1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
// Copyright 2017, 2021 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![cfg_attr(not(feature = "std"), no_std)]
//! Trie interface and implementation.
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(feature = "std")]
mod rstd {
pub use std::{
borrow, boxed, cmp,
collections::{BTreeMap, VecDeque},
convert,
error::Error,
fmt, hash, iter, marker, mem, ops, result, sync, vec,
};
}
#[cfg(not(feature = "std"))]
mod rstd {
pub use alloc::{
borrow, boxed,
collections::{btree_map::BTreeMap, VecDeque},
rc, sync, vec,
};
pub use core::{cmp, convert, fmt, hash, iter, marker, mem, ops, result};
pub trait Error {}
impl<T> Error for T {}
}
#[cfg(feature = "std")]
use self::rstd::{fmt, Error};
use self::rstd::{boxed::Box, vec::Vec};
use hash_db::MaybeDebug;
pub use iterator::TrieDBNodeDoubleEndedIterator;
use node::NodeOwned;
pub mod node;
pub mod proof;
pub mod recorder;
pub mod sectriedb;
pub mod sectriedbmut;
pub mod triedb;
pub mod triedbmut;
mod fatdb;
mod fatdbmut;
mod iter_build;
mod iterator;
mod lookup;
mod nibble;
mod node_codec;
mod trie_codec;
pub use self::{
fatdb::{FatDB, FatDBIterator},
fatdbmut::FatDBMut,
lookup::Lookup,
nibble::{nibble_ops, NibbleSlice, NibbleVec},
recorder::Recorder,
sectriedb::SecTrieDB,
sectriedbmut::SecTrieDBMut,
triedb::{TrieDB, TrieDBBuilder, TrieDBIterator, TrieDBKeyIterator},
triedbmut::{ChildReference, TrieDBMut, TrieDBMutBuilder, Value},
};
pub use crate::{
iter_build::{trie_visit, ProcessEncodedNode, TrieBuilder, TrieRoot, TrieRootUnhashed},
iterator::{TrieDBNodeIterator, TrieDBRawIterator},
node_codec::{NodeCodec, Partial},
trie_codec::{decode_compact, decode_compact_from_iter, encode_compact},
};
pub use hash_db::{HashDB, HashDBRef, Hasher};
#[cfg(feature = "std")]
pub use crate::iter_build::TrieRootPrint;
/// Database value
pub type DBValue = Vec<u8>;
/// Trie Errors.
///
/// These borrow the data within them to avoid excessive copying on every
/// trie operation.
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum TrieError<T, E> {
/// Attempted to create a trie with a state root not in the DB.
InvalidStateRoot(T),
/// Trie item not found in the database,
IncompleteDatabase(T),
/// A value was found in the trie with a nibble key that was not byte-aligned.
/// The first parameter is the byte-aligned part of the prefix and the second parameter is the
/// remaining nibble.
ValueAtIncompleteKey(Vec<u8>, u8),
/// Corrupt Trie item.
DecoderError(T, E),
/// Hash is not value.
InvalidHash(T, Vec<u8>),
}
#[cfg(feature = "std")]
impl<T, E> fmt::Display for TrieError<T, E>
where
T: MaybeDebug,
E: MaybeDebug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TrieError::InvalidStateRoot(ref root) => write!(f, "Invalid state root: {:?}", root),
TrieError::IncompleteDatabase(ref missing) =>
write!(f, "Database missing expected key: {:?}", missing),
TrieError::ValueAtIncompleteKey(ref bytes, ref extra) =>
write!(f, "Value found in trie at incomplete key {:?} + {:?}", bytes, extra),
TrieError::DecoderError(ref hash, ref decoder_err) => {
write!(f, "Decoding failed for hash {:?}; err: {:?}", hash, decoder_err)
},
TrieError::InvalidHash(ref hash, ref data) => write!(
f,
"Encoded node {:?} contains invalid hash reference with length: {}",
hash,
data.len()
),
}
}
}
#[cfg(feature = "std")]
impl<T, E> Error for TrieError<T, E>
where
T: fmt::Debug,
E: Error,
{
}
/// Trie result type.
