1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
//! State relating to validating a WebAssembly module.
//!
use super::{
    check_max, combine_type_sizes,
    operators::{ty_to_str, OperatorValidator, OperatorValidatorAllocations},
    types::{EntityType, Type, TypeAlloc, TypeId, TypeList},
};
use crate::limits::*;
use crate::validator::core::arc::MaybeOwned;
use crate::{
    BinaryReaderError, ConstExpr, Data, DataKind, Element, ElementKind, ExternalKind, FuncType,
    Global, GlobalType, HeapType, MemoryType, RefType, Result, Table, TableInit, TableType,
    TagType, TypeRef, ValType, VisitOperator, WasmFeatures, WasmFuncType, WasmModuleResources,
};
use indexmap::IndexMap;
use std::mem;
use std::{collections::HashSet, sync::Arc};

// Section order for WebAssembly modules.
//
// Component sections are unordered and allow for duplicates,
// so this isn't used for components.
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Debug)]
pub enum Order {
    Initial,
    Type,
    Import,
    Function,
    Table,
    Memory,
    Tag,
    Global,
    Export,
    Start,
    Element,
    DataCount,
    Code,
    Data,
}

impl Default for Order {
    fn default() -> Order {
        Order::Initial
    }
}

#[derive(Default)]
pub(crate) struct ModuleState {
    /// Internal state that is incrementally built-up for the module being
    /// validated. This houses type information for all wasm items, like
    /// functions. Note that this starts out as a solely owned `Arc<T>` so we can
    /// get mutable access, but after we get to the code section this is never
    /// mutated to we can clone it cheaply and hand it to sub-validators.
    pub module: arc::MaybeOwned<Module>,

    /// Where we are, order-wise, in the wasm binary.
    order: Order,

    /// The number of data segments in the data section (if present).
    pub data_segment_count: u32,

    /// The number of functions we expect to be defined in the code section, or
    /// basically the length of the function section if it was found. The next
    /// index is where we are, in the code section index space, for the next
    /// entry in the code section (used to figure out what type is next for the
    /// function being validated).
    pub expected_code_bodies: Option<u32>,

    const_expr_allocs: OperatorValidatorAllocations,

    /// When parsing the code section, represents the current index in the section.
    code_section_index: Option<usize>,
}

impl ModuleState {
    pub fn update_order(&mut self, order: Order, offset: usize) -> Result<()> {
        if self.order >= order {
            return Err(BinaryReaderError::new("section out of order", offset));
        }

        self.order = order;

        Ok(())
    }

    pub fn validate_end(&self, offset: usize) -> Result<()> {
        // Ensure that the data count section, if any, was correct.
        if let Some(data_count) = self.module.data_count {
            if data_count != self.data_segment_count {
                return Err(BinaryReaderError::new(
                    "data count and data section have inconsistent lengths",
                    offset,
                ));
            }
        }
        // Ensure that the function section, if nonzero, was paired with a code
        // section with the appropriate length.
        if let Some(n) = self.expected_code_bodies {
            if n > 0 {
                return Err(BinaryReaderError::new(
                    "function and code section have inconsistent lengths",
                    offset,
                ));
            }
        }

        Ok(())
    }

    pub fn next_code_index_and_type(&mut self, offset: usize) -> Result<(u32, u32)> {
        let index = self
            .code_section_index
            .get_or_insert(self.module.num_imported_functions as usize);

        if *index >= self.module.functions.len() {
            return Err(BinaryReaderError::new(
                "code section entry exceeds number of functions",
                offset,
            ));
        }

        let ty = self.module.functions[*index];
        *index += 1;

        Ok(((*index - 1) as u32, ty))
    }

    pub fn add_global(
        &mut self,
        global: Global,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        self.module
            .check_global_type(&global.ty, features, types, offset)?;
        self.check_const_expr(&global.init_expr, global.ty.content_type, features, types)?;
        self.module.assert_mut().globals.push(global.ty);
        Ok(())
    }

    pub fn add_table(
        &mut self,
        table: Table<'_>,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        self.module
            .check_table_type(&table.ty, features, types, offset)?;

        match &table.init {
            TableInit::RefNull => {
                if !table.ty.element_type.nullable {
                    bail!(offset, "type mismatch: non-defaultable element type");
                }
            }
            TableInit::Expr(expr) => {
                if !features.function_references {
                    bail!(
                        offset,
                        "tables with expression initializers require \
                         the function-references proposal"
                    );
                }
                self.check_const_expr(expr, table.ty.element_type.into(), features, types)?;
            }
        }
        self.module.assert_mut().tables.push(table.ty);
        Ok(())
    }

