wasmtime/runtime/func.rs
1use crate::prelude::*;
2use crate::runtime::Uninhabited;
3use crate::runtime::vm::{
4 ExportFunction, InterpreterRef, SendSyncPtr, StoreBox, VMArrayCallHostFuncContext,
5 VMCommonStackInformation, VMContext, VMFuncRef, VMFunctionImport, VMOpaqueContext,
6 VMStoreContext,
7};
8use crate::store::{AutoAssertNoGc, StoreId, StoreOpaque};
9use crate::type_registry::RegisteredType;
10use crate::{
11 AsContext, AsContextMut, CallHook, Engine, Extern, FuncType, Instance, ModuleExport, Ref,
12 StoreContext, StoreContextMut, Val, ValRaw, ValType,
13};
14use alloc::sync::Arc;
15use core::ffi::c_void;
16#[cfg(feature = "async")]
17use core::future::Future;
18use core::mem::{self, MaybeUninit};
19use core::ptr::NonNull;
20use wasmtime_environ::VMSharedTypeIndex;
21
22/// A reference to the abstract `nofunc` heap value.
23///
24/// The are no instances of `(ref nofunc)`: it is an uninhabited type.
25///
26/// There is precisely one instance of `(ref null nofunc)`, aka `nullfuncref`:
27/// the null reference.
28///
29/// This `NoFunc` Rust type's sole purpose is for use with [`Func::wrap`]- and
30/// [`Func::typed`]-style APIs for statically typing a function as taking or
31/// returning a `(ref null nofunc)` (aka `Option<NoFunc>`) which is always
32/// `None`.
33///
34/// # Example
35///
36/// ```
37/// # use wasmtime::*;
38/// # fn _foo() -> Result<()> {
39/// let mut config = Config::new();
40/// config.wasm_function_references(true);
41/// let engine = Engine::new(&config)?;
42///
43/// let module = Module::new(
44/// &engine,
45/// r#"
46/// (module
47/// (func (export "f") (param (ref null nofunc))
48/// ;; If the reference is null, return.
49/// local.get 0
50/// ref.is_null nofunc
51/// br_if 0
52///
53/// ;; If the reference was not null (which is impossible)
54/// ;; then raise a trap.
55/// unreachable
56/// )
57/// )
58/// "#,
59/// )?;
60///
61/// let mut store = Store::new(&engine, ());
62/// let instance = Instance::new(&mut store, &module, &[])?;
63/// let f = instance.get_func(&mut store, "f").unwrap();
64///
65/// // We can cast a `(ref null nofunc)`-taking function into a typed function that
66/// // takes an `Option<NoFunc>` via the `Func::typed` method.
67/// let f = f.typed::<Option<NoFunc>, ()>(&store)?;
68///
69/// // We can call the typed function, passing the null `nofunc` reference.
70/// let result = f.call(&mut store, NoFunc::null());
71///
72/// // The function should not have trapped, because the reference we gave it was
73/// // null (as it had to be, since `NoFunc` is uninhabited).
74/// assert!(result.is_ok());
75/// # Ok(())
76/// # }
77/// ```
78#[derive(Copy, Clone, Debug, PartialEq, Eq)]
79pub struct NoFunc {
80 _inner: Uninhabited,
81}
82
83impl NoFunc {
84 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference.
85 #[inline]
86 pub fn null() -> Option<NoFunc> {
87 None
88 }
89
90 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
91 /// [`Ref`].
92 #[inline]
93 pub fn null_ref() -> Ref {
94 Ref::Func(None)
95 }
96
97 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
98 /// [`Val`].
99 #[inline]
100 pub fn null_val() -> Val {
101 Val::FuncRef(None)
102 }
103}
104
105/// A WebAssembly function which can be called.
106///
107/// This type typically represents an exported function from a WebAssembly
108/// module instance. In this case a [`Func`] belongs to an [`Instance`] and is
109/// loaded from there. A [`Func`] may also represent a host function as well in
110/// some cases, too.
111///
112/// Functions can be called in a few different ways, either synchronous or async
113/// and either typed or untyped (more on this below). Note that host functions
114/// are normally inserted directly into a [`Linker`](crate::Linker) rather than
115/// using this directly, but both options are available.
