1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
//! ## Per-Layer Filtering
//!
//! Per-layer filters permit individual `Layer`s to have their own filter
//! configurations without interfering with other `Layer`s.
//!
//! This module is not public; the public APIs defined in this module are
//! re-exported in the top-level `filter` module. Therefore, this documentation
//! primarily concerns the internal implementation details. For the user-facing
//! public API documentation, see the individual public types in this module, as
//! well as the, see the `Layer` trait documentation's [per-layer filtering
//! section]][1].
//!
//! ## How does per-layer filtering work?
//!
//! As described in the API documentation, the [`Filter`] trait defines a
//! filtering strategy for a per-layer filter. We expect there will be a variety
//! of implementations of [`Filter`], both in `tracing-subscriber` and in user
//! code.
//!
//! To actually *use* a [`Filter`] implementation, it is combined with a
//! [`Layer`] by the [`Filtered`] struct defined in this module. [`Filtered`]
//! implements [`Layer`] by calling into the wrapped [`Layer`], or not, based on
//! the filtering strategy. While there will be a variety of types that implement
//! [`Filter`], all actual *uses* of per-layer filtering will occur through the
//! [`Filtered`] struct. Therefore, most of the implementation details live
//! there.
//!
//! [1]: crate::layer#per-layer-filtering
//! [`Filter`]: crate::layer::Filter
use crate::{
filter::LevelFilter,
layer::{self, Context, Layer},
registry,
};
use std::{
any::TypeId,
cell::{Cell, RefCell},
fmt,
marker::PhantomData,
ops::Deref,
sync::Arc,
thread_local,
};
use tracing_core::{
span,
subscriber::{Interest, Subscriber},
Dispatch, Event, Metadata,
};
pub mod combinator;
/// A [`Layer`] that wraps an inner [`Layer`] and adds a [`Filter`] which
/// controls what spans and events are enabled for that layer.
///
/// This is returned by the [`Layer::with_filter`] method. See the
/// [documentation on per-layer filtering][plf] for details.
///
/// [`Filter`]: crate::layer::Filter
/// [plf]: crate::layer#per-layer-filtering
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
#[derive(Clone)]
pub struct Filtered<L, F, S> {
filter: F,
layer: L,
id: MagicPlfDowncastMarker,
_s: PhantomData<fn(S)>,
}
/// Uniquely identifies an individual [`Filter`] instance in the context of
/// a [`Subscriber`].
///
/// When adding a [`Filtered`] [`Layer`] to a [`Subscriber`], the [`Subscriber`]
/// generates a `FilterId` for that [`Filtered`] layer. The [`Filtered`] layer
/// will then use the generated ID to query whether a particular span was
/// previously enabled by that layer's [`Filter`].
///
/// **Note**: Currently, the [`Registry`] type provided by this crate is the
/// **only** [`Subscriber`] implementation capable of participating in per-layer
/// filtering. Therefore, the `FilterId` type cannot currently be constructed by
/// code outside of `tracing-subscriber`. In the future, new APIs will be added to `tracing-subscriber` to
/// allow non-Registry [`Subscriber`]s to also participate in per-layer
/// filtering. When those APIs are added, subscribers will be responsible
/// for generating and assigning `FilterId`s.
///
/// [`Filter`]: crate::layer::Filter
/// [`Subscriber`]: tracing_core::Subscriber
/// [`Layer`]: crate::layer::Layer
/// [`Registry`]: crate::registry::Registry
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
#[derive(Copy, Clone)]
pub struct FilterId(u64);
/// A bitmap tracking which [`FilterId`]s have enabled a given span or
/// event.
///
/// This is currently a private type that's used exclusively by the
/// [`Registry`]. However, in the future, this may become a public API, in order
/// to allow user subscribers to host [`Filter`]s.
///
/// [`Registry`]: crate::Registry
/// [`Filter`]: crate::layer::Filter
#[derive(Default, Copy, Clone, Eq, PartialEq)]
pub(crate) struct FilterMap {
bits: u64,
}
/// The current state of `enabled` calls to per-layer filters on this
/// thread.
///
/// When `Filtered::enabled` is called, the filter will set the bit
/// corresponding to its ID if the filter will disable the event/span being
/// filtered. When the event or span is recorded, the per-layer filter will
/// check its bit to determine if it disabled that event or span, and skip
/// forwarding the event or span to the inner layer if the bit is set. Once
/// a span or event has been skipped by a per-layer filter, it unsets its
/// bit, so that the `FilterMap` has been cleared for the next set of
/// `enabled` calls.
///
/// FilterState is also read by the `Registry`, for two reasons:
///
/// 1. When filtering a span, the Registry must store the `FilterMap`
/// generated by `Filtered::enabled` calls for that span as part of the
/// span's per-span data. This allows `Filtered` layers to determine
/// whether they had previously disabled a given span, and avoid showing it
/// to the wrapped layer if it was disabled.
///
/// This allows `Filtered` layers to also filter out the spans they
/// disable from span traversals (such as iterating over parents, etc).
/// 2. If all the bits are set, then every per-layer filter has decided it
/// doesn't want to enable that span or event. In that case, the
/// `Registry`'s `enabled` method will return `false`, so that
/// recording a span or event can be skipped entirely.