    pub fn add_data_segment(
        &mut self,
        data: Data,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        match data.kind {
            DataKind::Passive => Ok(()),
            DataKind::Active {
                memory_index,
                offset_expr,
            } => {
                let ty = self.module.memory_at(memory_index, offset)?.index_type();
                self.check_const_expr(&offset_expr, ty, features, types)
            }
        }
    }

    pub fn add_element_segment(
        &mut self,
        e: Element,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        // the `funcref` value type is allowed all the way back to the MVP, so
        // don't check it here
        if e.ty != RefType::FUNCREF {
            self.module
                .check_value_type(ValType::Ref(e.ty), features, types, offset)?;
        }
        match e.kind {
            ElementKind::Active {
                table_index,
                offset_expr,
            } => {
                let table = self.module.table_at(table_index, offset)?;
                if !self
                    .module
                    .matches(ValType::Ref(e.ty), ValType::Ref(table.element_type), types)
                {
                    return Err(BinaryReaderError::new(
                        format!(
                            "type mismatch: invalid element type `{}` for table type `{}`",
                            ty_to_str(e.ty.into()),
                            ty_to_str(table.element_type.into()),
                        ),
                        offset,
                    ));
                }

                self.check_const_expr(&offset_expr, ValType::I32, features, types)?;
            }
            ElementKind::Passive | ElementKind::Declared => {
                if !features.bulk_memory {
                    return Err(BinaryReaderError::new(
                        "bulk memory must be enabled",
                        offset,
                    ));
                }
            }
        }

        let validate_count = |count: u32| -> Result<(), BinaryReaderError> {
            if count > MAX_WASM_TABLE_ENTRIES as u32 {
                Err(BinaryReaderError::new(
                    "number of elements is out of bounds",
                    offset,
                ))
            } else {
                Ok(())
            }
        };
        match e.items {
            crate::ElementItems::Functions(reader) => {
                let count = reader.count();
                if !e.ty.nullable && count <= 0 {
                    return Err(BinaryReaderError::new(
                        "a non-nullable element must come with an initialization expression",
                        offset,
                    ));
                }
                validate_count(count)?;
                for f in reader.into_iter_with_offsets() {
                    let (offset, f) = f?;
                    self.module.get_func_type(f, types, offset)?;
                    self.module.assert_mut().function_references.insert(f);
                }
            }
            crate::ElementItems::Expressions(reader) => {
                validate_count(reader.count())?;
                for expr in reader {
                    self.check_const_expr(&expr?, ValType::Ref(e.ty), features, types)?;
                }
            }
        }
        self.module.assert_mut().element_types.push(e.ty);
        Ok(())
    }

    fn check_const_expr(
        &mut self,
        expr: &ConstExpr<'_>,
        expected_ty: ValType,
        features: &WasmFeatures,
        types: &TypeList,
    ) -> Result<()> {
        let mut validator = VisitConstOperator {
            offset: 0,
            order: self.order,
            uninserted_funcref: false,
            ops: OperatorValidator::new_const_expr(
                features,
                expected_ty,
                mem::take(&mut self.const_expr_allocs),
            ),
            resources: OperatorValidatorResources {
                types,
                module: &mut self.module,
            },
        };

        let mut ops = expr.get_operators_reader();
        while !ops.eof() {
            validator.offset = ops.original_position();
            ops.visit_operator(&mut validator)??;
        }
        validator.ops.finish(ops.original_position())?;

        // See comment in `RefFunc` below for why this is an assert.
        assert!(!validator.uninserted_funcref);

        self.const_expr_allocs = validator.ops.into_allocations();

        return Ok(());

        struct VisitConstOperator<'a> {
            offset: usize,
            uninserted_funcref: bool,
            ops: OperatorValidator,
            resources: OperatorValidatorResources<'a>,
            order: Order,
        }

        impl VisitConstOperator<'_> {
            fn validator(&mut self) -> impl VisitOperator<'_, Output = Result<()>> {
                self.ops.with_resources(&self.resources, self.offset)
            }

            fn validate_extended_const(&mut self) -> Result<()> {
                if self.ops.features.extended_const {
                    Ok(())
                } else {
                    Err(BinaryReaderError::new(
                        "constant expression required: non-constant operator",
                        self.offset,
                    ))
                }
            }

            fn validate_global(&mut self, index: u32) -> Result<()> {
                let module = &self.resources.module;
                let global = module.global_at(index, self.offset)?;
                if index >= module.num_imported_globals {
                    return Err(BinaryReaderError::new(
                        "constant expression required: global.get of locally defined global",
                        self.offset,
                    ));
                }
                if global.mutable {
                    return Err(BinaryReaderError::new(
                        "constant expression required: global.get of mutable global",
                        self.offset,
                    ));
                }
                Ok(())
            }