116///
117/// # `Func` and `async`
118///
119/// Functions from the perspective of WebAssembly are always synchronous. You
120/// might have an `async` function in Rust, however, which you'd like to make
121/// available from WebAssembly. Wasmtime supports asynchronously calling
122/// WebAssembly through native stack switching. You can get some more
123/// information about [asynchronous configs](crate::Config::async_support), but
124/// from the perspective of `Func` it's important to know that whether or not
125/// your [`Store`](crate::Store) is asynchronous will dictate whether you call
126/// functions through [`Func::call`] or [`Func::call_async`] (or the typed
127/// wrappers such as [`TypedFunc::call`] vs [`TypedFunc::call_async`]).
128///
129/// # To `Func::call` or to `Func::typed().call()`
130///
131/// There's a 2x2 matrix of methods to call [`Func`]. Invocations can either be
132/// asynchronous or synchronous. They can also be statically typed or not.
133/// Whether or not an invocation is asynchronous is indicated via the method
134/// being `async` and [`call_async`](Func::call_async) being the entry point.
135/// Otherwise for statically typed or not your options are:
136///
137/// * Dynamically typed - if you don't statically know the signature of the
138/// function that you're calling you'll be using [`Func::call`] or
139/// [`Func::call_async`]. These functions take a variable-length slice of
140/// "boxed" arguments in their [`Val`] representation. Additionally the
141/// results are returned as an owned slice of [`Val`]. These methods are not
142/// optimized due to the dynamic type checks that must occur, in addition to
143/// some dynamic allocations for where to put all the arguments. While this
144/// allows you to call all possible wasm function signatures, if you're
145/// looking for a speedier alternative you can also use...
146///
147/// * Statically typed - if you statically know the type signature of the wasm
148/// function you're calling, then you'll want to use the [`Func::typed`]
149/// method to acquire an instance of [`TypedFunc`]. This structure is static proof
150/// that the underlying wasm function has the ascripted type, and type
151/// validation is only done once up-front. The [`TypedFunc::call`] and
152/// [`TypedFunc::call_async`] methods are much more efficient than [`Func::call`]
153/// and [`Func::call_async`] because the type signature is statically known.
154/// This eschews runtime checks as much as possible to get into wasm as fast
155/// as possible.
156///
157/// # Examples
158///
159/// One way to get a `Func` is from an [`Instance`] after you've instantiated
160/// it:
161///
162/// ```
163/// # use wasmtime::*;
164/// # fn main() -> anyhow::Result<()> {
165/// let engine = Engine::default();
166/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
167/// let mut store = Store::new(&engine, ());
168/// let instance = Instance::new(&mut store, &module, &[])?;
169/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
170///
171/// // Work with `foo` as a `Func` at this point, such as calling it
172/// // dynamically...
173/// match foo.call(&mut store, &[], &mut []) {
174/// Ok(()) => { /* ... */ }
175/// Err(trap) => {
176/// panic!("execution of `foo` resulted in a wasm trap: {}", trap);
177/// }
178/// }
179/// foo.call(&mut store, &[], &mut [])?;
180///
181/// // ... or we can make a static assertion about its signature and call it.
182/// // Our first call here can fail if the signatures don't match, and then the
183/// // second call can fail if the function traps (like the `match` above).
184/// let foo = foo.typed::<(), ()>(&store)?;
185/// foo.call(&mut store, ())?;
186/// # Ok(())
187/// # }
188/// ```
189///
190/// You can also use the [`wrap` function](Func::wrap) to create a
191/// `Func`
192///
193/// ```
194/// # use wasmtime::*;
195/// # fn main() -> anyhow::Result<()> {
196/// let mut store = Store::<()>::default();
197///
198/// // Create a custom `Func` which can execute arbitrary code inside of the
199/// // closure.
200/// let add = Func::wrap(&mut store, |a: i32, b: i32| -> i32 { a + b });
201///
202/// // Next we can hook that up to a wasm module which uses it.
203/// let module = Module::new(
204/// store.engine(),
205/// r#"
206/// (module
207/// (import "" "" (func $add (param i32 i32) (result i32)))
208/// (func (export "call_add_twice") (result i32)
209/// i32.const 1
210/// i32.const 2
211/// call $add
212/// i32.const 3
213/// i32.const 4
214/// call $add
215/// i32.add))
216/// "#,
217/// )?;
218/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
219/// let call_add_twice = instance.get_typed_func::<(), i32>(&mut store, "call_add_twice")?;
220///
221/// assert_eq!(call_add_twice.call(&mut store, ())?, 10);
222/// # Ok(())
223/// # }
224/// ```
225///
226/// Or you could also create an entirely dynamic `Func`!