/// Boxed to avoid copying around extra space for the `Hasher`s `Out` on successful queries.
pub type Result<T, H, E> = crate::rstd::result::Result<T, Box<TrieError<H, E>>>;
/// Trie-Item type used for iterators over trie data.
pub type TrieItem<U, E> = Result<(Vec<u8>, DBValue), U, E>;
/// Trie-Item type used for iterators over trie key only.
pub type TrieKeyItem<U, E> = Result<Vec<u8>, U, E>;
/// Description of what kind of query will be made to the trie.
pub trait Query<H: Hasher> {
/// Output item.
type Item;
/// Decode a byte-slice into the desired item.
fn decode(self, data: &[u8]) -> Self::Item;
}
/// Used to report the trie access to the [`TrieRecorder`].
///
/// As the trie can use a [`TrieCache`], there are multiple kinds of accesses.
/// If a cache is used, [`Self::Key`] and [`Self::NodeOwned`] are possible
/// values. Otherwise only [`Self::EncodedNode`] is a possible value.
#[cfg_attr(feature = "std", derive(Debug))]
pub enum TrieAccess<'a, H> {
/// The given [`NodeOwned`] was accessed using its `hash`.
NodeOwned { hash: H, node_owned: &'a NodeOwned<H> },
/// The given `encoded_node` was accessed using its `hash`.
EncodedNode { hash: H, encoded_node: rstd::borrow::Cow<'a, [u8]> },
/// The given `value` was accessed using its `hash`.
///
/// The given `full_key` is the key to access this value in the trie.
///
/// Should map to [`RecordedForKey::Value`] when checking the recorder.
Value { hash: H, value: rstd::borrow::Cow<'a, [u8]>, full_key: &'a [u8] },
/// A value was accessed that is stored inline a node.
///
/// As the value is stored inline there is no need to separately record the value as it is part
/// of a node. The given `full_key` is the key to access this value in the trie.
///
/// Should map to [`RecordedForKey::Value`] when checking the recorder.
InlineValue { full_key: &'a [u8] },
/// The hash of the value for the given `full_key` was accessed.
///
/// Should map to [`RecordedForKey::Hash`] when checking the recorder.
Hash { full_key: &'a [u8] },
/// The value/hash for `full_key` was accessed, but it couldn't be found in the trie.
///
/// Should map to [`RecordedForKey::Value`] when checking the recorder.
NonExisting { full_key: &'a [u8] },
}
/// Result of [`TrieRecorder::trie_nodes_recorded_for_key`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RecordedForKey {
/// We recorded all trie nodes up to the value for a storage key.
///
/// This should be returned when the recorder has seen the following [`TrieAccess`]:
///
/// - [`TrieAccess::Value`]: If we see this [`TrieAccess`], it means we have recorded all the
/// trie nodes up to the value.
/// - [`TrieAccess::NonExisting`]: If we see this [`TrieAccess`], it means we have recorded all
/// the necessary trie nodes to prove that the value doesn't exist in the trie.
Value,
/// We recorded all trie nodes up to the value hash for a storage key.
///
/// If we have a [`RecordedForKey::Value`], it means that we also have the hash of this value.
/// This also means that if we first have recorded the hash of a value and then also record the
/// value, the access should be upgraded to [`RecordedForKey::Value`].
///
/// This should be returned when the recorder has seen the following [`TrieAccess`]:
///
/// - [`TrieAccess::Hash`]: If we see this [`TrieAccess`], it means we have recorded all trie
/// nodes to have the hash of the value.
Hash,
/// We haven't recorded any trie nodes yet for a storage key.
///
/// This means we have not seen any [`TrieAccess`] referencing the searched key.
None,
}
impl RecordedForKey {
/// Is `self` equal to [`Self::None`]?
pub fn is_none(&self) -> bool {
matches!(self, Self::None)
}
}
/// A trie recorder that can be used to record all kind of [`TrieAccess`]'s.