#[derive(Debug)]
pub(crate) struct FilterState {
enabled: Cell<FilterMap>,
// TODO(eliza): `Interest`s should _probably_ be `Copy`. The only reason
// they're not is our Obsessive Commitment to Forwards-Compatibility. If
// this changes in tracing-core`, we can make this a `Cell` rather than
// `RefCell`...
interest: RefCell<Option<Interest>>,
#[cfg(debug_assertions)]
counters: DebugCounters,
}
/// Extra counters added to `FilterState` used only to make debug assertions.
#[cfg(debug_assertions)]
#[derive(Debug, Default)]
struct DebugCounters {
/// How many per-layer filters have participated in the current `enabled`
/// call?
in_filter_pass: Cell<usize>,
/// How many per-layer filters have participated in the current `register_callsite`
/// call?
in_interest_pass: Cell<usize>,
}
thread_local! {
pub(crate) static FILTERING: FilterState = FilterState::new();
}
/// Extension trait adding [combinators] for combining [`Filter`].
///
/// [combinators]: crate::filter::combinator
/// [`Filter`]: crate::layer::Filter
pub trait FilterExt<S>: layer::Filter<S> {
/// Combines this [`Filter`] with another [`Filter`] s so that spans and
/// events are enabled if and only if *both* filters return `true`.
///
/// # Examples
///
/// Enabling spans or events if they have both a particular target *and* are
/// above a certain level:
///
/// ```
/// use tracing_subscriber::{
/// filter::{filter_fn, LevelFilter, FilterExt},
/// prelude::*,
/// };
///
/// // Enables spans and events with targets starting with `interesting_target`:
/// let target_filter = filter_fn(|meta| {
/// meta.target().starts_with("interesting_target")
/// });
///
/// // Enables spans and events with levels `INFO` and below:
/// let level_filter = LevelFilter::INFO;
///
/// // Combine the two filters together, returning a filter that only enables
/// // spans and events that *both* filters will enable:
/// let filter = target_filter.and(level_filter);
///
/// tracing_subscriber::registry()
/// .with(tracing_subscriber::fmt::layer().with_filter(filter))
/// .init();
///
/// // This event will *not* be enabled:
/// tracing::info!("an event with an uninteresting target");
///
/// // This event *will* be enabled:
/// tracing::info!(target: "interesting_target", "a very interesting event");
///
/// // This event will *not* be enabled:
/// tracing::debug!(target: "interesting_target", "interesting debug event...");
/// ```
///
/// [`Filter`]: crate::layer::Filter
fn and<B>(self, other: B) -> combinator::And<Self, B, S>
where
Self: Sized,
B: layer::Filter<S>,
{
combinator::And::new(self, other)
}
/// Combines two [`Filter`]s so that spans and events are enabled if *either* filter
/// returns `true`.
///
/// # Examples
///
/// Enabling spans and events at the `INFO` level and above, and all spans
/// and events with a particular target:
/// ```
/// use tracing_subscriber::{
/// filter::{filter_fn, LevelFilter, FilterExt},
/// prelude::*,
/// };
///
/// // Enables spans and events with targets starting with `interesting_target`:
/// let target_filter = filter_fn(|meta| {
/// meta.target().starts_with("interesting_target")
/// });
///
/// // Enables spans and events with levels `INFO` and below:
/// let level_filter = LevelFilter::INFO;
///
/// // Combine the two filters together so that a span or event is enabled
/// // if it is at INFO or lower, or if it has a target starting with
/// // `interesting_target`.
/// let filter = level_filter.or(target_filter);
///
/// tracing_subscriber::registry()
/// .with(tracing_subscriber::fmt::layer().with_filter(filter))
/// .init();
///
/// // This event will *not* be enabled:
/// tracing::debug!("an uninteresting event");
///
/// // This event *will* be enabled:
/// tracing::info!("an uninteresting INFO event");
///
/// // This event *will* be enabled:
/// tracing::info!(target: "interesting_target", "a very interesting event");
///
/// // This event *will* be enabled:
/// tracing::debug!(target: "interesting_target", "interesting debug event...");
/// ```
///
/// Enabling a higher level for a particular target by using `or` in
/// conjunction with the [`and`] combinator:
///
/// ```
/// use tracing_subscriber::{
/// filter::{filter_fn, LevelFilter, FilterExt},
/// prelude::*,
/// };
///
/// // This filter will enable spans and events with targets beginning with
/// // `my_crate`:
/// let my_crate = filter_fn(|meta| {
/// meta.target().starts_with("my_crate")
/// });
///
/// let filter = my_crate
/// // Combine the `my_crate` filter with a `LevelFilter` to produce a
/// // filter that will enable the `INFO` level and lower for spans and
/// // events with `my_crate` targets:
/// .and(LevelFilter::INFO)
/// // If a span or event *doesn't* have a target beginning with
/// // `my_crate`, enable it if it has the `WARN` level or lower:
/// .or(LevelFilter::WARN);
///
/// tracing_subscriber::registry()
/// .with(tracing_subscriber::fmt::layer().with_filter(filter))
/// .init();
/// ```
///
/// [`Filter`]: crate::layer::Filter
/// [`and`]: FilterExt::and
fn or<B>(self, other: B) -> combinator::Or<Self, B, S>
where
Self: Sized,
B: layer::Filter<S>,
{
combinator::Or::new(self, other)
}
/// Inverts `self`, returning a filter that enables spans and events only if
/// `self` would *not* enable them.