227///
228/// ```
229/// # use wasmtime::*;
230/// # fn main() -> anyhow::Result<()> {
231/// let mut store = Store::<()>::default();
232///
233/// // Here we need to define the type signature of our `Double` function and
234/// // then wrap it up in a `Func`
235/// let double_type = wasmtime::FuncType::new(
236/// store.engine(),
237/// [wasmtime::ValType::I32].iter().cloned(),
238/// [wasmtime::ValType::I32].iter().cloned(),
239/// );
240/// let double = Func::new(&mut store, double_type, |_, params, results| {
241/// let mut value = params[0].unwrap_i32();
242/// value *= 2;
243/// results[0] = value.into();
244/// Ok(())
245/// });
246///
247/// let module = Module::new(
248/// store.engine(),
249/// r#"
250/// (module
251/// (import "" "" (func $double (param i32) (result i32)))
252/// (func $start
253/// i32.const 1
254/// call $double
255/// drop)
256/// (start $start))
257/// "#,
258/// )?;
259/// let instance = Instance::new(&mut store, &module, &[double.into()])?;
260/// // .. work with `instance` if necessary
261/// # Ok(())
262/// # }
263/// ```
264#[derive(Copy, Clone, Debug)]
265#[repr(C)] // here for the C API
266pub struct Func {
267 /// The store that the below pointer belongs to.
268 ///
269 /// It's only safe to look at the contents of the pointer below when the
270 /// `StoreOpaque` matching this id is in-scope.
271 store: StoreId,
272
273 /// The raw `VMFuncRef`, whose lifetime is bound to the store this func
274 /// belongs to.
275 ///
276 /// Note that this field has an `unsafe_*` prefix to discourage use of it.
277 /// This is only safe to read/use if `self.store` is validated to belong to
278 /// an ambiently provided `StoreOpaque` or similar. Use the
279 /// `self.func_ref()` method instead of this field to perform this check.
280 unsafe_func_ref: SendSyncPtr<VMFuncRef>,
281}
282
283// Double-check that the C representation in `extern.h` matches our in-Rust
284// representation here in terms of size/alignment/etc.
285const _: () = {
286 #[repr(C)]
287 struct C(u64, *mut u8);
288 assert!(core::mem::size_of::<C>() == core::mem::size_of::<Func>());
289 assert!(core::mem::align_of::<C>() == core::mem::align_of::<Func>());
290 assert!(core::mem::offset_of!(Func, store) == 0);
291};
292
293macro_rules! for_each_function_signature {
294 ($mac:ident) => {
295 $mac!(0);
296 $mac!(1 A1);
297 $mac!(2 A1 A2);
298 $mac!(3 A1 A2 A3);
299 $mac!(4 A1 A2 A3 A4);
300 $mac!(5 A1 A2 A3 A4 A5);
301 $mac!(6 A1 A2 A3 A4 A5 A6);
302 $mac!(7 A1 A2 A3 A4 A5 A6 A7);
303 $mac!(8 A1 A2 A3 A4 A5 A6 A7 A8);
304 $mac!(9 A1 A2 A3 A4 A5 A6 A7 A8 A9);
305 $mac!(10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10);
306 $mac!(11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11);
307 $mac!(12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12);
308 $mac!(13 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13);
309 $mac!(14 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14);
310 $mac!(15 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15);
311 $mac!(16 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16);
312 $mac!(17 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17);
313 };
314}
315
316mod typed;
317use crate::runtime::vm::VMStackChain;
318pub use typed::*;
319
320impl Func {
321 /// Creates a new `Func` with the given arguments, typically to create a
322 /// host-defined function to pass as an import to a module.
323 ///
324 /// * `store` - the store in which to create this [`Func`], which will own
325 /// the return value.
326 ///
327 /// * `ty` - the signature of this function, used to indicate what the
328 /// inputs and outputs are.
329 ///
330 /// * `func` - the native code invoked whenever this `Func` will be called.
