1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
// Copyright 2017, 2021 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![cfg_attr(not(feature = "std"), no_std)]

//! Trie interface and implementation.

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(feature = "std")]
mod rstd {
	pub use std::{
		borrow, boxed, cmp,
		collections::{BTreeMap, VecDeque},
		convert,
		error::Error,
		fmt, hash, iter, marker, mem, ops, result, sync, vec,
	};
}

#[cfg(not(feature = "std"))]
mod rstd {
	pub use alloc::{
		borrow, boxed,
		collections::{btree_map::BTreeMap, VecDeque},
		rc, sync, vec,
	};
	pub use core::{cmp, convert, fmt, hash, iter, marker, mem, ops, result};
	pub trait Error {}
	impl<T> Error for T {}
}

#[cfg(feature = "std")]
use self::rstd::{fmt, Error};

use self::rstd::{boxed::Box, vec::Vec};
use hash_db::MaybeDebug;
pub use iterator::TrieDBNodeDoubleEndedIterator;
use node::NodeOwned;

pub mod node;
pub mod proof;
pub mod recorder;
pub mod sectriedb;
pub mod sectriedbmut;
pub mod triedb;
pub mod triedbmut;

mod fatdb;
mod fatdbmut;
mod iter_build;
mod iterator;
mod lookup;
mod nibble;
mod node_codec;
mod trie_codec;

pub use self::{
	fatdb::{FatDB, FatDBIterator},
	fatdbmut::FatDBMut,
	lookup::Lookup,
	nibble::{nibble_ops, NibbleSlice, NibbleVec},
	recorder::Recorder,
	sectriedb::SecTrieDB,
	sectriedbmut::SecTrieDBMut,
	triedb::{TrieDB, TrieDBBuilder, TrieDBIterator, TrieDBKeyIterator},
	triedbmut::{ChildReference, TrieDBMut, TrieDBMutBuilder, Value},
};
pub use crate::{
	iter_build::{trie_visit, ProcessEncodedNode, TrieBuilder, TrieRoot, TrieRootUnhashed},
	iterator::{TrieDBNodeIterator, TrieDBRawIterator},
	node_codec::{NodeCodec, Partial},
	trie_codec::{decode_compact, decode_compact_from_iter, encode_compact},
};
pub use hash_db::{HashDB, HashDBRef, Hasher};

#[cfg(feature = "std")]
pub use crate::iter_build::TrieRootPrint;

/// Database value
pub type DBValue = Vec<u8>;

/// Trie Errors.
///
/// These borrow the data within them to avoid excessive copying on every
/// trie operation.
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum TrieError<T, E> {
	/// Attempted to create a trie with a state root not in the DB.
	InvalidStateRoot(T),
	/// Trie item not found in the database,
	IncompleteDatabase(T),
	/// A value was found in the trie with a nibble key that was not byte-aligned.
	/// The first parameter is the byte-aligned part of the prefix and the second parameter is the
	/// remaining nibble.
	ValueAtIncompleteKey(Vec<u8>, u8),
	/// Corrupt Trie item.
	DecoderError(T, E),
	/// Hash is not value.
	InvalidHash(T, Vec<u8>),
}

#[cfg(feature = "std")]
impl<T, E> fmt::Display for TrieError<T, E>
where
	T: MaybeDebug,
	E: MaybeDebug,
{
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		match *self {
			TrieError::InvalidStateRoot(ref root) => write!(f, "Invalid state root: {:?}", root),
			TrieError::IncompleteDatabase(ref missing) =>
				write!(f, "Database missing expected key: {:?}", missing),
			TrieError::ValueAtIncompleteKey(ref bytes, ref extra) =>
				write!(f, "Value found in trie at incomplete key {:?} + {:?}", bytes, extra),
			TrieError::DecoderError(ref hash, ref decoder_err) => {
				write!(f, "Decoding failed for hash {:?}; err: {:?}", hash, decoder_err)
			},
			TrieError::InvalidHash(ref hash, ref data) => write!(
				f,
				"Encoded node {:?} contains invalid hash reference with length: {}",
				hash,
				data.len()
			),
		}
	}
}

#[cfg(feature = "std")]
impl<T, E> Error for TrieError<T, E>
where
	T: fmt::Debug,
	E: Error,
{
}