///
/// This inverts the values returned by the [`enabled`] and [`callsite_enabled`]
/// methods on the wrapped filter; it does *not* invert [`event_enabled`], as
/// filters which do not implement filtering on event field values will return
/// the default `true` even for events that their [`enabled`] method disables.
///
/// Consider a normal filter defined as:
///
/// ```ignore (pseudo-code)
/// // for spans
/// match callsite_enabled() {
/// ALWAYS => on_span(),
/// SOMETIMES => if enabled() { on_span() },
/// NEVER => (),
/// }
/// // for events
/// match callsite_enabled() {
/// ALWAYS => on_event(),
/// SOMETIMES => if enabled() && event_enabled() { on_event() },
/// NEVER => (),
/// }
/// ```
///
/// and an inverted filter defined as:
///
/// ```ignore (pseudo-code)
/// // for spans
/// match callsite_enabled() {
/// ALWAYS => (),
/// SOMETIMES => if !enabled() { on_span() },
/// NEVER => on_span(),
/// }
/// // for events
/// match callsite_enabled() {
/// ALWAYS => (),
/// SOMETIMES => if !enabled() { on_event() },
/// NEVER => on_event(),
/// }
/// ```
///
/// A proper inversion would do `!(enabled() && event_enabled())` (or
/// `!enabled() || !event_enabled()`), but because of the implicit `&&`
/// relation between `enabled` and `event_enabled`, it is difficult to
/// short circuit and not call the wrapped `event_enabled`.
///
/// A combinator which remembers the result of `enabled` in order to call
/// `event_enabled` only when `enabled() == true` is possible, but requires
/// additional thread-local mutable state to support a very niche use case.
//
// Also, it'd mean the wrapped layer's `enabled()` always gets called and
// globally applied to events where it doesn't today, since we can't know
// what `event_enabled` will say until we have the event to call it with.
///
/// [`Filter`]: crate::layer::Filter
/// [`enabled`]: crate::layer::Filter::enabled
/// [`event_enabled`]: crate::layer::Filter::event_enabled
/// [`callsite_enabled`]: crate::layer::Filter::callsite_enabled
fn not(self) -> combinator::Not<Self, S>
where
Self: Sized,
{
combinator::Not::new(self)
}
/// [Boxes] `self`, erasing its concrete type.
///
/// This is equivalent to calling [`Box::new`], but in method form, so that
/// it can be used when chaining combinator methods.
///
/// # Examples
///
/// When different combinations of filters are used conditionally, they may
/// have different types. For example, the following code won't compile,
/// since the `if` and `else` clause produce filters of different types:
///
/// ```compile_fail
/// use tracing_subscriber::{
/// filter::{filter_fn, LevelFilter, FilterExt},
/// prelude::*,
/// };
///
/// let enable_bar_target: bool = // ...
/// # false;
///
/// let filter = if enable_bar_target {
/// filter_fn(|meta| meta.target().starts_with("foo"))
/// // If `enable_bar_target` is true, add a `filter_fn` enabling
/// // spans and events with the target `bar`:
/// .or(filter_fn(|meta| meta.target().starts_with("bar")))
/// .and(LevelFilter::INFO)
/// } else {
/// filter_fn(|meta| meta.target().starts_with("foo"))
/// .and(LevelFilter::INFO)
/// };
///
/// tracing_subscriber::registry()
/// .with(tracing_subscriber::fmt::layer().with_filter(filter))
/// .init();
/// ```
///
/// By using `boxed`, the types of the two different branches can be erased,
/// so the assignment to the `filter` variable is valid (as both branches
/// have the type `Box<dyn Filter<S> + Send + Sync + 'static>`). The
/// following code *does* compile:
///
/// ```
/// use tracing_subscriber::{
/// filter::{filter_fn, LevelFilter, FilterExt},
/// prelude::*,
/// };
///
/// let enable_bar_target: bool = // ...
/// # false;
///
/// let filter = if enable_bar_target {
/// filter_fn(|meta| meta.target().starts_with("foo"))
/// .or(filter_fn(|meta| meta.target().starts_with("bar")))
/// .and(LevelFilter::INFO)
/// // Boxing the filter erases its type, so both branches now
/// // have the same type.