            // Functions in initialization expressions are only valid in
            // element segment initialization expressions and globals. In
            // these contexts we want to record all function references.
            //
            // Initialization expressions can also be found in the data
            // section, however. A `RefFunc` instruction in those situations
            // is always invalid and needs to produce a validation error. In
            // this situation, though, we can no longer modify
            // the state since it's been "snapshot" already for
            // parallel validation of functions.
            //
            // If we cannot modify the function references then this function
            // *should* result in a validation error, but we defer that
            // validation error to happen later. The `uninserted_funcref`
            // boolean here is used to track this and will cause a panic
            // (aka a fuzz bug) if we somehow forget to emit an error somewhere
            // else.
            fn insert_ref_func(&mut self, index: u32) {
                if self.order == Order::Data {
                    self.uninserted_funcref = true;
                } else {
                    self.resources
                        .module
                        .assert_mut()
                        .function_references
                        .insert(index);
                }
            }
        }

        macro_rules! define_visit_operator {
            ($(@$proposal:ident $op:ident $({ $($arg:ident: $argty:ty),* })? => $visit:ident)*) => {
                $(
                    #[allow(unused_variables)]
                    fn $visit(&mut self $($(,$arg: $argty)*)?) -> Self::Output {
                        define_visit_operator!(@visit self $visit $($($arg)*)?)
                    }
                )*
            };

            // These are always valid in const expressions
            (@visit $self:ident visit_i32_const $val:ident) => {{
                $self.validator().visit_i32_const($val)
            }};
            (@visit $self:ident visit_i64_const $val:ident) => {{
                $self.validator().visit_i64_const($val)
            }};
            (@visit $self:ident visit_f32_const $val:ident) => {{
                $self.validator().visit_f32_const($val)
            }};
            (@visit $self:ident visit_f64_const $val:ident) => {{
                $self.validator().visit_f64_const($val)
            }};
            (@visit $self:ident visit_v128_const $val:ident) => {{
                $self.validator().visit_v128_const($val)
            }};
            (@visit $self:ident visit_ref_null $val:ident) => {{
                $self.validator().visit_ref_null($val)
            }};
            (@visit $self:ident visit_end) => {{
                $self.validator().visit_end()
            }};


            // These are valid const expressions when the extended-const proposal is enabled.
            (@visit $self:ident visit_i32_add) => {{
                $self.validate_extended_const()?;
                $self.validator().visit_i32_add()
            }};
            (@visit $self:ident visit_i32_sub) => {{
                $self.validate_extended_const()?;
                $self.validator().visit_i32_sub()
            }};
            (@visit $self:ident visit_i32_mul) => {{
                $self.validate_extended_const()?;
                $self.validator().visit_i32_mul()
            }};
            (@visit $self:ident visit_i64_add) => {{
                $self.validate_extended_const()?;
                $self.validator().visit_i64_add()
            }};
            (@visit $self:ident visit_i64_sub) => {{
                $self.validate_extended_const()?;
                $self.validator().visit_i64_sub()
            }};
            (@visit $self:ident visit_i64_mul) => {{
                $self.validate_extended_const()?;
                $self.validator().visit_i64_mul()
            }};

            // `global.get` is a valid const expression for imported, immutable
            // globals.
            (@visit $self:ident visit_global_get $idx:ident) => {{
                $self.validate_global($idx)?;
                $self.validator().visit_global_get($idx)
            }};
            // `ref.func`, if it's in a `global` initializer, will insert into
            // the set of referenced functions so it's processed here.
            (@visit $self:ident visit_ref_func $idx:ident) => {{
                $self.insert_ref_func($idx);
                $self.validator().visit_ref_func($idx)
            }};