///
/// To build a trie proof a recorder is required that records all trie accesses. These recorded trie
/// accesses can then be used to create the proof.
pub trait TrieRecorder<H> {
/// Record the given [`TrieAccess`].
///
/// Depending on the [`TrieAccess`] a call of [`Self::trie_nodes_recorded_for_key`] afterwards
/// must return the correct recorded state.
fn record<'a>(&mut self, access: TrieAccess<'a, H>);
/// Check if we have recorded any trie nodes for the given `key`.
///
/// Returns [`RecordedForKey`] to express the state of the recorded trie nodes.
fn trie_nodes_recorded_for_key(&self, key: &[u8]) -> RecordedForKey;
}
impl<F, T, H: Hasher> Query<H> for F
where
F: for<'a> FnOnce(&'a [u8]) -> T,
{
type Item = T;
fn decode(self, value: &[u8]) -> T {
(self)(value)
}
}
/// A key-value datastore implemented as a database-backed modified Merkle tree.
pub trait Trie<L: TrieLayout> {
/// Return the root of the trie.
fn root(&self) -> &TrieHash<L>;
/// Is the trie empty?
fn is_empty(&self) -> bool {
*self.root() == L::Codec::hashed_null_node()
}
/// Does the trie contain a given key?
fn contains(&self, key: &[u8]) -> Result<bool, TrieHash<L>, CError<L>> {
self.get(key).map(|x| x.is_some())
}
/// Returns the hash of the value for `key`.
fn get_hash(&self, key: &[u8]) -> Result<Option<TrieHash<L>>, TrieHash<L>, CError<L>>;
/// What is the value of the given key in this trie?
fn get(&self, key: &[u8]) -> Result<Option<DBValue>, TrieHash<L>, CError<L>> {
self.get_with(key, |v: &[u8]| v.to_vec())
}
/// Search for the key with the given query parameter. See the docs of the `Query`
/// trait for more details.
fn get_with<Q: Query<L::Hash>>(
&self,
key: &[u8],
query: Q,
) -> Result<Option<Q::Item>, TrieHash<L>, CError<L>>;
/// Look up the [`MerkleValue`] of the node that is the closest descendant for the provided
/// key.
///
/// When the provided key leads to a node, then the merkle value of that node
/// is returned. However, if the key does not lead to a node, then the merkle value
/// of the closest descendant is returned. `None` if no such descendant exists.
fn lookup_first_descendant(
&self,
key: &[u8],
) -> Result<Option<MerkleValue<TrieHash<L>>>, TrieHash<L>, CError<L>>;
/// Returns a depth-first iterator over the elements of trie.
fn iter<'a>(
&'a self,
) -> Result<
Box<dyn TrieIterator<L, Item = TrieItem<TrieHash<L>, CError<L>>> + 'a>,
TrieHash<L>,
CError<L>,
>;
/// Returns a depth-first iterator over the keys of elemets of trie.
fn key_iter<'a>(
&'a self,
) -> Result<
Box<dyn TrieIterator<L, Item = TrieKeyItem<TrieHash<L>, CError<L>>> + 'a>,
TrieHash<L>,
CError<L>,
>;
}
/// A key-value datastore implemented as a database-backed modified Merkle tree.
pub trait TrieMut<L: TrieLayout> {
/// Return the root of the trie.
fn root(&mut self) -> &TrieHash<L>;
/// Is the trie empty?
fn is_empty(&self) -> bool;
/// Does the trie contain a given key?
fn contains(&self, key: &[u8]) -> Result<bool, TrieHash<L>, CError<L>> {
self.get(key).map(|x| x.is_some())
}
/// What is the value of the given key in this trie?
fn get<'a, 'key>(&'a self, key: &'key [u8]) -> Result<Option<DBValue>, TrieHash<L>, CError<L>>
where
'a: 'key;
/// Insert a `key`/`value` pair into the trie. An empty value is equivalent to removing
/// `key` from the trie. Returns the old value associated with this key, if it existed.
fn insert(
&mut self,
key: &[u8],
value: &[u8],
) -> Result<Option<Value<L>>, TrieHash<L>, CError<L>>;
/// Remove a `key` from the trie. Equivalent to making it equal to the empty
/// value. Returns the old value associated with this key, if it existed.
