1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
// taken from https://github.com/hyperium/http/blob/master/src/extensions.rs.
use crate::sync::{RwLockReadGuard, RwLockWriteGuard};
use std::{
any::{Any, TypeId},
collections::HashMap,
fmt,
hash::{BuildHasherDefault, Hasher},
};
#[allow(warnings)]
type AnyMap = HashMap<TypeId, Box<dyn Any + Send + Sync>, BuildHasherDefault<IdHasher>>;
/// With TypeIds as keys, there's no need to hash them. They are already hashes
/// themselves, coming from the compiler. The IdHasher holds the u64 of
/// the TypeId, and then returns it, instead of doing any bit fiddling.
#[derive(Default, Debug)]
struct IdHasher(u64);
impl Hasher for IdHasher {
fn write(&mut self, _: &[u8]) {
unreachable!("TypeId calls write_u64");
}
#[inline]
fn write_u64(&mut self, id: u64) {
self.0 = id;
}
#[inline]
fn finish(&self) -> u64 {
self.0
}
}
/// An immutable, read-only reference to a Span's extensions.
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub struct Extensions<'a> {
inner: RwLockReadGuard<'a, ExtensionsInner>,
}
impl<'a> Extensions<'a> {
#[cfg(feature = "registry")]
pub(crate) fn new(inner: RwLockReadGuard<'a, ExtensionsInner>) -> Self {
Self { inner }
}
/// Immutably borrows a type previously inserted into this `Extensions`.
pub fn get<T: 'static>(&self) -> Option<&T> {
self.inner.get::<T>()
}
}
/// An mutable reference to a Span's extensions.
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub struct ExtensionsMut<'a> {
inner: RwLockWriteGuard<'a, ExtensionsInner>,
}
impl<'a> ExtensionsMut<'a> {
#[cfg(feature = "registry")]
pub(crate) fn new(inner: RwLockWriteGuard<'a, ExtensionsInner>) -> Self {
Self { inner }
}
/// Insert a type into this `Extensions`.
///
/// Note that extensions are _not_
/// `Layer`-specific—they are _span_-specific. This means that
/// other layers can access and mutate extensions that
/// a different Layer recorded. For example, an application might
/// have a layer that records execution timings, alongside a layer
/// that reports spans and events to a distributed
/// tracing system that requires timestamps for spans.
/// Ideally, if one layer records a timestamp _x_, the other layer
/// should be able to reuse timestamp _x_.
///
/// Therefore, extensions should generally be newtypes, rather than common
/// types like [`String`](std::string::String), to avoid accidental
/// cross-`Layer` clobbering.
///
/// ## Panics
///
/// If `T` is already present in `Extensions`, then this method will panic.
pub fn insert<T: Send + Sync + 'static>(&mut self, val: T) {
assert!(self.replace(val).is_none())
}
/// Replaces an existing `T` into this extensions.
///
/// If `T` is not present, `Option::None` will be returned.
pub fn replace<T: Send + Sync + 'static>(&mut self, val: T) -> Option<T> {
self.inner.insert(val)
}
/// Get a mutable reference to a type previously inserted on this `ExtensionsMut`.
pub fn get_mut<T: 'static>(&mut self) -> Option<&mut T> {
self.inner.get_mut::<T>()
}
/// Remove a type from this `Extensions`.
///
/// If a extension of this type existed, it will be returned.
pub fn remove<T: Send + Sync + 'static>(&mut self) -> Option<T> {
self.inner.remove::<T>()
}
}
/// A type map of span extensions.
///
/// [ExtensionsInner] is used by `SpanData` to store and
/// span-specific data. A given `Layer` can read and write
/// data that it is interested in recording and emitting.
#[derive(Default)]
pub(crate) struct ExtensionsInner {
map: AnyMap,
}
impl ExtensionsInner {
/// Create an empty `Extensions`.
#[cfg(any(test, feature = "registry"))]
#[inline]
#[cfg(any(test, feature = "registry"))]
pub(crate) fn new() -> ExtensionsInner {
ExtensionsInner {
map: AnyMap::default(),
}
}
/// Insert a type into this `Extensions`.