            (@visit $self:ident $op:ident $($args:tt)*) => {{
                Err(BinaryReaderError::new(
                    "constant expression required: non-constant operator",
                    $self.offset,
                ))
            }}
        }

        impl<'a> VisitOperator<'a> for VisitConstOperator<'a> {
            type Output = Result<()>;

            for_each_operator!(define_visit_operator);
        }
    }
}

pub(crate) struct Module {
    // This is set once the code section starts.
    // `WasmModuleResources` implementations use the snapshot to
    // enable parallel validation of functions.
    pub snapshot: Option<Arc<TypeList>>,
    // Stores indexes into the validator's types list.
    pub types: Vec<TypeId>,
    pub tables: Vec<TableType>,
    pub memories: Vec<MemoryType>,
    pub globals: Vec<GlobalType>,
    pub element_types: Vec<RefType>,
    pub data_count: Option<u32>,
    // Stores indexes into `types`.
    pub functions: Vec<u32>,
    pub tags: Vec<TypeId>,
    pub function_references: HashSet<u32>,
    pub imports: IndexMap<(String, String), Vec<EntityType>>,
    pub exports: IndexMap<String, EntityType>,
    pub type_size: u32,
    num_imported_globals: u32,
    num_imported_functions: u32,
}

impl Module {
    pub fn add_type(
        &mut self,
        ty: crate::Type,
        features: &WasmFeatures,
        types: &mut TypeAlloc,
        offset: usize,
        check_limit: bool,
    ) -> Result<()> {
        let ty = match ty {
            crate::Type::Func(t) => {
                for ty in t.params().iter().chain(t.results()) {
                    self.check_value_type(*ty, features, types, offset)?;
                }
                if t.results().len() > 1 && !features.multi_value {
                    return Err(BinaryReaderError::new(
                        "func type returns multiple values but the multi-value feature is not enabled",
                        offset,
                    ));
                }
                Type::Func(t)
            }
        };

        if check_limit {
            check_max(self.types.len(), 1, MAX_WASM_TYPES, "types", offset)?;
        }

        let id = types.push_defined(ty);
        self.types.push(id);
        Ok(())
    }

    pub fn add_import(
        &mut self,
        import: crate::Import,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        let entity = self.check_type_ref(&import.ty, features, types, offset)?;

        let (len, max, desc) = match import.ty {
            TypeRef::Func(type_index) => {
                self.functions.push(type_index);
                self.num_imported_functions += 1;
                (self.functions.len(), MAX_WASM_FUNCTIONS, "functions")
            }
            TypeRef::Table(ty) => {
                self.tables.push(ty);
                (self.tables.len(), self.max_tables(features), "tables")
            }
            TypeRef::Memory(ty) => {
                self.memories.push(ty);
                (self.memories.len(), self.max_memories(features), "memories")
            }
            TypeRef::Tag(ty) => {
                self.tags.push(self.types[ty.func_type_idx as usize]);
                (self.tags.len(), MAX_WASM_TAGS, "tags")
            }
            TypeRef::Global(ty) => {
                if !features.mutable_global && ty.mutable {
                    return Err(BinaryReaderError::new(
                        "mutable global support is not enabled",
                        offset,
                    ));
                }
                self.globals.push(ty);
                self.num_imported_globals += 1;
                (self.globals.len(), MAX_WASM_GLOBALS, "globals")
            }
        };

        check_max(len, 0, max, desc, offset)?;

        self.type_size = combine_type_sizes(self.type_size, entity.type_size(), offset)?;

        self.imports
            .entry((import.module.to_string(), import.name.to_string()))
            .or_default()
            .push(entity);

        Ok(())
    }

    pub fn add_export(
        &mut self,
        name: &str,
        ty: EntityType,
        features: &WasmFeatures,
        offset: usize,
        check_limit: bool,
    ) -> Result<()> {
        if !features.mutable_global {
            if let EntityType::Global(global_type) = ty {
                if global_type.mutable {
                    return Err(BinaryReaderError::new(
                        "mutable global support is not enabled",
                        offset,
                    ));
                }
            }
        }

        if check_limit {
            check_max(self.exports.len(), 1, MAX_WASM_EXPORTS, "exports", offset)?;
        }

        self.type_size = combine_type_sizes(self.type_size, ty.type_size(), offset)?;

        match self.exports.insert(name.to_string(), ty) {
            Some(_) => Err(format_err!(
                offset,
                "duplicate export name `{name}` already defined"
            )),
            None => Ok(()),
        }
    }

    pub fn add_function(&mut self, type_index: u32, types: &TypeList, offset: usize) -> Result<()> {
        self.func_type_at(type_index, types, offset)?;
        self.functions.push(type_index);
        Ok(())
    }

    pub fn add_memory(
        &mut self,
        ty: MemoryType,
        features: &WasmFeatures,
        offset: usize,
    ) -> Result<()> {
        self.check_memory_type(&ty, features, offset)?;
        self.memories.push(ty);
        Ok(())
    }

    pub fn add_tag(
        &mut self,
        ty: TagType,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        self.check_tag_type(&ty, features, types, offset)?;
        self.tags.push(self.types[ty.func_type_idx as usize]);
        Ok(())
    }