fn remove(&mut self, key: &[u8]) -> Result<Option<Value<L>>, TrieHash<L>, CError<L>>;
}
/// A trie iterator that also supports random access (`seek()`).
pub trait TrieIterator<L: TrieLayout>: Iterator {
/// Position the iterator on the first element with key >= `key`
fn seek(&mut self, key: &[u8]) -> Result<(), TrieHash<L>, CError<L>>;
}
/// Extending the `TrieIterator` trait with `DoubleEndedIterator` trait.
pub trait TrieDoubleEndedIterator<L: TrieLayout>: TrieIterator<L> + DoubleEndedIterator {}
/// Trie types
#[derive(PartialEq, Clone)]
#[cfg_attr(feature = "std", derive(Debug))]
pub enum TrieSpec {
/// Generic trie.
Generic,
/// Secure trie.
Secure,
/// Secure trie with fat database.
Fat,
}
impl Default for TrieSpec {
fn default() -> TrieSpec {
TrieSpec::Secure
}
}
/// Trie factory.
#[derive(Default, Clone)]
pub struct TrieFactory {
spec: TrieSpec,
}
/// All different kinds of tries.
/// This is used to prevent a heap allocation for every created trie.
pub enum TrieKinds<'db, 'cache, L: TrieLayout> {
/// A generic trie db.
Generic(TrieDB<'db, 'cache, L>),
/// A secure trie db.
Secure(SecTrieDB<'db, 'cache, L>),
/// A fat trie db.
Fat(FatDB<'db, 'cache, L>),
}
// wrapper macro for making the match easier to deal with.
macro_rules! wrapper {
($me: ident, $f_name: ident, $($param: ident),*) => {
match *$me {
TrieKinds::Generic(ref t) => t.$f_name($($param),*),
TrieKinds::Secure(ref t) => t.$f_name($($param),*),
TrieKinds::Fat(ref t) => t.$f_name($($param),*),
}
}
}
impl<'db, 'cache, L: TrieLayout> Trie<L> for TrieKinds<'db, 'cache, L> {
fn root(&self) -> &TrieHash<L> {
wrapper!(self, root,)
}
fn is_empty(&self) -> bool {
wrapper!(self, is_empty,)
}
fn contains(&self, key: &[u8]) -> Result<bool, TrieHash<L>, CError<L>> {
wrapper!(self, contains, key)
}
fn get_hash(&self, key: &[u8]) -> Result<Option<TrieHash<L>>, TrieHash<L>, CError<L>> {
wrapper!(self, get_hash, key)
}
fn get_with<Q: Query<L::Hash>>(
&self,
key: &[u8],
query: Q,
) -> Result<Option<Q::Item>, TrieHash<L>, CError<L>> {
wrapper!(self, get_with, key, query)
}
fn lookup_first_descendant(
&self,
key: &[u8],
) -> Result<Option<MerkleValue<TrieHash<L>>>, TrieHash<L>, CError<L>> {
wrapper!(self, lookup_first_descendant, key)
}
fn iter<'a>(
&'a self,
) -> Result<
Box<dyn TrieIterator<L, Item = TrieItem<TrieHash<L>, CError<L>>> + 'a>,
TrieHash<L>,
CError<L>,
> {
wrapper!(self, iter,)
}
fn key_iter<'a>(
&'a self,
) -> Result<
Box<dyn TrieIterator<L, Item = TrieKeyItem<TrieHash<L>, CError<L>>> + 'a>,
TrieHash<L>,
CError<L>,
> {
wrapper!(self, key_iter,)
}
}
impl TrieFactory {
/// Creates new factory.
pub fn new(spec: TrieSpec) -> Self {
TrieFactory { spec }
}
/// Create new immutable instance of Trie.