/// Trie result type.
/// Boxed to avoid copying around extra space for the `Hasher`s `Out` on successful queries.
pub type Result<T, H, E> = crate::rstd::result::Result<T, Box<TrieError<H, E>>>;

/// Trie-Item type used for iterators over trie data.
pub type TrieItem<U, E> = Result<(Vec<u8>, DBValue), U, E>;

/// Trie-Item type used for iterators over trie key only.
pub type TrieKeyItem<U, E> = Result<Vec<u8>, U, E>;

/// Description of what kind of query will be made to the trie.
pub trait Query<H: Hasher> {
	/// Output item.
	type Item;

	/// Decode a byte-slice into the desired item.
	fn decode(self, data: &[u8]) -> Self::Item;
}

/// Used to report the trie access to the [`TrieRecorder`].
///
/// As the trie can use a [`TrieCache`], there are multiple kinds of accesses.
/// If a cache is used, [`Self::Key`] and [`Self::NodeOwned`] are possible
/// values. Otherwise only [`Self::EncodedNode`] is a possible value.
#[cfg_attr(feature = "std", derive(Debug))]
pub enum TrieAccess<'a, H> {
	/// The given [`NodeOwned`] was accessed using its `hash`.
	NodeOwned { hash: H, node_owned: &'a NodeOwned<H> },
	/// The given `encoded_node` was accessed using its `hash`.
	EncodedNode { hash: H, encoded_node: rstd::borrow::Cow<'a, [u8]> },
	/// The given `value` was accessed using its `hash`.
	///
	/// The given `full_key` is the key to access this value in the trie.
	///
	/// Should map to [`RecordedForKey::Value`] when checking the recorder.
	Value { hash: H, value: rstd::borrow::Cow<'a, [u8]>, full_key: &'a [u8] },
	/// A value was accessed that is stored inline a node.
	///
	/// As the value is stored inline there is no need to separately record the value as it is part
	/// of a node. The given `full_key` is the key to access this value in the trie.
	///
	/// Should map to [`RecordedForKey::Value`] when checking the recorder.
	InlineValue { full_key: &'a [u8] },
	/// The hash of the value for the given `full_key` was accessed.
	///
	/// Should map to [`RecordedForKey::Hash`] when checking the recorder.
	Hash { full_key: &'a [u8] },
	/// The value/hash for `full_key` was accessed, but it couldn't be found in the trie.
	///
	/// Should map to [`RecordedForKey::Value`] when checking the recorder.
	NonExisting { full_key: &'a [u8] },
}

/// Result of [`TrieRecorder::trie_nodes_recorded_for_key`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RecordedForKey {
	/// We recorded all trie nodes up to the value for a storage key.
	///
	/// This should be returned when the recorder has seen the following [`TrieAccess`]:
	///
	/// - [`TrieAccess::Value`]: If we see this [`TrieAccess`], it means we have recorded all the
	///   trie nodes up to the value.
	/// - [`TrieAccess::NonExisting`]: If we see this [`TrieAccess`], it means we have recorded all
	///   the necessary  trie nodes to prove that the value doesn't exist in the trie.
	Value,
	/// We recorded all trie nodes up to the value hash for a storage key.
	///
	/// If we have a [`RecordedForKey::Value`], it means that we also have the hash of this value.
	/// This also means that if we first have recorded the hash of a value and then also record the
	/// value, the access should be upgraded to [`RecordedForKey::Value`].
	///
	/// This should be returned when the recorder has seen the following [`TrieAccess`]:
	///
	/// - [`TrieAccess::Hash`]: If we see this [`TrieAccess`], it means we have recorded all trie
	///   nodes to have the hash of the value.
	Hash,
	/// We haven't recorded any trie nodes yet for a storage key.
	///
	/// This means we have not seen any [`TrieAccess`] referencing the searched key.
	None,
}

impl RecordedForKey {
	/// Is `self` equal to [`Self::None`]?
	pub fn is_none(&self) -> bool {
		matches!(self, Self::None)
	}
}