    pub fn type_at(&self, idx: u32, offset: usize) -> Result<TypeId> {
        self.types
            .get(idx as usize)
            .copied()
            .ok_or_else(|| format_err!(offset, "unknown type {idx}: type index out of bounds"))
    }

    fn func_type_at<'a>(
        &self,
        type_index: u32,
        types: &'a TypeList,
        offset: usize,
    ) -> Result<&'a FuncType> {
        types[self.type_at(type_index, offset)?]
            .as_func_type()
            .ok_or_else(|| format_err!(offset, "type index {type_index} is not a function type"))
    }

    pub fn check_type_ref(
        &self,
        type_ref: &TypeRef,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<EntityType> {
        Ok(match type_ref {
            TypeRef::Func(type_index) => {
                self.func_type_at(*type_index, types, offset)?;
                EntityType::Func(self.types[*type_index as usize])
            }
            TypeRef::Table(t) => {
                self.check_table_type(t, features, types, offset)?;
                EntityType::Table(*t)
            }
            TypeRef::Memory(t) => {
                self.check_memory_type(t, features, offset)?;
                EntityType::Memory(*t)
            }
            TypeRef::Tag(t) => {
                self.check_tag_type(t, features, types, offset)?;
                EntityType::Tag(self.types[t.func_type_idx as usize])
            }
            TypeRef::Global(t) => {
                self.check_global_type(t, features, types, offset)?;
                EntityType::Global(*t)
            }
        })
    }

    fn check_table_type(
        &self,
        ty: &TableType,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        // the `funcref` value type is allowed all the way back to the MVP, so
        // don't check it here
        if ty.element_type != RefType::FUNCREF {
            self.check_value_type(ValType::Ref(ty.element_type), features, types, offset)?
        }

        self.check_limits(ty.initial, ty.maximum, offset)?;
        if ty.initial > MAX_WASM_TABLE_ENTRIES as u32 {
            return Err(BinaryReaderError::new(
                "minimum table size is out of bounds",
                offset,
            ));
        }
        Ok(())
    }

    fn check_memory_type(
        &self,
        ty: &MemoryType,
        features: &WasmFeatures,
        offset: usize,
    ) -> Result<()> {
        self.check_limits(ty.initial, ty.maximum, offset)?;
        let (true_maximum, err) = if ty.memory64 {
            if !features.memory64 {
                return Err(BinaryReaderError::new(
                    "memory64 must be enabled for 64-bit memories",
                    offset,
                ));
            }
            (
                MAX_WASM_MEMORY64_PAGES,
                "memory size must be at most 2**48 pages",
            )
        } else {
            (
                MAX_WASM_MEMORY32_PAGES,
                "memory size must be at most 65536 pages (4GiB)",
            )
        };
        if ty.initial > true_maximum {
            return Err(BinaryReaderError::new(err, offset));
        }
        if let Some(maximum) = ty.maximum {
            if maximum > true_maximum {
                return Err(BinaryReaderError::new(err, offset));
            }
        }
        if ty.shared {
            if !features.threads {
                return Err(BinaryReaderError::new(
                    "threads must be enabled for shared memories",
                    offset,
                ));
            }
            if ty.maximum.is_none() {
                return Err(BinaryReaderError::new(
                    "shared memory must have maximum size",
                    offset,
                ));
            }
        }
        Ok(())
    }

    pub(crate) fn imports_for_module_type(
        &self,
        offset: usize,
    ) -> Result<IndexMap<(String, String), EntityType>> {
        // Ensure imports are unique, which is a requirement of the component model
        self.imports
            .iter()
            .map(|((module, name), types)| {
                if types.len() != 1 {
                    bail!(
                        offset,
                        "module has a duplicate import name `{module}:{name}` \
                         that is not allowed in components",
                    );
                }
                Ok(((module.clone(), name.clone()), types[0]))
            })
            .collect::<Result<_>>()
    }

    fn check_value_type(
        &self,
        ty: ValType,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        match features.check_value_type(ty) {
            Ok(()) => Ok(()),
            Err(e) => Err(BinaryReaderError::new(e, offset)),
        }?;
        // The above only checks the value type for features.
        // We must check it if it's a reference.
        match ty {
            ValType::Ref(rt) => {
                self.check_ref_type(rt, types, offset)?;
            }
            _ => (),
        }
        Ok(())
    }

    fn check_ref_type(&self, ty: RefType, types: &TypeList, offset: usize) -> Result<()> {
        // Check that the heap type is valid
        match ty.heap_type {
            HeapType::Func | HeapType::Extern => (),
            HeapType::TypedFunc(type_index) => {
                // Just check that the index is valid
                self.func_type_at(type_index.into(), types, offset)?;
            }
        }
        Ok(())
    }