pub fn readonly<'db, 'cache, L: TrieLayout>(
&self,
db: &'db dyn HashDBRef<L::Hash, DBValue>,
root: &'db TrieHash<L>,
) -> TrieKinds<'db, 'cache, L> {
match self.spec {
TrieSpec::Generic => TrieKinds::Generic(TrieDBBuilder::new(db, root).build()),
TrieSpec::Secure => TrieKinds::Secure(SecTrieDB::new(db, root)),
TrieSpec::Fat => TrieKinds::Fat(FatDB::new(db, root)),
}
}
/// Create new mutable instance of Trie.
pub fn create<'db, L: TrieLayout + 'db>(
&self,
db: &'db mut dyn HashDB<L::Hash, DBValue>,
root: &'db mut TrieHash<L>,
) -> Box<dyn TrieMut<L> + 'db> {
match self.spec {
TrieSpec::Generic => Box::new(TrieDBMutBuilder::<L>::new(db, root).build()),
TrieSpec::Secure => Box::new(SecTrieDBMut::<L>::new(db, root)),
TrieSpec::Fat => Box::new(FatDBMut::<L>::new(db, root)),
}
}
/// Create new mutable instance of trie and check for errors.
pub fn from_existing<'db, L: TrieLayout + 'db>(
&self,
db: &'db mut dyn HashDB<L::Hash, DBValue>,
root: &'db mut TrieHash<L>,
) -> Box<dyn TrieMut<L> + 'db> {
match self.spec {
TrieSpec::Generic => Box::new(TrieDBMutBuilder::<L>::from_existing(db, root).build()),
TrieSpec::Secure => Box::new(SecTrieDBMut::<L>::from_existing(db, root)),
TrieSpec::Fat => Box::new(FatDBMut::<L>::from_existing(db, root)),
}
}
/// Returns true iff the trie DB is a fat DB (allows enumeration of keys).
pub fn is_fat(&self) -> bool {
self.spec == TrieSpec::Fat
}
}
/// Trait with definition of trie layout.
/// Contains all associated trait needed for
/// a trie definition or implementation.
pub trait TrieLayout {
/// If true, the trie will use extension nodes and
/// no partial in branch, if false the trie will only
/// use branch and node with partials in both.
const USE_EXTENSION: bool;
/// If true, the trie will allow empty values into `TrieDBMut`
const ALLOW_EMPTY: bool = false;
/// Threshold above which an external node should be
/// use to store a node value.
const MAX_INLINE_VALUE: Option<u32>;
/// Hasher to use for this trie.
type Hash: Hasher;
/// Codec to use (needs to match hasher and nibble ops).
type Codec: NodeCodec<HashOut = <Self::Hash as Hasher>::Out>;
}
/// This trait associates a trie definition with preferred methods.
/// It also contains own default implementations and can be
/// used to allow switching implementation.
pub trait TrieConfiguration: Sized + TrieLayout {
/// Operation to build a trie db from its ordered iterator over its key/values.
fn trie_build<DB, I, A, B>(db: &mut DB, input: I) -> <Self::Hash as Hasher>::Out
where
DB: HashDB<Self::Hash, DBValue>,
I: IntoIterator<Item = (A, B)>,
A: AsRef<[u8]> + Ord,
B: AsRef<[u8]>,
{
let mut cb = TrieBuilder::<Self, DB>::new(db);
trie_visit::<Self, _, _, _, _>(input.into_iter(), &mut cb);
cb.root.unwrap_or_default()
}
/// Determines a trie root given its ordered contents, closed form.
fn trie_root<I, A, B>(input: I) -> <Self::Hash as Hasher>::Out
where
I: IntoIterator<Item = (A, B)>,
A: AsRef<[u8]> + Ord,
B: AsRef<[u8]>,
{
let mut cb = TrieRoot::<Self>::default();
trie_visit::<Self, _, _, _, _>(input.into_iter(), &mut cb);
cb.root.unwrap_or_default()
}
/// Determines a trie root node's data given its ordered contents, closed form.