/// A trie recorder that can be used to record all kind of [`TrieAccess`]'s.
///
/// To build a trie proof a recorder is required that records all trie accesses. These recorded trie
/// accesses can then be used to create the proof.
pub trait TrieRecorder<H> {
	/// Record the given [`TrieAccess`].
	///
	/// Depending on the [`TrieAccess`] a call of [`Self::trie_nodes_recorded_for_key`] afterwards
	/// must return the correct recorded state.
	fn record<'a>(&mut self, access: TrieAccess<'a, H>);

	/// Check if we have recorded any trie nodes for the given `key`.
	///
	/// Returns [`RecordedForKey`] to express the state of the recorded trie nodes.
	fn trie_nodes_recorded_for_key(&self, key: &[u8]) -> RecordedForKey;
}

impl<F, T, H: Hasher> Query<H> for F
where
	F: for<'a> FnOnce(&'a [u8]) -> T,
{
	type Item = T;
	fn decode(self, value: &[u8]) -> T {
		(self)(value)
	}
}

/// A key-value datastore implemented as a database-backed modified Merkle tree.
pub trait Trie<L: TrieLayout> {
	/// Return the root of the trie.
	fn root(&self) -> &TrieHash<L>;

	/// Is the trie empty?
	fn is_empty(&self) -> bool {
		*self.root() == L::Codec::hashed_null_node()
	}

	/// Does the trie contain a given key?
	fn contains(&self, key: &[u8]) -> Result<bool, TrieHash<L>, CError<L>> {
		self.get(key).map(|x| x.is_some())
	}

	/// Returns the hash of the value for `key`.
	fn get_hash(&self, key: &[u8]) -> Result<Option<TrieHash<L>>, TrieHash<L>, CError<L>>;

	/// What is the value of the given key in this trie?
	fn get(&self, key: &[u8]) -> Result<Option<DBValue>, TrieHash<L>, CError<L>> {
		self.get_with(key, |v: &[u8]| v.to_vec())
	}

	/// Search for the key with the given query parameter. See the docs of the `Query`
	/// trait for more details.
	fn get_with<Q: Query<L::Hash>>(
		&self,
		key: &[u8],
		query: Q,
	) -> Result<Option<Q::Item>, TrieHash<L>, CError<L>>;

	/// Look up the [`MerkleValue`] of the node that is the closest descendant for the provided
	/// key.
	///
	/// When the provided key leads to a node, then the merkle value of that node
	/// is returned. However, if the key does not lead to a node, then the merkle value
	/// of the closest descendant is returned. `None` if no such descendant exists.
	fn lookup_first_descendant(
		&self,
		key: &[u8],
	) -> Result<Option<MerkleValue<TrieHash<L>>>, TrieHash<L>, CError<L>>;

	/// Returns a depth-first iterator over the elements of trie.
	fn iter<'a>(
		&'a self,
	) -> Result<
		Box<dyn TrieIterator<L, Item = TrieItem<TrieHash<L>, CError<L>>> + 'a>,
		TrieHash<L>,
		CError<L>,
	>;

	/// Returns a depth-first iterator over the keys of elemets of trie.
	fn key_iter<'a>(
		&'a self,
	) -> Result<
		Box<dyn TrieIterator<L, Item = TrieKeyItem<TrieHash<L>, CError<L>>> + 'a>,
		TrieHash<L>,
		CError<L>,
	>;
}

/// A key-value datastore implemented as a database-backed modified Merkle tree.
pub trait TrieMut<L: TrieLayout> {
	/// Return the root of the trie.
	fn root(&mut self) -> &TrieHash<L>;

	/// Is the trie empty?
	fn is_empty(&self) -> bool;

	/// Does the trie contain a given key?
	fn contains(&self, key: &[u8]) -> Result<bool, TrieHash<L>, CError<L>> {
		self.get(key).map(|x| x.is_some())
	}

	/// What is the value of the given key in this trie?
	fn get<'a, 'key>(&'a self, key: &'key [u8]) -> Result<Option<DBValue>, TrieHash<L>, CError<L>>
	where
		'a: 'key;

	/// Insert a `key`/`value` pair into the trie. An empty value is equivalent to removing
	/// `key` from the trie. Returns the old value associated with this key, if it existed.
	fn insert(
		&mut self,
		key: &[u8],
		value: &[u8],
	) -> Result<Option<Value<L>>, TrieHash<L>, CError<L>>;