/// .boxed()
/// } else {
/// filter_fn(|meta| meta.target().starts_with("foo"))
/// .and(LevelFilter::INFO)
/// .boxed()
/// };
///
/// tracing_subscriber::registry()
/// .with(tracing_subscriber::fmt::layer().with_filter(filter))
/// .init();
/// ```
///
/// [Boxes]: std::boxed
/// [`Box::new`]: std::boxed::Box::new
fn boxed(self) -> Box<dyn layer::Filter<S> + Send + Sync + 'static>
where
Self: Sized + Send + Sync + 'static,
{
Box::new(self)
}
}
// === impl Filter ===
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<S> layer::Filter<S> for LevelFilter {
fn enabled(&self, meta: &Metadata<'_>, _: &Context<'_, S>) -> bool {
meta.level() <= self
}
fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
if meta.level() <= self {
Interest::always()
} else {
Interest::never()
}
}
fn max_level_hint(&self) -> Option<LevelFilter> {
Some(*self)
}
}
macro_rules! filter_impl_body {
() => {
#[inline]
fn enabled(&self, meta: &Metadata<'_>, cx: &Context<'_, S>) -> bool {
self.deref().enabled(meta, cx)
}
#[inline]
fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
self.deref().callsite_enabled(meta)
}
#[inline]
fn max_level_hint(&self) -> Option<LevelFilter> {
self.deref().max_level_hint()
}
#[inline]
fn event_enabled(&self, event: &Event<'_>, cx: &Context<'_, S>) -> bool {
self.deref().event_enabled(event, cx)
}
#[inline]
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
self.deref().on_new_span(attrs, id, ctx)
}
#[inline]
fn on_record(&self, id: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
self.deref().on_record(id, values, ctx)
}
#[inline]
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
self.deref().on_enter(id, ctx)
}
#[inline]
fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
self.deref().on_exit(id, ctx)
}
#[inline]
fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
self.deref().on_close(id, ctx)
}
};
}
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<S> layer::Filter<S> for Arc<dyn layer::Filter<S> + Send + Sync + 'static> {
filter_impl_body!();
}
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<S> layer::Filter<S> for Box<dyn layer::Filter<S> + Send + Sync + 'static> {
filter_impl_body!();
}
// Implement Filter for Option<Filter> where None => allow
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<F, S> layer::Filter<S> for Option<F>
where
F: layer::Filter<S>,
{
#[inline]
fn enabled(&self, meta: &Metadata<'_>, ctx: &Context<'_, S>) -> bool {
self.as_ref()
.map(|inner| inner.enabled(meta, ctx))
.unwrap_or(true)
}
#[inline]
fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
self.as_ref()
.map(|inner| inner.callsite_enabled(meta))
.unwrap_or_else(Interest::always)
}
#[inline]
fn max_level_hint(&self) -> Option<LevelFilter> {
self.as_ref().and_then(|inner| inner.max_level_hint())
}
#[inline]
fn event_enabled(&self, event: &Event<'_>, ctx: &Context<'_, S>) -> bool {
self.as_ref()
.map(|inner| inner.event_enabled(event, ctx))
.unwrap_or(true)
}
#[inline]
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
if let Some(inner) = self {
inner.on_new_span(attrs, id, ctx)
}
}
#[inline]
fn on_record(&self, id: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
if let Some(inner) = self {
inner.on_record(id, values, ctx)
}
}
#[inline]
fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
if let Some(inner) = self {
inner.on_enter(id, ctx)
}
}
#[inline]
fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
if let Some(inner) = self {
inner.on_exit(id, ctx)
}
}
#[inline]
fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
if let Some(inner) = self {
inner.on_close(id, ctx)
}
}
}
// === impl Filtered ===
impl<L, F, S> Filtered<L, F, S> {
/// Wraps the provided [`Layer`] so that it is filtered by the given
/// [`Filter`].
///
/// This is equivalent to calling the [`Layer::with_filter`] method.
///
/// See the [documentation on per-layer filtering][plf] for details.
///
/// [`Filter`]: crate::layer::Filter
/// [plf]: crate::layer#per-layer-filtering
pub fn new(layer: L, filter: F) -> Self {
Self {
layer,
filter,
id: MagicPlfDowncastMarker(FilterId::disabled()),
_s: PhantomData,
}
}
#[inline(always)]
fn id(&self) -> FilterId {
debug_assert!(
!self.id.0.is_disabled(),
"a `Filtered` layer was used, but it had no `FilterId`; \
was it registered with the subscriber?"
);
self.id.0
}
fn did_enable(&self, f: impl FnOnce()) {
FILTERING.with(|filtering| filtering.did_enable(self.id(), f))
}
/// Borrows the [`Filter`](crate::layer::Filter) used by this layer.
pub fn filter(&self) -> &F {
&self.filter
}
/// Mutably borrows the [`Filter`](crate::layer::Filter) used by this layer.
///
/// When this layer can be mutably borrowed, this may be used to mutate the filter.
/// Generally, this will primarily be used with the
/// [`reload::Handle::modify`](crate::reload::Handle::modify) method.
///
/// # Examples
///
/// ```
/// # use tracing::info;
/// # use tracing_subscriber::{filter,fmt,reload,Registry,prelude::*};
/// # fn main() {
/// let filtered_layer = fmt::Layer::default().with_filter(filter::LevelFilter::WARN);
/// let (filtered_layer, reload_handle) = reload::Layer::new(filtered_layer);
/// #
/// # // specifying the Registry type is required
/// # let _: &reload::Handle<filter::Filtered<fmt::Layer<Registry>,
/// # filter::LevelFilter, Registry>,Registry>
/// # = &reload_handle;
/// #
/// info!("This will be ignored");
/// reload_handle.modify(|layer| *layer.filter_mut() = filter::LevelFilter::INFO);
/// info!("This will be logged");
/// # }
/// ```
pub fn filter_mut(&mut self) -> &mut F {
&mut self.filter
}
/// Borrows the inner [`Layer`] wrapped by this `Filtered` layer.
pub fn inner(&self) -> &L {
&self.layer
}
/// Mutably borrows the inner [`Layer`] wrapped by this `Filtered` layer.
