> = spinlock.lock();
///
/// // guard can be used like a `&mut Vec` since it implements `DerefMut`
/// guard.push(1);
/// guard.push(2);
/// assert_eq!(guard.len(), 2);
/// } // guard is dropped -> frees the spinlock again
///
/// // spinlock is unlocked again
/// assert!(spinlock.try_lock().is_some());
/// ```
pub type BackoffSpinlockGuard<'a, T> = lock_api::MutexGuard<'a, RawSpinlock<Backoff>, T>;
/// A RAII guard returned by `BackoffSpinlockGuard::map`.
///
/// ## Example
/// ```rust
/// use spinning_top::{
/// guard::{BackoffSpinlockGuard, MappedBackoffSpinlockGuard},
/// BackoffSpinlock,
/// };
///
/// let spinlock = BackoffSpinlock::new(Some(3));
///
/// // Begin a new scope.
/// {
/// // Lock the spinlock to create a `BackoffSpinlockGuard`.
/// let mut guard: BackoffSpinlockGuard<_> = spinlock.lock();
///
/// // Map the internal value of `guard`. `guard` is moved.
/// let mut mapped: MappedBackoffSpinlockGuard<'_, _> =
/// BackoffSpinlockGuard::map(guard, |g| g.as_mut().unwrap());
/// assert_eq!(*mapped, 3);
///
/// *mapped = 5;
/// assert_eq!(*mapped, 5);
/// } // `mapped` is dropped -> frees the spinlock again.
///
/// // The operation is reflected to the original lock.
/// assert_eq!(*spinlock.lock(), Some(5));
/// ```
pub type MappedBackoffSpinlockGuard<'a, T> =
lock_api::MappedMutexGuard<'a, RawSpinlock<Backoff>, T>;
/// A [`lock_api::ArcMutexGuard`] based on [`RawSpinlock`]`<`[`Backoff`]`>`.
#[cfg(feature = "arc_lock")]
pub type ArcBackoffSpinlockGuard<T> = lock_api::ArcMutexGuard<RawSpinlock<Backoff>, T>;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn create_and_lock() {
let spinlock = Spinlock::new(42);
let data = spinlock.try_lock();
assert!(data.is_some());
assert_eq!(*data.unwrap(), 42);
}
#[test]
fn mutual_exclusion() {
let spinlock = Spinlock::new(1);
let data = spinlock.try_lock();
assert!(data.is_some());
assert!(spinlock.try_lock().is_none());
assert!(spinlock.try_lock().is_none()); // still None
core::mem::drop(data);
assert!(spinlock.try_lock().is_some());
}
#[test]
fn three_locks() {
let spinlock1 = Spinlock::new(1);
let spinlock2 = Spinlock::new(2);
let spinlock3 = Spinlock::new(3);
let data1 = spinlock1.try_lock();
let data2 = spinlock2.try_lock();
let data3 = spinlock3.try_lock();
assert!(data1.is_some());
assert!(data2.is_some());
assert!(data3.is_some());
assert!(spinlock1.try_lock().is_none());
assert!(spinlock1.try_lock().is_none()); // still None
assert!(spinlock2.try_lock().is_none());
assert!(spinlock3.try_lock().is_none());
core::mem::drop(data3);
assert!(spinlock3.try_lock().is_some());
}
#[test]
fn mapped_lock() {
let spinlock = Spinlock::new([1, 2, 3]);
let data = spinlock.lock();
let mut mapped = SpinlockGuard::map(data, |d| &mut d[0]);
assert_eq!(*mapped, 1);
*mapped = 4;
assert_eq!(*mapped, 4);
core::mem::drop(mapped);
assert!(!spinlock.is_locked());
assert_eq!(*spinlock.lock(), [4, 2, 3]);
}
}