	/// Remove a `key` from the trie. Equivalent to making it equal to the empty
	/// value. Returns the old value associated with this key, if it existed.
	fn remove(&mut self, key: &[u8]) -> Result<Option<Value<L>>, TrieHash<L>, CError<L>>;
}

/// A trie iterator that also supports random access (`seek()`).
pub trait TrieIterator<L: TrieLayout>: Iterator {
	/// Position the iterator on the first element with key >= `key`
	fn seek(&mut self, key: &[u8]) -> Result<(), TrieHash<L>, CError<L>>;
}

/// Extending the `TrieIterator` trait with `DoubleEndedIterator` trait.
pub trait TrieDoubleEndedIterator<L: TrieLayout>: TrieIterator<L> + DoubleEndedIterator {}

/// Trie types
#[derive(PartialEq, Clone)]
#[cfg_attr(feature = "std", derive(Debug))]
pub enum TrieSpec {
	/// Generic trie.
	Generic,
	/// Secure trie.
	Secure,
	///	Secure trie with fat database.
	Fat,
}

impl Default for TrieSpec {
	fn default() -> TrieSpec {
		TrieSpec::Secure
	}
}

/// Trie factory.
#[derive(Default, Clone)]
pub struct TrieFactory {
	spec: TrieSpec,
}

/// All different kinds of tries.
/// This is used to prevent a heap allocation for every created trie.
pub enum TrieKinds<'db, 'cache, L: TrieLayout> {
	/// A generic trie db.
	Generic(TrieDB<'db, 'cache, L>),
	/// A secure trie db.
	Secure(SecTrieDB<'db, 'cache, L>),
	/// A fat trie db.
	Fat(FatDB<'db, 'cache, L>),
}

// wrapper macro for making the match easier to deal with.
macro_rules! wrapper {
	($me: ident, $f_name: ident, $($param: ident),*) => {
		match *$me {
			TrieKinds::Generic(ref t) => t.$f_name($($param),*),
			TrieKinds::Secure(ref t) => t.$f_name($($param),*),
			TrieKinds::Fat(ref t) => t.$f_name($($param),*),
		}
	}
}

impl<'db, 'cache, L: TrieLayout> Trie<L> for TrieKinds<'db, 'cache, L> {
	fn root(&self) -> &TrieHash<L> {
		wrapper!(self, root,)
	}

	fn is_empty(&self) -> bool {
		wrapper!(self, is_empty,)
	}

	fn contains(&self, key: &[u8]) -> Result<bool, TrieHash<L>, CError<L>> {
		wrapper!(self, contains, key)
	}

	fn get_hash(&self, key: &[u8]) -> Result<Option<TrieHash<L>>, TrieHash<L>, CError<L>> {
		wrapper!(self, get_hash, key)
	}

	fn get_with<Q: Query<L::Hash>>(
		&self,
		key: &[u8],
		query: Q,
	) -> Result<Option<Q::Item>, TrieHash<L>, CError<L>> {
		wrapper!(self, get_with, key, query)
	}

	fn lookup_first_descendant(
		&self,
		key: &[u8],
	) -> Result<Option<MerkleValue<TrieHash<L>>>, TrieHash<L>, CError<L>> {
		wrapper!(self, lookup_first_descendant, key)
	}

	fn iter<'a>(
		&'a self,
	) -> Result<
		Box<dyn TrieIterator<L, Item = TrieItem<TrieHash<L>, CError<L>>> + 'a>,
		TrieHash<L>,
		CError<L>,
	> {
		wrapper!(self, iter,)
	}

	fn key_iter<'a>(
		&'a self,
	) -> Result<
		Box<dyn TrieIterator<L, Item = TrieKeyItem<TrieHash<L>, CError<L>>> + 'a>,
		TrieHash<L>,
		CError<L>,
	> {
		wrapper!(self, key_iter,)
	}
}

impl TrieFactory {
	/// Creates new factory.
	pub fn new(spec: TrieSpec) -> Self {
		TrieFactory { spec }
	}