///
/// This method is primarily expected to be used with the
/// [`reload::Handle::modify`](crate::reload::Handle::modify) method.
///
/// # Examples
///
/// ```
/// # use tracing::info;
/// # use tracing_subscriber::{filter,fmt,reload,Registry,prelude::*};
/// # fn non_blocking<T: std::io::Write>(writer: T) -> (fn() -> std::io::Stdout) {
/// # std::io::stdout
/// # }
/// # fn main() {
/// let filtered_layer = fmt::layer().with_writer(non_blocking(std::io::stderr())).with_filter(filter::LevelFilter::INFO);
/// let (filtered_layer, reload_handle) = reload::Layer::new(filtered_layer);
/// #
/// # // specifying the Registry type is required
/// # let _: &reload::Handle<filter::Filtered<fmt::Layer<Registry, _, _, fn() -> std::io::Stdout>,
/// # filter::LevelFilter, Registry>, Registry>
/// # = &reload_handle;
/// #
/// info!("This will be logged to stderr");
/// reload_handle.modify(|layer| *layer.inner_mut().writer_mut() = non_blocking(std::io::stdout()));
/// info!("This will be logged to stdout");
/// # }
/// ```
///
/// [`Layer`]: crate::layer::Layer
pub fn inner_mut(&mut self) -> &mut L {
&mut self.layer
}
}
impl<S, L, F> Layer<S> for Filtered<L, F, S>
where
S: Subscriber + for<'span> registry::LookupSpan<'span> + 'static,
F: layer::Filter<S> + 'static,
L: Layer<S>,
{
fn on_register_dispatch(&self, subscriber: &Dispatch) {
self.layer.on_register_dispatch(subscriber);
}
fn on_layer(&mut self, subscriber: &mut S) {
self.id = MagicPlfDowncastMarker(subscriber.register_filter());
self.layer.on_layer(subscriber);
}
// TODO(eliza): can we figure out a nice way to make the `Filtered` layer
// not call `is_enabled_for` in hooks that the inner layer doesn't actually
// have real implementations of? probably not...
//
// it would be cool if there was some wild rust reflection way of checking
// if a trait impl has the default impl of a trait method or not, but that's
// almsot certainly impossible...right?
fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
let interest = self.filter.callsite_enabled(metadata);
// If the filter didn't disable the callsite, allow the inner layer to
// register it — since `register_callsite` is also used for purposes
// such as reserving/caching per-callsite data, we want the inner layer
// to be able to perform any other registration steps. However, we'll
// ignore its `Interest`.
if !interest.is_never() {
self.layer.register_callsite(metadata);
}
// Add our `Interest` to the current sum of per-layer filter `Interest`s
// for this callsite.
FILTERING.with(|filtering| filtering.add_interest(interest));
// don't short circuit! if the stack consists entirely of `Layer`s with
// per-layer filters, the `Registry` will return the actual `Interest`
// value that's the sum of all the `register_callsite` calls to those
// per-layer filters. if we returned an actual `never` interest here, a
// `Layered` layer would short-circuit and not allow any `Filtered`
// layers below us if _they_ are interested in the callsite.
Interest::always()
}
fn enabled(&self, metadata: &Metadata<'_>, cx: Context<'_, S>) -> bool {
let cx = cx.with_filter(self.id());
let enabled = self.filter.enabled(metadata, &cx);
FILTERING.with(|filtering| filtering.set(self.id(), enabled));
if enabled {
// If the filter enabled this metadata, ask the wrapped layer if
// _it_ wants it --- it might have a global filter.
self.layer.enabled(metadata, cx)
} else {
// Otherwise, return `true`. The _per-layer_ filter disabled this
// metadata, but returning `false` in `Layer::enabled` will
// short-circuit and globally disable the span or event. This is
// *not* what we want for per-layer filters, as other layers may
// still want this event. Returning `true` here means we'll continue
// asking the next layer in the stack.
//
// Once all per-layer filters have been evaluated, the `Registry`
// at the root of the stack will return `false` from its `enabled`
// method if *every* per-layer filter disabled this metadata.
// Otherwise, the individual per-layer filters will skip the next
// `new_span` or `on_event` call for their layer if *they* disabled
// the span or event, but it was not globally disabled.
true
}
}
fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, cx: Context<'_, S>) {
self.did_enable(|| {
let cx = cx.with_filter(self.id());
self.filter.on_new_span(attrs, id, cx.clone());
self.layer.on_new_span(attrs, id, cx);
})
}
#[doc(hidden)]
fn max_level_hint(&self) -> Option<LevelFilter> {
self.filter.max_level_hint()
}
fn on_record(&self, span: &span::Id, values: &span::Record<'_>, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(span, self.id()) {
self.filter.on_record(span, values, cx.clone());
self.layer.on_record(span, values, cx)
}
}
fn on_follows_from(&self, span: &span::Id, follows: &span::Id, cx: Context<'_, S>) {
// only call `on_follows_from` if both spans are enabled by us
if cx.is_enabled_for(span, self.id()) && cx.is_enabled_for(follows, self.id()) {
self.layer
.on_follows_from(span, follows, cx.with_filter(self.id()))
}
}
fn event_enabled(&self, event: &Event<'_>, cx: Context<'_, S>) -> bool {
let cx = cx.with_filter(self.id());
let enabled = FILTERING
.with(|filtering| filtering.and(self.id(), || self.filter.event_enabled(event, &cx)));
if enabled {
// If the filter enabled this event, ask the wrapped subscriber if
// _it_ wants it --- it might have a global filter.