    fn eq_valtypes(&self, ty1: ValType, ty2: ValType, types: &TypeList) -> bool {
        match (ty1, ty2) {
            (ValType::Ref(rt1), ValType::Ref(rt2)) => {
                rt1.nullable == rt2.nullable
                    && match (rt1.heap_type, rt2.heap_type) {
                        (HeapType::Func, HeapType::Func) => true,
                        (HeapType::Extern, HeapType::Extern) => true,
                        (HeapType::TypedFunc(n1), HeapType::TypedFunc(n2)) => {
                            let n1 = self.func_type_at(n1.into(), types, 0).unwrap();
                            let n2 = self.func_type_at(n2.into(), types, 0).unwrap();
                            self.eq_fns(n1, n2, types)
                        }
                        (_, _) => false,
                    }
            }
            _ => ty1 == ty2,
        }
    }
    fn eq_fns(&self, f1: &impl WasmFuncType, f2: &impl WasmFuncType, types: &TypeList) -> bool {
        f1.len_inputs() == f2.len_inputs()
            && f2.len_outputs() == f2.len_outputs()
            && f1
                .inputs()
                .zip(f2.inputs())
                .all(|(t1, t2)| self.eq_valtypes(t1, t2, types))
            && f1
                .outputs()
                .zip(f2.outputs())
                .all(|(t1, t2)| self.eq_valtypes(t1, t2, types))
    }

    pub(crate) fn matches(&self, ty1: ValType, ty2: ValType, types: &TypeList) -> bool {
        fn matches_null(null1: bool, null2: bool) -> bool {
            (null1 == null2) || null2
        }

        let matches_heap = |ty1: HeapType, ty2: HeapType, types: &TypeList| -> bool {
            match (ty1, ty2) {
                (HeapType::TypedFunc(n1), HeapType::TypedFunc(n2)) => {
                    // Check whether the defined types are (structurally) equivalent.
                    let n1 = self.func_type_at(n1.into(), types, 0).unwrap();
                    let n2 = self.func_type_at(n2.into(), types, 0).unwrap();
                    self.eq_fns(n1, n2, types)
                }
                (HeapType::TypedFunc(_), HeapType::Func) => true,
                (_, _) => ty1 == ty2,
            }
        };

        let matches_ref = |ty1: RefType, ty2: RefType, types: &TypeList| -> bool {
            matches_heap(ty1.heap_type, ty2.heap_type, types)
                && matches_null(ty1.nullable, ty2.nullable)
        };

        match (ty1, ty2) {
            (ValType::Ref(rt1), ValType::Ref(rt2)) => matches_ref(rt1, rt2, types),
            (_, _) => ty1 == ty2,
        }
    }

    fn check_tag_type(
        &self,
        ty: &TagType,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        if !features.exceptions {
            return Err(BinaryReaderError::new(
                "exceptions proposal not enabled",
                offset,
            ));
        }
        let ty = self.func_type_at(ty.func_type_idx, types, offset)?;
        if !ty.results().is_empty() {
            return Err(BinaryReaderError::new(
                "invalid exception type: non-empty tag result type",
                offset,
            ));
        }
        Ok(())
    }

    fn check_global_type(
        &self,
        ty: &GlobalType,
        features: &WasmFeatures,
        types: &TypeList,
        offset: usize,
    ) -> Result<()> {
        self.check_value_type(ty.content_type, features, types, offset)
    }

    fn check_limits<T>(&self, initial: T, maximum: Option<T>, offset: usize) -> Result<()>
    where
        T: Into<u64>,
    {
        if let Some(max) = maximum {
            if initial.into() > max.into() {
                return Err(BinaryReaderError::new(
                    "size minimum must not be greater than maximum",
                    offset,
                ));
            }
        }
        Ok(())
    }

    pub fn max_tables(&self, features: &WasmFeatures) -> usize {
        if features.reference_types {
            MAX_WASM_TABLES
        } else {
            1
        }
    }

    pub fn max_memories(&self, features: &WasmFeatures) -> usize {
        if features.multi_memory {
            MAX_WASM_MEMORIES
        } else {
            1
        }
    }

    pub fn export_to_entity_type(
        &mut self,
        export: &crate::Export,
        offset: usize,
    ) -> Result<EntityType> {
        let check = |ty: &str, index: u32, total: usize| {
            if index as usize >= total {
                Err(format_err!(
                    offset,
                    "unknown {ty} {index}: exported {ty} index out of bounds",
                ))
            } else {
                Ok(())
            }
        };