	/// Create new immutable instance of Trie.
	pub fn readonly<'db, 'cache, L: TrieLayout>(
		&self,
		db: &'db dyn HashDBRef<L::Hash, DBValue>,
		root: &'db TrieHash<L>,
	) -> TrieKinds<'db, 'cache, L> {
		match self.spec {
			TrieSpec::Generic => TrieKinds::Generic(TrieDBBuilder::new(db, root).build()),
			TrieSpec::Secure => TrieKinds::Secure(SecTrieDB::new(db, root)),
			TrieSpec::Fat => TrieKinds::Fat(FatDB::new(db, root)),
		}
	}

	/// Create new mutable instance of Trie.
	pub fn create<'db, L: TrieLayout + 'db>(
		&self,
		db: &'db mut dyn HashDB<L::Hash, DBValue>,
		root: &'db mut TrieHash<L>,
	) -> Box<dyn TrieMut<L> + 'db> {
		match self.spec {
			TrieSpec::Generic => Box::new(TrieDBMutBuilder::<L>::new(db, root).build()),
			TrieSpec::Secure => Box::new(SecTrieDBMut::<L>::new(db, root)),
			TrieSpec::Fat => Box::new(FatDBMut::<L>::new(db, root)),
		}
	}

	/// Create new mutable instance of trie and check for errors.
	pub fn from_existing<'db, L: TrieLayout + 'db>(
		&self,
		db: &'db mut dyn HashDB<L::Hash, DBValue>,
		root: &'db mut TrieHash<L>,
	) -> Box<dyn TrieMut<L> + 'db> {
		match self.spec {
			TrieSpec::Generic => Box::new(TrieDBMutBuilder::<L>::from_existing(db, root).build()),
			TrieSpec::Secure => Box::new(SecTrieDBMut::<L>::from_existing(db, root)),
			TrieSpec::Fat => Box::new(FatDBMut::<L>::from_existing(db, root)),
		}
	}

	/// Returns true iff the trie DB is a fat DB (allows enumeration of keys).
	pub fn is_fat(&self) -> bool {
		self.spec == TrieSpec::Fat
	}
}

/// Trait with definition of trie layout.
/// Contains all associated trait needed for
/// a trie definition or implementation.
pub trait TrieLayout {
	/// If true, the trie will use extension nodes and
	/// no partial in branch, if false the trie will only
	/// use branch and node with partials in both.
	const USE_EXTENSION: bool;
	/// If true, the trie will allow empty values into `TrieDBMut`
	const ALLOW_EMPTY: bool = false;
	/// Threshold above which an external node should be
	/// use to store a node value.
	const MAX_INLINE_VALUE: Option<u32>;

	/// Hasher to use for this trie.
	type Hash: Hasher;
	/// Codec to use (needs to match hasher and nibble ops).
	type Codec: NodeCodec<HashOut = <Self::Hash as Hasher>::Out>;
}

/// This trait associates a trie definition with preferred methods.
/// It also contains own default implementations and can be
/// used to allow switching implementation.
pub trait TrieConfiguration: Sized + TrieLayout {
	/// Operation to build a trie db from its ordered iterator over its key/values.
	fn trie_build<DB, I, A, B>(db: &mut DB, input: I) -> <Self::Hash as Hasher>::Out
	where
		DB: HashDB<Self::Hash, DBValue>,
		I: IntoIterator<Item = (A, B)>,
		A: AsRef<[u8]> + Ord,
		B: AsRef<[u8]>,
	{
		let mut cb = TrieBuilder::<Self, DB>::new(db);
		trie_visit::<Self, _, _, _, _>(input.into_iter(), &mut cb);
		cb.root.unwrap_or_default()
	}
	/// Determines a trie root given its ordered contents, closed form.
	fn trie_root<I, A, B>(input: I) -> <Self::Hash as Hasher>::Out
	where
		I: IntoIterator<Item = (A, B)>,
		A: AsRef<[u8]> + Ord,
		B: AsRef<[u8]>,
	{
		let mut cb = TrieRoot::<Self>::default();
		trie_visit::<Self, _, _, _, _>(input.into_iter(), &mut cb);
		cb.root.unwrap_or_default()
	}
	/// Determines a trie root node's data given its ordered contents, closed form.
	fn trie_root_unhashed<I, A, B>(input: I) -> Vec<u8>
	where
		I: IntoIterator<Item = (A, B)>,
		A: AsRef<[u8]> + Ord,
		B: AsRef<[u8]>,
	{
		let mut cb = TrieRootUnhashed::<Self>::default();
		trie_visit::<Self, _, _, _, _>(input.into_iter(), &mut cb);
		cb.root.unwrap_or_default()
	}
	/// Encoding of index as a key (when reusing general trie for
	/// indexed trie).
	fn encode_index(input: u32) -> Vec<u8> {
		// be for byte ordering
		input.to_be_bytes().to_vec()
	}
	/// A trie root formed from the items, with keys attached according to their
	/// compact-encoded index (using `parity-codec` crate).
	fn ordered_trie_root<I, A>(input: I) -> <Self::Hash as Hasher>::Out
	where
		I: IntoIterator<Item = A>,
		A: AsRef<[u8]>,
	{
		Self::trie_root(
			input.into_iter().enumerate().map(|(i, v)| (Self::encode_index(i as u32), v)),
		)
	}
}