331 /// This closure is provided a [`Caller`] as its first argument to learn
332 /// information about the caller, and then it's passed a list of
333 /// parameters as a slice along with a mutable slice of where to write
334 /// results.
335 ///
336 /// Note that the implementation of `func` must adhere to the `ty` signature
337 /// given, error or traps may occur if it does not respect the `ty`
338 /// signature. For example if the function type declares that it returns one
339 /// i32 but the `func` closures does not write anything into the results
340 /// slice then a trap may be generated.
341 ///
342 /// Additionally note that this is quite a dynamic function since signatures
343 /// are not statically known. For a more performant and ergonomic `Func`
344 /// it's recommended to use [`Func::wrap`] if you can because with
345 /// statically known signatures Wasmtime can optimize the implementation
346 /// much more.
347 ///
348 /// For more information about `Send + Sync + 'static` requirements on the
349 /// `func`, see [`Func::wrap`](#why-send--sync--static).
350 ///
351 /// # Errors
352 ///
353 /// The host-provided function here returns a
354 /// [`Result<()>`](anyhow::Result). If the function returns `Ok(())` then
355 /// that indicates that the host function completed successfully and wrote
356 /// the result into the `&mut [Val]` argument.
357 ///
358 /// If the function returns `Err(e)`, however, then this is equivalent to
359 /// the host function triggering a trap for wasm. WebAssembly execution is
360 /// immediately halted and the original caller of [`Func::call`], for
361 /// example, will receive the error returned here (possibly with
362 /// [`WasmBacktrace`](crate::WasmBacktrace) context information attached).
363 ///
364 /// For more information about errors in Wasmtime see the [`Trap`]
365 /// documentation.
366 ///
367 /// [`Trap`]: crate::Trap
368 ///
369 /// # Panics
370 ///
371 /// Panics if the given function type is not associated with this store's
372 /// engine.
373 pub fn new<T: 'static>(
374 store: impl AsContextMut<Data = T>,
375 ty: FuncType,
376 func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
377 ) -> Self {
378 assert!(ty.comes_from_same_engine(store.as_context().engine()));
379 let ty_clone = ty.clone();
380 unsafe {
381 Func::new_unchecked(store, ty, move |caller, values| {
382 Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
383 })
384 }
385 }
386
387 /// Creates a new [`Func`] with the given arguments, although has fewer
388 /// runtime checks than [`Func::new`].
389 ///
390 /// This function takes a callback of a different signature than
391 /// [`Func::new`], instead receiving a raw pointer with a list of [`ValRaw`]
392 /// structures. These values have no type information associated with them
393 /// so it's up to the caller to provide a function that will correctly
394 /// interpret the list of values as those coming from the `ty` specified.
395 ///
396 /// If you're calling this from Rust it's recommended to either instead use
397 /// [`Func::new`] or [`Func::wrap`]. The [`Func::wrap`] API, in particular,
398 /// is both safer and faster than this API.
399 ///
400 /// # Errors
401 ///
402 /// See [`Func::new`] for the behavior of returning an error from the host
403 /// function provided here.
404 ///
405 /// # Unsafety
406 ///
407 /// This function is not safe because it's not known at compile time that
408 /// the `func` provided correctly interprets the argument types provided to
409 /// it, or that the results it produces will be of the correct type.
410 ///
411 /// # Panics
412 ///
413 /// Panics if the given function type is not associated with this store's
414 /// engine.
415 pub unsafe fn new_unchecked<T: 'static>(
416 mut store: impl AsContextMut<Data = T>,
417 ty: FuncType,
418 func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
419 ) -> Self {
420 assert!(ty.comes_from_same_engine(store.as_context().engine()));
421 let store = store.as_context_mut().0;
422 let host = HostFunc::new_unchecked(store.engine(), ty, func);
423 host.into_func(store)
424 }
425
426 /// Creates a new host-defined WebAssembly function which, when called,
427 /// will run the asynchronous computation defined by `func` to completion
428 /// and then return the result to WebAssembly.
429 ///
430 /// This function is the asynchronous analogue of [`Func::new`] and much of
431 /// that documentation applies to this as well. The key difference is that
432 /// `func` returns a future instead of simply a `Result`. Note that the
433 /// returned future can close over any of the arguments, but it cannot close
434 /// over the state of the closure itself. It's recommended to store any
435 /// necessary async state in the `T` of the [`Store<T>`](crate::Store) which
436 /// can be accessed through [`Caller::data`] or [`Caller::data_mut`].
