1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
// Copyright 2019 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Nibble oriented methods.
use crate::{node::NodeKey, rstd::cmp};
pub use self::leftnibbleslice::LeftNibbleSlice;
mod leftnibbleslice;
mod nibbleslice;
mod nibblevec;
/// Utility methods to work on radix 16 nibble.
pub mod nibble_ops {
use super::*;
/// Single nibble length in bit.
pub const BIT_PER_NIBBLE: usize = 4;
/// Number of nibble per byte.
pub const NIBBLE_PER_BYTE: usize = 2;
/// Number of child for a branch (trie radix).
pub const NIBBLE_LENGTH: usize = 16;
/// Nibble (half a byte).
pub const PADDING_BITMASK: u8 = 0x0F;
/// Size of header.
pub const CONTENT_HEADER_SIZE: u8 = 1;
/// Mask a byte, keeping left nibble.
#[inline(always)]
pub fn pad_left(b: u8) -> u8 {
b & !PADDING_BITMASK
}
/// Mask a byte, keeping right byte.
#[inline(always)]
pub fn pad_right(b: u8) -> u8 {
b & PADDING_BITMASK
}
/// Get u8 nibble value at a given index of a byte.
#[inline(always)]
pub fn at_left(ix: u8, b: u8) -> u8 {
if ix == 1 {
b & PADDING_BITMASK
} else {
b >> BIT_PER_NIBBLE
}
}
/// Get u8 nibble value at a given index in a left aligned array.
#[inline(always)]
pub fn left_nibble_at(v1: &[u8], ix: usize) -> u8 {
at_left((ix % NIBBLE_PER_BYTE) as u8, v1[ix / NIBBLE_PER_BYTE])
}
/// Get u8 nibble value at a given index in a `NibbleSlice`.
#[inline(always)]
pub fn at(s: &NibbleSlice, i: usize) -> u8 {
let ix = (s.offset + i) / NIBBLE_PER_BYTE;
let pad = (s.offset + i) % NIBBLE_PER_BYTE;
at_left(pad as u8, s.data[ix])
}
/// Push u8 nibble value at a given index into an existing byte.
#[inline(always)]
pub fn push_at_left(ix: u8, v: u8, into: u8) -> u8 {
into | if ix == 1 { v } else { v << BIT_PER_NIBBLE }
}
/// Calculate the number of needed padding a array of nibble length `i`.
#[inline]
pub fn number_padding(i: usize) -> usize {
i % NIBBLE_PER_BYTE
}
/// The nibble shifts needed to align.
/// We use two value, one is a left shift and
/// the other is a right shift.
pub const SPLIT_SHIFTS: (usize, usize) = (4, 4);
/// Count the biggest common depth between two left aligned packed nibble slice.
pub fn biggest_depth(v1: &[u8], v2: &[u8]) -> usize {
let upper_bound = cmp::min(v1.len(), v2.len());
for a in 0..upper_bound {
if v1[a] != v2[a] {
return a * NIBBLE_PER_BYTE + left_common(v1[a], v2[a])
}
}
upper_bound * NIBBLE_PER_BYTE
}
/// Calculate the number of common nibble between two left aligned bytes.
#[inline(always)]
pub fn left_common(a: u8, b: u8) -> usize {
if a == b {
2
} else if pad_left(a) == pad_left(b) {
1
} else {
0
}
}
/// Shifts right aligned key to add a given left offset.
/// Resulting in possibly padding at both left and right
/// (example usage when combining two keys).
pub fn shift_key(key: &mut NodeKey, offset: usize) -> bool {
let old_offset = key.0;
key.0 = offset;
if old_offset > offset {
// shift left
let (s1, s2) = nibble_ops::SPLIT_SHIFTS;
let kl = key.1.len();
(0..kl - 1).for_each(|i| key.1[i] = key.1[i] << s2 | key.1[i + 1] >> s1);
key.1[kl - 1] = key.1[kl - 1] << s2;
true
} else if old_offset < offset {
// shift right
let (s1, s2) = nibble_ops::SPLIT_SHIFTS;
key.1.push(0);
(1..key.1.len())
.rev()
.for_each(|i| key.1[i] = key.1[i - 1] << s1 | key.1[i] >> s2);
key.1[0] = key.1[0] >> s2;
true
} else {
false
}
}
}
/// Backing storage for `NibbleVec`s.
pub(crate) type BackingByteVec = smallvec::SmallVec<[u8; 40]>;
/// Owning, nibble-oriented byte vector. Counterpart to `NibbleSlice`.
/// Nibbles are always left aligned, so making a `NibbleVec` from
/// a `NibbleSlice` can get costy.
#[cfg_attr(feature = "std", derive(Debug))]
#[derive(Clone, PartialEq, Eq)]
pub struct NibbleVec {
inner: BackingByteVec,
len: usize,
}
/// Nibble-orientated view onto byte-slice, allowing nibble-precision offsets.
///
/// This is an immutable struct. No operations actually change it.
///
/// # Example
/// ```snippet
/// use patricia_trie::nibbleslice::NibbleSlice;
/// fn main() {
/// let d1 = &[0x01u8, 0x23, 0x45];
/// let d2 = &[0x34u8, 0x50, 0x12];
/// let d3 = &[0x00u8, 0x12];
/// let n1 = NibbleSlice::new(d1); // 0,1,2,3,4,5
/// let n2 = NibbleSlice::new(d2); // 3,4,5,0,1,2
/// let n3 = NibbleSlice::new_offset(d3, 1); // 0,1,2
/// assert!(n1 > n3); // 0,1,2,... > 0,1,2
/// assert!(n1 < n2); // 0,... < 3,...
/// assert!(n2.mid(3) == n3); // 0,1,2 == 0,1,2
/// assert!(n1.starts_with(&n3));
/// assert_eq!(n1.common_prefix(&n3), 3);
/// assert_eq!(n2.mid(3).common_prefix(&n1), 3);
/// }
/// ```
#[derive(Copy, Clone)]
pub struct NibbleSlice<'a> {
data: &'a [u8],
offset: usize,
}
/// Iterator type for a nibble slice.
pub struct NibbleSliceIterator<'a> {
p: &'a NibbleSlice<'a>,
i: usize,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn nibble_vec_size() {
assert_eq!(std::mem::size_of::<NibbleVec>(), 56);
}
}