/// Alias accessor to hasher hash output type from a `TrieLayout`.
pub type TrieHash<L> = <<L as TrieLayout>::Hash as Hasher>::Out;
/// Alias accessor to `NodeCodec` associated `Error` type from a `TrieLayout`.
pub type CError<L> = <<L as TrieLayout>::Codec as NodeCodec>::Error;

/// A value as cached by the [`TrieCache`].
#[derive(Clone, Debug)]
pub enum CachedValue<H> {
	/// The value doesn't exist in the trie.
	NonExisting,
	/// We cached the hash, because we did not yet accessed the data.
	ExistingHash(H),
	/// The value exists in the trie.
	Existing {
		/// The hash of the value.
		hash: H,
		/// The actual data of the value stored as [`BytesWeak`].
		///
		/// The original data [`Bytes`] is stored in the trie node
		/// that is also cached by the [`TrieCache`]. If this node is dropped,
		/// this data will also not be "upgradeable" anymore.
		data: BytesWeak,
	},
}

impl<H: Copy> CachedValue<H> {
	/// Returns the data of the value.
	///
	/// If a value doesn't exist in the trie or only the value hash is cached, this function returns
	/// `None`. If the reference to the data couldn't be upgraded (see [`Bytes::upgrade`]), this
	/// function returns `Some(None)`, aka the data needs to be fetched again from the trie.
	pub fn data(&self) -> Option<Option<Bytes>> {
		match self {
			Self::Existing { data, .. } => Some(data.upgrade()),
			_ => None,
		}
	}

	/// Returns the hash of the value.
	///
	/// Returns only `None` when the value doesn't exist.
	pub fn hash(&self) -> Option<H> {
		match self {
			Self::ExistingHash(hash) | Self::Existing { hash, .. } => Some(*hash),
			Self::NonExisting => None,
		}
	}
}

impl<H> From<(Bytes, H)> for CachedValue<H> {
	fn from(value: (Bytes, H)) -> Self {
		Self::Existing { hash: value.1, data: value.0.into() }
	}
}

impl<H> From<H> for CachedValue<H> {
	fn from(value: H) -> Self {
		Self::ExistingHash(value)
	}
}

impl<H> From<Option<(Bytes, H)>> for CachedValue<H> {
	fn from(value: Option<(Bytes, H)>) -> Self {
		value.map_or(Self::NonExisting, |v| Self::Existing { hash: v.1, data: v.0.into() })
	}
}

impl<H> From<Option<H>> for CachedValue<H> {
	fn from(value: Option<H>) -> Self {
		value.map_or(Self::NonExisting, |v| Self::ExistingHash(v))
	}
}