fn trie_root_unhashed<I, A, B>(input: I) -> Vec<u8>
where
I: IntoIterator<Item = (A, B)>,
A: AsRef<[u8]> + Ord,
B: AsRef<[u8]>,
{
let mut cb = TrieRootUnhashed::<Self>::default();
trie_visit::<Self, _, _, _, _>(input.into_iter(), &mut cb);
cb.root.unwrap_or_default()
}
/// Encoding of index as a key (when reusing general trie for
/// indexed trie).
fn encode_index(input: u32) -> Vec<u8> {
// be for byte ordering
input.to_be_bytes().to_vec()
}
/// A trie root formed from the items, with keys attached according to their
/// compact-encoded index (using `parity-codec` crate).
fn ordered_trie_root<I, A>(input: I) -> <Self::Hash as Hasher>::Out
where
I: IntoIterator<Item = A>,
A: AsRef<[u8]>,
{
Self::trie_root(
input.into_iter().enumerate().map(|(i, v)| (Self::encode_index(i as u32), v)),
)
}
}
/// Alias accessor to hasher hash output type from a `TrieLayout`.
pub type TrieHash<L> = <<L as TrieLayout>::Hash as Hasher>::Out;
/// Alias accessor to `NodeCodec` associated `Error` type from a `TrieLayout`.
pub type CError<L> = <<L as TrieLayout>::Codec as NodeCodec>::Error;
/// A value as cached by the [`TrieCache`].
#[derive(Clone, Debug)]
pub enum CachedValue<H> {
/// The value doesn't exist in the trie.
NonExisting,
/// We cached the hash, because we did not yet accessed the data.
ExistingHash(H),
/// The value exists in the trie.
Existing {
/// The hash of the value.
hash: H,
/// The actual data of the value stored as [`BytesWeak`].
///
/// The original data [`Bytes`] is stored in the trie node
/// that is also cached by the [`TrieCache`]. If this node is dropped,
/// this data will also not be "upgradeable" anymore.
data: BytesWeak,
},
}
impl<H: Copy> CachedValue<H> {
/// Returns the data of the value.
///
/// If a value doesn't exist in the trie or only the value hash is cached, this function returns
/// `None`. If the reference to the data couldn't be upgraded (see [`Bytes::upgrade`]), this
/// function returns `Some(None)`, aka the data needs to be fetched again from the trie.
pub fn data(&self) -> Option<Option<Bytes>> {
match self {
Self::Existing { data, .. } => Some(data.upgrade()),
_ => None,
}
}
/// Returns the hash of the value.
///
/// Returns only `None` when the value doesn't exist.
pub fn hash(&self) -> Option<H> {
match self {
Self::ExistingHash(hash) | Self::Existing { hash, .. } => Some(*hash),
Self::NonExisting => None,
}
}
}
impl<H> From<(Bytes, H)> for CachedValue<H> {
fn from(value: (Bytes, H)) -> Self {
Self::Existing { hash: value.1, data: value.0.into() }
}
}
impl<H> From<H> for CachedValue<H> {
fn from(value: H) -> Self {
Self::ExistingHash(value)
}
}
impl<H> From<Option<(Bytes, H)>> for CachedValue<H> {
fn from(value: Option<(Bytes, H)>) -> Self {
value.map_or(Self::NonExisting, |v| Self::Existing { hash: v.1, data: v.0.into() })
}
}
impl<H> From<Option<H>> for CachedValue<H> {
fn from(value: Option<H>) -> Self {
value.map_or(Self::NonExisting, |v| Self::ExistingHash(v))
}
}
/// A cache that can be used to speed-up certain operations when accessing the trie.
///
/// The [`TrieDB`]/[`TrieDBMut`] by default are working with the internal hash-db in a non-owning
/// mode. This means that for every lookup in the trie, every node is always fetched and decoded on
/// the fly. Fetching and decoding a node always takes some time and can kill the performance of any
/// application that is doing quite a lot of trie lookups. To circumvent this performance
/// degradation, a cache can be used when looking up something in the trie. Any cache that should be
/// used with the [`TrieDB`]/[`TrieDBMut`] needs to implement this trait.
///
/// The trait is laying out a two level cache, first the trie nodes cache and then the value cache.