self.layer.event_enabled(event, cx)
} else {
// Otherwise, return `true`. See the comment in `enabled` for why this
// is necessary.
true
}
}
fn on_event(&self, event: &Event<'_>, cx: Context<'_, S>) {
self.did_enable(|| {
self.layer.on_event(event, cx.with_filter(self.id()));
})
}
fn on_enter(&self, id: &span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(id, self.id()) {
self.filter.on_enter(id, cx.clone());
self.layer.on_enter(id, cx);
}
}
fn on_exit(&self, id: &span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(id, self.id()) {
self.filter.on_exit(id, cx.clone());
self.layer.on_exit(id, cx);
}
}
fn on_close(&self, id: span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(&id, self.id()) {
self.filter.on_close(id.clone(), cx.clone());
self.layer.on_close(id, cx);
}
}
// XXX(eliza): the existence of this method still makes me sad...
fn on_id_change(&self, old: &span::Id, new: &span::Id, cx: Context<'_, S>) {
if let Some(cx) = cx.if_enabled_for(old, self.id()) {
self.layer.on_id_change(old, new, cx)
}
}
#[doc(hidden)]
#[inline]
unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
match id {
id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()),
id if id == TypeId::of::<L>() => Some(&self.layer as *const _ as *const ()),
id if id == TypeId::of::<F>() => Some(&self.filter as *const _ as *const ()),
id if id == TypeId::of::<MagicPlfDowncastMarker>() => {
Some(&self.id as *const _ as *const ())
}
_ => self.layer.downcast_raw(id),
}
}
}
impl<F, L, S> fmt::Debug for Filtered<F, L, S>
where
F: fmt::Debug,
L: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Filtered")
.field("filter", &self.filter)
.field("layer", &self.layer)
.field("id", &self.id)
.finish()
}
}
// === impl FilterId ===
impl FilterId {
const fn disabled() -> Self {
Self(std::u64::MAX)
}
/// Returns a `FilterId` that will consider _all_ spans enabled.
pub(crate) const fn none() -> Self {
Self(0)
}
pub(crate) fn new(id: u8) -> Self {
assert!(id < 64, "filter IDs may not be greater than 64");
Self(1 << id as usize)
}
/// Combines two `FilterId`s, returning a new `FilterId` that will match a
/// [`FilterMap`] where the span was disabled by _either_ this `FilterId`
/// *or* the combined `FilterId`.
///
/// This method is called by [`Context`]s when adding the `FilterId` of a
/// [`Filtered`] layer to the context.
///
/// This is necessary for cases where we have a tree of nested [`Filtered`]
/// layers, like this:
///
/// ```text
/// Filtered {
/// filter1,
/// Layered {
/// layer1,
/// Filtered {
/// filter2,
/// layer2,
/// },
/// }
/// ```
///
/// We want `layer2` to be affected by both `filter1` _and_ `filter2`.
/// Without combining `FilterId`s, this works fine when filtering
/// `on_event`/`new_span`, because the outer `Filtered` layer (`filter1`)
/// won't call the inner layer's `on_event` or `new_span` callbacks if it
/// disabled the event/span.
///
/// However, it _doesn't_ work when filtering span lookups and traversals
/// (e.g. `scope`). This is because the [`Context`] passed to `layer2`
/// would set its filter ID to the filter ID of `filter2`, and would skip
/// spans that were disabled by `filter2`. However, what if a span was
/// disabled by `filter1`? We wouldn't see it in `new_span`, but we _would_
/// see it in lookups and traversals...which we don't want.
///
/// When a [`Filtered`] layer adds its ID to a [`Context`], it _combines_ it
/// with any previous filter ID that the context had, rather than replacing
/// it. That way, `layer2`'s context will check if a span was disabled by
/// `filter1` _or_ `filter2`. The way we do this, instead of representing
/// `FilterId`s as a number number that we shift a 1 over by to get a mask,
/// we just store the actual mask,so we can combine them with a bitwise-OR.
///
/// For example, if we consider the following case (pretending that the
/// masks are 8 bits instead of 64 just so i don't have to write out a bunch
/// of extra zeroes):
///
/// - `filter1` has the filter id 1 (`0b0000_0001`)
/// - `filter2` has the filter id 2 (`0b0000_0010`)
///
/// A span that gets disabled by filter 1 would have the [`FilterMap`] with
/// bits `0b0000_0001`.
///
/// If the `FilterId` was internally represented as `(bits to shift + 1),
/// when `layer2`'s [`Context`] checked if it enabled the span, it would
/// make the mask `0b0000_0010` (`1 << 1`). That bit would not be set in the
/// [`FilterMap`], so it would see that it _didn't_ disable the span. Which
/// is *true*, it just doesn't reflect the tree-like shape of the actual
/// subscriber.