/// A cache that can be used to speed-up certain operations when accessing the trie.
///
/// The [`TrieDB`]/[`TrieDBMut`] by default are working with the internal hash-db in a non-owning
/// mode. This means that for every lookup in the trie, every node is always fetched and decoded on
/// the fly. Fetching and decoding a node always takes some time and can kill the performance of any
/// application that is doing quite a lot of trie lookups. To circumvent this performance
/// degradation, a cache can be used when looking up something in the trie. Any cache that should be
/// used with the [`TrieDB`]/[`TrieDBMut`] needs to implement this trait.
///
/// The trait is laying out a two level cache, first the trie nodes cache and then the value cache.
/// The trie nodes cache, as the name indicates, is for caching trie nodes as [`NodeOwned`]. These
/// trie nodes are referenced by their hash. The value cache is caching [`CachedValue`]'s and these
/// are referenced by the key to look them up in the trie. As multiple different tries can have
/// different values under the same key, it up to the cache implementation to ensure that the
/// correct value is returned. As each trie has a different root, this root can be used to
/// differentiate values under the same key.
pub trait TrieCache<NC: NodeCodec> {
	/// Lookup value for the given `key`.
	///
	/// Returns the `None` if the `key` is unknown or otherwise `Some(_)` with the associated
	/// value.
	///
	/// [`Self::cache_data_for_key`] is used to make the cache aware of data that is associated
	/// to a `key`.
	///
	/// # Attention
	///
	/// The cache can be used for different tries, aka with different roots. This means
	/// that the cache implementation needs to take care of always returning the correct value
	/// for the current trie root.
	fn lookup_value_for_key(&mut self, key: &[u8]) -> Option<&CachedValue<NC::HashOut>>;

	/// Cache the given `value` for the given `key`.
	///
	/// # Attention
	///
	/// The cache can be used for different tries, aka with different roots. This means
	/// that the cache implementation needs to take care of caching `value` for the current
	/// trie root.
	fn cache_value_for_key(&mut self, key: &[u8], value: CachedValue<NC::HashOut>);

	/// Get or insert a [`NodeOwned`].
	///
	/// The cache implementation should look up based on the given `hash` if the node is already
	/// known. If the node is not yet known, the given `fetch_node` function can be used to fetch
	/// the particular node.
	///
	/// Returns the [`NodeOwned`] or an error that happened on fetching the node.
	fn get_or_insert_node(
		&mut self,
		hash: NC::HashOut,
		fetch_node: &mut dyn FnMut() -> Result<NodeOwned<NC::HashOut>, NC::HashOut, NC::Error>,
	) -> Result<&NodeOwned<NC::HashOut>, NC::HashOut, NC::Error>;

	/// Get the [`NodeOwned`] that corresponds to the given `hash`.
	fn get_node(&mut self, hash: &NC::HashOut) -> Option<&NodeOwned<NC::HashOut>>;
}

/// A container for storing bytes.
///
/// This uses a reference counted pointer internally, so it is cheap to clone this object.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Bytes(rstd::sync::Arc<[u8]>);

impl rstd::ops::Deref for Bytes {
	type Target = [u8];

	fn deref(&self) -> &Self::Target {
		self.0.deref()
	}
}

impl From<Vec<u8>> for Bytes {
	fn from(bytes: Vec<u8>) -> Self {
		Self(bytes.into())
	}
}

impl From<&[u8]> for Bytes {
	fn from(bytes: &[u8]) -> Self {
		Self(bytes.into())
	}
}

impl<T: AsRef<[u8]>> PartialEq<T> for Bytes {
	fn eq(&self, other: &T) -> bool {
		self.as_ref() == other.as_ref()
	}
}

/// A weak reference of [`Bytes`].
///
/// A weak reference means that it doesn't prevent [`Bytes`] from being dropped because
/// it holds a non-owning reference to the associated [`Bytes`] object. With [`Self::upgrade`] it
/// is possible to upgrade it again to [`Bytes`] if the reference is still valid.
#[derive(Clone, Debug)]
pub struct BytesWeak(rstd::sync::Weak<[u8]>);

impl BytesWeak {
	/// Upgrade to [`Bytes`].
	///
	/// Returns `None` when the inner value was already dropped.
	pub fn upgrade(&self) -> Option<Bytes> {
		self.0.upgrade().map(Bytes)
	}
}

impl From<Bytes> for BytesWeak {
	fn from(bytes: Bytes) -> Self {
		Self(rstd::sync::Arc::downgrade(&bytes.0))
	}
}

/// Either the `hash` or `value` of a node depending on its size.
///
/// If the size of the node `value` is bigger or equal than `MAX_INLINE_VALUE` the `hash` is
/// returned.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum MerkleValue<H> {
	/// The merkle value is the node data itself when the
	/// node data is smaller than `MAX_INLINE_VALUE`.
	///
	/// Note: The case of inline nodes.
	Node(Vec<u8>),
	/// The merkle value is the hash of the node.
	Hash(H),
}