///
/// If a extension of this type already existed, it will
/// be returned.
pub(crate) fn insert<T: Send + Sync + 'static>(&mut self, val: T) -> Option<T> {
self.map
.insert(TypeId::of::<T>(), Box::new(val))
.and_then(|boxed| {
#[allow(warnings)]
{
(boxed as Box<Any + 'static>)
.downcast()
.ok()
.map(|boxed| *boxed)
}
})
}
/// Get a reference to a type previously inserted on this `Extensions`.
pub(crate) fn get<T: 'static>(&self) -> Option<&T> {
self.map
.get(&TypeId::of::<T>())
.and_then(|boxed| (&**boxed as &(dyn Any + 'static)).downcast_ref())
}
/// Get a mutable reference to a type previously inserted on this `Extensions`.
pub(crate) fn get_mut<T: 'static>(&mut self) -> Option<&mut T> {
self.map
.get_mut(&TypeId::of::<T>())
.and_then(|boxed| (&mut **boxed as &mut (dyn Any + 'static)).downcast_mut())
}
/// Remove a type from this `Extensions`.
///
/// If a extension of this type existed, it will be returned.
pub(crate) fn remove<T: Send + Sync + 'static>(&mut self) -> Option<T> {
self.map.remove(&TypeId::of::<T>()).and_then(|boxed| {
#[allow(warnings)]
{
(boxed as Box<Any + 'static>)
.downcast()
.ok()
.map(|boxed| *boxed)
}
})
}
/// Clear the `ExtensionsInner` in-place, dropping any elements in the map but
/// retaining allocated capacity.
///
/// This permits the hash map allocation to be pooled by the registry so
/// that future spans will not need to allocate new hashmaps.
#[cfg(any(test, feature = "registry"))]
pub(crate) fn clear(&mut self) {
self.map.clear();
}
}
impl fmt::Debug for ExtensionsInner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Extensions")
.field("len", &self.map.len())
.field("capacity", &self.map.capacity())
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Debug, PartialEq)]
struct MyType(i32);
#[test]
fn test_extensions() {
let mut extensions = ExtensionsInner::new();
extensions.insert(5i32);
extensions.insert(MyType(10));
assert_eq!(extensions.get(), Some(&5i32));
assert_eq!(extensions.get_mut(), Some(&mut 5i32));
assert_eq!(extensions.remove::<i32>(), Some(5i32));
assert!(extensions.get::<i32>().is_none());
assert_eq!(extensions.get::<bool>(), None);
assert_eq!(extensions.get(), Some(&MyType(10)));
}
#[test]
fn clear_retains_capacity() {
let mut extensions = ExtensionsInner::new();
extensions.insert(5i32);
extensions.insert(MyType(10));
extensions.insert(true);
assert_eq!(extensions.map.len(), 3);
let prev_capacity = extensions.map.capacity();
extensions.clear();
assert_eq!(
extensions.map.len(),
0,
"after clear(), extensions map should have length 0"
);
assert_eq!(
extensions.map.capacity(),
prev_capacity,
"after clear(), extensions map should retain prior capacity"
);
}
#[test]
fn clear_drops_elements() {
use std::sync::Arc;
struct DropMePlease(Arc<()>);
struct DropMeTooPlease(Arc<()>);
let mut extensions = ExtensionsInner::new();
let val1 = DropMePlease(Arc::new(()));
let val2 = DropMeTooPlease(Arc::new(()));
let val1_dropped = Arc::downgrade(&val1.0);
let val2_dropped = Arc::downgrade(&val2.0);
extensions.insert(val1);
extensions.insert(val2);
assert!(val1_dropped.upgrade().is_some());
assert!(val2_dropped.upgrade().is_some());
extensions.clear();
assert!(
val1_dropped.upgrade().is_none(),
"after clear(), val1 should be dropped"
);
assert!(
val2_dropped.upgrade().is_none(),
"after clear(), val2 should be dropped"
);
}
}