437 ///
438 /// For more information on `Send + Sync + 'static`, see
439 /// [`Func::wrap`](#why-send--sync--static).
440 ///
441 /// # Panics
442 ///
443 /// This function will panic if `store` is not associated with an [async
444 /// config](crate::Config::async_support).
445 ///
446 /// Panics if the given function type is not associated with this store's
447 /// engine.
448 ///
449 /// # Errors
450 ///
451 /// See [`Func::new`] for the behavior of returning an error from the host
452 /// function provided here.
453 ///
454 /// # Examples
455 ///
456 /// ```
457 /// # use wasmtime::*;
458 /// # fn main() -> anyhow::Result<()> {
459 /// // Simulate some application-specific state as well as asynchronous
460 /// // functions to query that state.
461 /// struct MyDatabase {
462 /// // ...
463 /// }
464 ///
465 /// impl MyDatabase {
466 /// async fn get_row_count(&self) -> u32 {
467 /// // ...
468 /// # 100
469 /// }
470 /// }
471 ///
472 /// let my_database = MyDatabase {
473 /// // ...
474 /// };
475 ///
476 /// // Using `new_async` we can hook up into calling our async
477 /// // `get_row_count` function.
478 /// let engine = Engine::new(Config::new().async_support(true))?;
479 /// let mut store = Store::new(&engine, MyDatabase {
480 /// // ...
481 /// });
482 /// let get_row_count_type = wasmtime::FuncType::new(
483 /// &engine,
484 /// None,
485 /// Some(wasmtime::ValType::I32),
486 /// );
487 /// let get = Func::new_async(&mut store, get_row_count_type, |caller, _params, results| {
488 /// Box::new(async move {
489 /// let count = caller.data().get_row_count().await;
490 /// results[0] = Val::I32(count as i32);
491 /// Ok(())
492 /// })
493 /// });
494 /// // ...
495 /// # Ok(())
496 /// # }
497 /// ```
498 #[cfg(all(feature = "async", feature = "cranelift"))]
499 pub fn new_async<T, F>(store: impl AsContextMut<Data = T>, ty: FuncType, func: F) -> Func
500 where
501 F: for<'a> Fn(
502 Caller<'a, T>,
503 &'a [Val],
504 &'a mut [Val],
505 ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
506 + Send
507 + Sync
508 + 'static,
509 T: 'static,
510 {
511 assert!(
512 store.as_context().async_support(),
513 "cannot use `new_async` without enabling async support in the config"
514 );
515 assert!(ty.comes_from_same_engine(store.as_context().engine()));
516 return Func::new(
517 store,
518 ty,
519 move |Caller { store, caller }, params, results| {
520 store.with_blocking(|store, cx| {
521 cx.block_on(core::pin::Pin::from(func(
522 Caller { store, caller },
523 params,
524 results,
525 )))
526 })?
527 },
528 );
529 }
530
531 pub(crate) unsafe fn from_vm_func_ref(
532 store: &StoreOpaque,
533 func_ref: NonNull<VMFuncRef>,
534 ) -> Func {
535 debug_assert!(func_ref.as_ref().type_index != VMSharedTypeIndex::default());
536 Func {
537 store: store.id(),
538 unsafe_func_ref: func_ref.into(),
539 }
540 }
541
542 /// Creates a new `Func` from the given Rust closure.