/// The trie nodes cache, as the name indicates, is for caching trie nodes as [`NodeOwned`]. These
/// trie nodes are referenced by their hash. The value cache is caching [`CachedValue`]'s and these
/// are referenced by the key to look them up in the trie. As multiple different tries can have
/// different values under the same key, it up to the cache implementation to ensure that the
/// correct value is returned. As each trie has a different root, this root can be used to
/// differentiate values under the same key.
pub trait TrieCache<NC: NodeCodec> {
/// Lookup value for the given `key`.
///
/// Returns the `None` if the `key` is unknown or otherwise `Some(_)` with the associated
/// value.
///
/// [`Self::cache_data_for_key`] is used to make the cache aware of data that is associated
/// to a `key`.
///
/// # Attention
///
/// The cache can be used for different tries, aka with different roots. This means
/// that the cache implementation needs to take care of always returning the correct value
/// for the current trie root.
fn lookup_value_for_key(&mut self, key: &[u8]) -> Option<&CachedValue<NC::HashOut>>;
/// Cache the given `value` for the given `key`.
///
/// # Attention
///
/// The cache can be used for different tries, aka with different roots. This means
/// that the cache implementation needs to take care of caching `value` for the current
/// trie root.
fn cache_value_for_key(&mut self, key: &[u8], value: CachedValue<NC::HashOut>);
/// Get or insert a [`NodeOwned`].
///
/// The cache implementation should look up based on the given `hash` if the node is already
/// known. If the node is not yet known, the given `fetch_node` function can be used to fetch
/// the particular node.
///
/// Returns the [`NodeOwned`] or an error that happened on fetching the node.
fn get_or_insert_node(
&mut self,
hash: NC::HashOut,
fetch_node: &mut dyn FnMut() -> Result<NodeOwned<NC::HashOut>, NC::HashOut, NC::Error>,
) -> Result<&NodeOwned<NC::HashOut>, NC::HashOut, NC::Error>;
/// Get the [`NodeOwned`] that corresponds to the given `hash`.
fn get_node(&mut self, hash: &NC::HashOut) -> Option<&NodeOwned<NC::HashOut>>;
}
/// A container for storing bytes.
///
/// This uses a reference counted pointer internally, so it is cheap to clone this object.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Bytes(rstd::sync::Arc<[u8]>);
impl rstd::ops::Deref for Bytes {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.0.deref()
}
}
impl From<Vec<u8>> for Bytes {
fn from(bytes: Vec<u8>) -> Self {
Self(bytes.into())
}
}
impl From<&[u8]> for Bytes {
fn from(bytes: &[u8]) -> Self {
Self(bytes.into())
}
}
impl<T: AsRef<[u8]>> PartialEq<T> for Bytes {
fn eq(&self, other: &T) -> bool {
self.as_ref() == other.as_ref()
}
}
/// A weak reference of [`Bytes`].
///
/// A weak reference means that it doesn't prevent [`Bytes`] from being dropped because
/// it holds a non-owning reference to the associated [`Bytes`] object. With [`Self::upgrade`] it
/// is possible to upgrade it again to [`Bytes`] if the reference is still valid.
#[derive(Clone, Debug)]
pub struct BytesWeak(rstd::sync::Weak<[u8]>);
impl BytesWeak {
/// Upgrade to [`Bytes`].
///
/// Returns `None` when the inner value was already dropped.
pub fn upgrade(&self) -> Option<Bytes> {
self.0.upgrade().map(Bytes)
}
}
impl From<Bytes> for BytesWeak {
fn from(bytes: Bytes) -> Self {
Self(rstd::sync::Arc::downgrade(&bytes.0))
}
}
/// Either the `hash` or `value` of a node depending on its size.
///
/// If the size of the node `value` is bigger or equal than `MAX_INLINE_VALUE` the `hash` is
/// returned.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum MerkleValue<H> {
/// The merkle value is the node data itself when the
/// node data is smaller than `MAX_INLINE_VALUE`.
///
/// Note: The case of inline nodes.
Node(Vec<u8>),
/// The merkle value is the hash of the node.
Hash(H),
}