///
/// By having the IDs be masks instead of shifts, though, when the
/// [`Filtered`] with `filter2` gets the [`Context`] with `filter1`'s filter ID,
/// instead of replacing it, it ors them together:
///
/// ```ignore
/// 0b0000_0001 | 0b0000_0010 == 0b0000_0011;
/// ```
///
/// We then test if the span was disabled by seeing if _any_ bits in the
/// mask are `1`:
///
/// ```ignore
/// filtermap & mask != 0;
/// 0b0000_0001 & 0b0000_0011 != 0;
/// 0b0000_0001 != 0;
/// true;
/// ```
///
/// [`Context`]: crate::layer::Context
pub(crate) fn and(self, FilterId(other): Self) -> Self {
// If this mask is disabled, just return the other --- otherwise, we
// would always see that every span is disabled.
if self.0 == Self::disabled().0 {
return Self(other);
}
Self(self.0 | other)
}
fn is_disabled(self) -> bool {
self.0 == Self::disabled().0
}
}
impl fmt::Debug for FilterId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// don't print a giant set of the numbers 0..63 if the filter ID is disabled.
if self.0 == Self::disabled().0 {
return f
.debug_tuple("FilterId")
.field(&format_args!("DISABLED"))
.finish();
}
if f.alternate() {
f.debug_struct("FilterId")
.field("ids", &format_args!("{:?}", FmtBitset(self.0)))
.field("bits", &format_args!("{:b}", self.0))
.finish()
} else {
f.debug_tuple("FilterId").field(&FmtBitset(self.0)).finish()
}
}
}
impl fmt::Binary for FilterId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("FilterId")
.field(&format_args!("{:b}", self.0))
.finish()
}
}
// === impl FilterExt ===
impl<F, S> FilterExt<S> for F where F: layer::Filter<S> {}
// === impl FilterMap ===
impl FilterMap {
pub(crate) fn set(self, FilterId(mask): FilterId, enabled: bool) -> Self {
if mask == std::u64::MAX {
return self;
}
if enabled {
Self {
bits: self.bits & (!mask),
}
} else {
Self {
bits: self.bits | mask,
}
}
}
#[inline]
pub(crate) fn is_enabled(self, FilterId(mask): FilterId) -> bool {
self.bits & mask == 0
}
#[inline]
pub(crate) fn any_enabled(self) -> bool {
self.bits != std::u64::MAX
}
}
impl fmt::Debug for FilterMap {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let alt = f.alternate();
let mut s = f.debug_struct("FilterMap");
s.field("disabled_by", &format_args!("{:?}", &FmtBitset(self.bits)));
if alt {
s.field("bits", &format_args!("{:b}", self.bits));
}
s.finish()
}
}
impl fmt::Binary for FilterMap {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("FilterMap")
.field("bits", &format_args!("{:b}", self.bits))
.finish()
}
}
// === impl FilterState ===
impl FilterState {
fn new() -> Self {
Self {
enabled: Cell::new(FilterMap::default()),
interest: RefCell::new(None),
#[cfg(debug_assertions)]
counters: DebugCounters::default(),
}
}
fn set(&self, filter: FilterId, enabled: bool) {
#[cfg(debug_assertions)]
{
let in_current_pass = self.counters.in_filter_pass.get();
if in_current_pass == 0 {
debug_assert_eq!(self.enabled.get(), FilterMap::default());
}
self.counters.in_filter_pass.set(in_current_pass + 1);
debug_assert_eq!(
self.counters.in_interest_pass.get(),
0,
"if we are in or starting a filter pass, we must not be in an interest pass."
)
}
self.enabled.set(self.enabled.get().set(filter, enabled))
}
fn add_interest(&self, interest: Interest) {
let mut curr_interest = self.interest.borrow_mut();
#[cfg(debug_assertions)]
{
let in_current_pass = self.counters.in_interest_pass.get();
if in_current_pass == 0 {
debug_assert!(curr_interest.is_none());
}
self.counters.in_interest_pass.set(in_current_pass + 1);
}
if let Some(curr_interest) = curr_interest.as_mut() {
if (curr_interest.is_always() && !interest.is_always())
|| (curr_interest.is_never() && !interest.is_never())
{
*curr_interest = Interest::sometimes();
}
// If the two interests are the same, do nothing. If the current
// interest is `sometimes`, stay sometimes.
} else {
*curr_interest = Some(interest);
}
}
pub(crate) fn event_enabled() -> bool {
FILTERING
.try_with(|this| {
let enabled = this.enabled.get().any_enabled();
#[cfg(debug_assertions)]
{
if this.counters.in_filter_pass.get() == 0 {
debug_assert_eq!(this.enabled.get(), FilterMap::default());
}
// Nothing enabled this event, we won't tick back down the
// counter in `did_enable`. Reset it.
if !enabled {
this.counters.in_filter_pass.set(0);
}
}
enabled
})
.unwrap_or(true)
}
/// Executes a closure if the filter with the provided ID did not disable
/// the current span/event.