        Ok(match export.kind {
            ExternalKind::Func => {
                check("function", export.index, self.functions.len())?;
                self.function_references.insert(export.index);
                EntityType::Func(self.types[self.functions[export.index as usize] as usize])
            }
            ExternalKind::Table => {
                check("table", export.index, self.tables.len())?;
                EntityType::Table(self.tables[export.index as usize])
            }
            ExternalKind::Memory => {
                check("memory", export.index, self.memories.len())?;
                EntityType::Memory(self.memories[export.index as usize])
            }
            ExternalKind::Global => {
                check("global", export.index, self.globals.len())?;
                EntityType::Global(self.globals[export.index as usize])
            }
            ExternalKind::Tag => {
                check("tag", export.index, self.tags.len())?;
                EntityType::Tag(self.tags[export.index as usize])
            }
        })
    }

    pub fn get_func_type<'a>(
        &self,
        func_idx: u32,
        types: &'a TypeList,
        offset: usize,
    ) -> Result<&'a FuncType> {
        match self.functions.get(func_idx as usize) {
            Some(idx) => self.func_type_at(*idx, types, offset),
            None => Err(format_err!(
                offset,
                "unknown function {func_idx}: func index out of bounds",
            )),
        }
    }

    fn global_at(&self, idx: u32, offset: usize) -> Result<&GlobalType> {
        match self.globals.get(idx as usize) {
            Some(t) => Ok(t),
            None => Err(format_err!(
                offset,
                "unknown global {idx}: global index out of bounds"
            )),
        }
    }

    fn table_at(&self, idx: u32, offset: usize) -> Result<&TableType> {
        match self.tables.get(idx as usize) {
            Some(t) => Ok(t),
            None => Err(format_err!(
                offset,
                "unknown table {idx}: table index out of bounds"
            )),
        }
    }

    fn memory_at(&self, idx: u32, offset: usize) -> Result<&MemoryType> {
        match self.memories.get(idx as usize) {
            Some(t) => Ok(t),
            None => Err(format_err!(
                offset,
                "unknown memory {idx}: memory index out of bounds"
            )),
        }
    }
}

impl Default for Module {
    fn default() -> Self {
        Self {
            snapshot: Default::default(),
            types: Default::default(),
            tables: Default::default(),
            memories: Default::default(),
            globals: Default::default(),
            element_types: Default::default(),
            data_count: Default::default(),
            functions: Default::default(),
            tags: Default::default(),
            function_references: Default::default(),
            imports: Default::default(),
            exports: Default::default(),
            type_size: 1,
            num_imported_globals: Default::default(),
            num_imported_functions: Default::default(),
        }
    }
}

struct OperatorValidatorResources<'a> {
    module: &'a mut MaybeOwned<Module>,
    types: &'a TypeList,
}

impl WasmModuleResources for OperatorValidatorResources<'_> {
    type FuncType = crate::FuncType;

    fn table_at(&self, at: u32) -> Option<TableType> {
        self.module.tables.get(at as usize).cloned()
    }

    fn memory_at(&self, at: u32) -> Option<MemoryType> {
        self.module.memories.get(at as usize).cloned()
    }

    fn tag_at(&self, at: u32) -> Option<&Self::FuncType> {
        Some(
            self.types[*self.module.tags.get(at as usize)?]
                .as_func_type()
                .unwrap(),
        )
    }

    fn global_at(&self, at: u32) -> Option<GlobalType> {
        self.module.globals.get(at as usize).cloned()
    }

    fn func_type_at(&self, at: u32) -> Option<&Self::FuncType> {
        Some(
            self.types[*self.module.types.get(at as usize)?]
                .as_func_type()
                .unwrap(),
        )
    }

    fn type_index_of_function(&self, at: u32) -> Option<u32> {
        self.module.functions.get(at as usize).cloned()
    }

    fn type_of_function(&self, at: u32) -> Option<&Self::FuncType> {
        self.func_type_at(self.type_index_of_function(at)?)
    }

    fn check_value_type(&self, t: ValType, features: &WasmFeatures, offset: usize) -> Result<()> {
        self.module
            .check_value_type(t, features, self.types, offset)
    }

    fn element_type_at(&self, at: u32) -> Option<RefType> {
        self.module.element_types.get(at as usize).cloned()
    }

    fn matches(&self, t1: ValType, t2: ValType) -> bool {
        self.module.matches(t1, t2, self.types)
    }

    fn element_count(&self) -> u32 {
        self.module.element_types.len() as u32
    }

    fn data_count(&self) -> Option<u32> {
        self.module.data_count
    }

    fn is_function_referenced(&self, idx: u32) -> bool {
        self.module.function_references.contains(&idx)
    }
}