///
/// This is used to implement the `on_event` and `new_span` methods for
/// `Filtered`.
fn did_enable(&self, filter: FilterId, f: impl FnOnce()) {
let map = self.enabled.get();
if map.is_enabled(filter) {
// If the filter didn't disable the current span/event, run the
// callback.
f();
} else {
// Otherwise, if this filter _did_ disable the span or event
// currently being processed, clear its bit from this thread's
// `FilterState`. The bit has already been "consumed" by skipping
// this callback, and we need to ensure that the `FilterMap` for
// this thread is reset when the *next* `enabled` call occurs.
self.enabled.set(map.set(filter, true));
}
#[cfg(debug_assertions)]
{
let in_current_pass = self.counters.in_filter_pass.get();
if in_current_pass <= 1 {
debug_assert_eq!(self.enabled.get(), FilterMap::default());
}
self.counters
.in_filter_pass
.set(in_current_pass.saturating_sub(1));
debug_assert_eq!(
self.counters.in_interest_pass.get(),
0,
"if we are in a filter pass, we must not be in an interest pass."
)
}
}
/// Run a second filtering pass, e.g. for Layer::event_enabled.
fn and(&self, filter: FilterId, f: impl FnOnce() -> bool) -> bool {
let map = self.enabled.get();
let enabled = map.is_enabled(filter) && f();
self.enabled.set(map.set(filter, enabled));
enabled
}
/// Clears the current in-progress filter state.
///
/// This resets the [`FilterMap`] and current [`Interest`] as well as
/// clearing the debug counters.
pub(crate) fn clear_enabled() {
// Drop the `Result` returned by `try_with` --- if we are in the middle
// a panic and the thread-local has been torn down, that's fine, just
// ignore it ratehr than panicking.
let _ = FILTERING.try_with(|filtering| {
filtering.enabled.set(FilterMap::default());
#[cfg(debug_assertions)]
filtering.counters.in_filter_pass.set(0);
});
}
pub(crate) fn take_interest() -> Option<Interest> {
FILTERING
.try_with(|filtering| {
#[cfg(debug_assertions)]
{
if filtering.counters.in_interest_pass.get() == 0 {
debug_assert!(filtering.interest.try_borrow().ok()?.is_none());
}
filtering.counters.in_interest_pass.set(0);
}
filtering.interest.try_borrow_mut().ok()?.take()
})
.ok()?
}
pub(crate) fn filter_map(&self) -> FilterMap {
let map = self.enabled.get();
#[cfg(debug_assertions)]
{
if self.counters.in_filter_pass.get() == 0 {
debug_assert_eq!(map, FilterMap::default());
}
}
map
}
}
/// This is a horrible and bad abuse of the downcasting system to expose
/// *internally* whether a layer has per-layer filtering, within
/// `tracing-subscriber`, without exposing a public API for it.
///
/// If a `Layer` has per-layer filtering, it will downcast to a
/// `MagicPlfDowncastMarker`. Since layers which contain other layers permit
/// downcasting to recurse to their children, this will do the Right Thing with
/// layers like Reload, Option, etc.
///
/// Why is this a wrapper around the `FilterId`, you may ask? Because
/// downcasting works by returning a pointer, and we don't want to risk
/// introducing UB by constructing pointers that _don't_ point to a valid
/// instance of the type they claim to be. In this case, we don't _intend_ for
/// this pointer to be dereferenced, so it would actually be fine to return one
/// that isn't a valid pointer...but we can't guarantee that the caller won't
/// (accidentally) dereference it, so it's better to be safe than sorry. We
/// could, alternatively, add an additional field to the type that's used only
/// for returning pointers to as as part of the evil downcasting hack, but I
/// thought it was nicer to just add a `repr(transparent)` wrapper to the
/// existing `FilterId` field, since it won't make the struct any bigger.
///
/// Don't worry, this isn't on the test. :)
#[derive(Clone, Copy)]
#[repr(transparent)]
struct MagicPlfDowncastMarker(FilterId);
impl fmt::Debug for MagicPlfDowncastMarker {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Just pretend that `MagicPlfDowncastMarker` doesn't exist for
// `fmt::Debug` purposes...if no one *sees* it in their `Debug` output,
// they don't have to know I thought this code would be a good idea.
fmt::Debug::fmt(&self.0, f)
}
}
pub(crate) fn is_plf_downcast_marker(type_id: TypeId) -> bool {
type_id == TypeId::of::<MagicPlfDowncastMarker>()
}
/// Does a type implementing `Subscriber` contain any per-layer filters?
pub(crate) fn subscriber_has_plf<S>(subscriber: &S) -> bool
where
S: Subscriber,
{
(subscriber as &dyn Subscriber).is::<MagicPlfDowncastMarker>()
}
/// Does a type implementing `Layer` contain any per-layer filters?
pub(crate) fn layer_has_plf<L, S>(layer: &L) -> bool
where
L: Layer<S>,
S: Subscriber,
{
unsafe {
// Safety: we're not actually *doing* anything with this pointer --- we
// only care about the `Option`, which we're turning into a `bool`. So
// even if the layer decides to be evil and give us some kind of invalid
// pointer, we don't ever dereference it, so this is always safe.
layer.downcast_raw(TypeId::of::<MagicPlfDowncastMarker>())
}
.is_some()
}
struct FmtBitset(u64);
impl fmt::Debug for FmtBitset {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut set = f.debug_set();
for bit in 0..64 {
// if the `bit`-th bit is set, add it to the debug set
if self.0 & (1 << bit) != 0 {
set.entry(&bit);
}
}
set.finish()
}
}