/// The implementation of [`WasmModuleResources`] used by
/// [`Validator`](crate::Validator).
pub struct ValidatorResources(pub(crate) Arc<Module>);

impl WasmModuleResources for ValidatorResources {
    type FuncType = crate::FuncType;

    fn table_at(&self, at: u32) -> Option<TableType> {
        self.0.tables.get(at as usize).cloned()
    }

    fn memory_at(&self, at: u32) -> Option<MemoryType> {
        self.0.memories.get(at as usize).cloned()
    }

    fn tag_at(&self, at: u32) -> Option<&Self::FuncType> {
        Some(
            self.0.snapshot.as_ref().unwrap()[*self.0.tags.get(at as usize)?]
                .as_func_type()
                .unwrap(),
        )
    }

    fn global_at(&self, at: u32) -> Option<GlobalType> {
        self.0.globals.get(at as usize).cloned()
    }

    fn func_type_at(&self, at: u32) -> Option<&Self::FuncType> {
        Some(
            self.0.snapshot.as_ref().unwrap()[*self.0.types.get(at as usize)?]
                .as_func_type()
                .unwrap(),
        )
    }

    fn type_index_of_function(&self, at: u32) -> Option<u32> {
        self.0.functions.get(at as usize).cloned()
    }

    fn type_of_function(&self, at: u32) -> Option<&Self::FuncType> {
        self.func_type_at(self.type_index_of_function(at)?)
    }

    fn check_value_type(&self, t: ValType, features: &WasmFeatures, offset: usize) -> Result<()> {
        self.0
            .check_value_type(t, features, self.0.snapshot.as_ref().unwrap(), offset)
    }

    fn element_type_at(&self, at: u32) -> Option<RefType> {
        self.0.element_types.get(at as usize).cloned()
    }

    fn matches(&self, t1: ValType, t2: ValType) -> bool {
        self.0.matches(t1, t2, self.0.snapshot.as_ref().unwrap())
    }

    fn element_count(&self) -> u32 {
        self.0.element_types.len() as u32
    }

    fn data_count(&self) -> Option<u32> {
        self.0.data_count
    }

    fn is_function_referenced(&self, idx: u32) -> bool {
        self.0.function_references.contains(&idx)
    }
}

const _: () = {
    fn assert_send<T: Send>() {}

    // Assert that `ValidatorResources` is Send so function validation
    // can be parallelizable
    fn assert() {
        assert_send::<ValidatorResources>();
    }
};

mod arc {
    use std::ops::Deref;
    use std::sync::Arc;

    enum Inner<T> {
        Owned(T),
        Shared(Arc<T>),

        Empty, // Only used for swapping from owned to shared.
    }

    pub struct MaybeOwned<T> {
        inner: Inner<T>,
    }

    impl<T> MaybeOwned<T> {
        #[inline]
        fn as_mut(&mut self) -> Option<&mut T> {
            match &mut self.inner {
                Inner::Owned(x) => Some(x),
                Inner::Shared(_) => None,
                Inner::Empty => Self::unreachable(),
            }
        }

        #[inline]
        pub fn assert_mut(&mut self) -> &mut T {
            self.as_mut().unwrap()
        }

        pub fn arc(&mut self) -> &Arc<T> {
            self.make_shared();
            match &self.inner {
                Inner::Shared(x) => x,
                _ => Self::unreachable(),
            }
        }

        #[inline]
        fn make_shared(&mut self) {
            if let Inner::Shared(_) = self.inner {
                return;
            }

            let inner = std::mem::replace(&mut self.inner, Inner::Empty);
            let x = match inner {
                Inner::Owned(x) => x,
                _ => Self::unreachable(),
            };
            let x = Arc::new(x);
            self.inner = Inner::Shared(x);
        }

        #[cold]
        #[inline(never)]
        fn unreachable() -> ! {
            unreachable!()
        }
    }

    impl<T: Default> Default for MaybeOwned<T> {
        fn default() -> MaybeOwned<T> {
            MaybeOwned {
                inner: Inner::Owned(T::default()),
            }
        }
    }

    impl<T> Deref for MaybeOwned<T> {
        type Target = T;

        fn deref(&self) -> &T {
            match &self.inner {
                Inner::Owned(x) => x,
                Inner::Shared(x) => x,
                Inner::Empty => Self::unreachable(),
            }
        }
    }
}