543 ///
544 /// This function will create a new `Func` which, when called, will
545 /// execute the given Rust closure. Unlike [`Func::new`] the target
546 /// function being called is known statically so the type signature can
547 /// be inferred. Rust types will map to WebAssembly types as follows:
548 ///
549 /// | Rust Argument Type | WebAssembly Type |
550 /// |-----------------------------------|-------------------------------------------|
551 /// | `i32` | `i32` |
552 /// | `u32` | `i32` |
553 /// | `i64` | `i64` |
554 /// | `u64` | `i64` |
555 /// | `f32` | `f32` |
556 /// | `f64` | `f64` |
557 /// | `V128` on x86-64 and aarch64 only | `v128` |
558 /// | `Option<Func>` | `funcref` aka `(ref null func)` |
559 /// | `Func` | `(ref func)` |
560 /// | `Option<Nofunc>` | `nullfuncref` aka `(ref null nofunc)` |
561 /// | `NoFunc` | `(ref nofunc)` |
562 /// | `Option<Rooted<ExternRef>>` | `externref` aka `(ref null extern)` |
563 /// | `Rooted<ExternRef>` | `(ref extern)` |
564 /// | `Option<NoExtern>` | `nullexternref` aka `(ref null noextern)` |
565 /// | `NoExtern` | `(ref noextern)` |
566 /// | `Option<Rooted<AnyRef>>` | `anyref` aka `(ref null any)` |
567 /// | `Rooted<AnyRef>` | `(ref any)` |
568 /// | `Option<Rooted<EqRef>>` | `eqref` aka `(ref null eq)` |
569 /// | `Rooted<EqRef>` | `(ref eq)` |
570 /// | `Option<I31>` | `i31ref` aka `(ref null i31)` |
571 /// | `I31` | `(ref i31)` |
572 /// | `Option<Rooted<StructRef>>` | `(ref null struct)` |
573 /// | `Rooted<StructRef>` | `(ref struct)` |
574 /// | `Option<Rooted<ArrayRef>>` | `(ref null array)` |
575 /// | `Rooted<ArrayRef>` | `(ref array)` |
576 /// | `Option<NoneRef>` | `nullref` aka `(ref null none)` |
577 /// | `NoneRef` | `(ref none)` |
578 ///
579 /// Note that anywhere a `Rooted<T>` appears, a `ManuallyRooted<T>` may also
580 /// be used.
581 ///
582 /// Any of the Rust types can be returned from the closure as well, in
583 /// addition to some extra types
584 ///
585 /// | Rust Return Type | WebAssembly Return Type | Meaning |
586 /// |-------------------|-------------------------|-----------------------|
587 /// | `()` | nothing | no return value |
588 /// | `T` | `T` | a single return value |
589 /// | `(T1, T2, ...)` | `T1 T2 ...` | multiple returns |
590 ///
591 /// Note that all return types can also be wrapped in `Result<_>` to
592 /// indicate that the host function can generate a trap as well as possibly
593 /// returning a value.
594 ///
595 /// Finally you can also optionally take [`Caller`] as the first argument of
596 /// your closure. If inserted then you're able to inspect the caller's
597 /// state, for example the [`Memory`](crate::Memory) it has exported so you
598 /// can read what pointers point to.
599 ///
600 /// Note that when using this API, the intention is to create as thin of a
601 /// layer as possible for when WebAssembly calls the function provided. With
602 /// sufficient inlining and optimization the WebAssembly will call straight
603 /// into `func` provided, with no extra fluff entailed.
604 ///
605 /// # Why `Send + Sync + 'static`?
606 ///
607 /// All host functions defined in a [`Store`](crate::Store) (including
608 /// those from [`Func::new`] and other constructors) require that the
609 /// `func` provided is `Send + Sync + 'static`. Additionally host functions
610 /// always are `Fn` as opposed to `FnMut` or `FnOnce`. This can at-a-glance
611 /// feel restrictive since the closure cannot close over as many types as
612 /// before. The reason for this, though, is to ensure that
613 /// [`Store<T>`](crate::Store) can implement both the `Send` and `Sync`
614 /// traits.
615 ///
616 /// Fear not, however, because this isn't as restrictive as it seems! Host
617 /// functions are provided a [`Caller<'_, T>`](crate::Caller) argument which
618 /// allows access to the host-defined data within the
619 /// [`Store`](crate::Store). The `T` type is not required to be any of
620 /// `Send`, `Sync`, or `'static`! This means that you can store whatever
621 /// you'd like in `T` and have it accessible by all host functions.
622 /// Additionally mutable access to `T` is allowed through
623 /// [`Caller::data_mut`].
624 ///
625 /// Most host-defined [`Func`] values provide closures that end up not
626 /// actually closing over any values. These zero-sized types will use the
627 /// context from [`Caller`] for host-defined information.
628 ///
629 /// # Errors
630 ///
631 /// The closure provided here to `wrap` can optionally return a
632 /// [`Result<T>`](anyhow::Result). Returning `Ok(t)` represents the host
633 /// function successfully completing with the `t` result. Returning
634 /// `Err(e)`, however, is equivalent to raising a custom wasm trap.
635 /// Execution of WebAssembly does not resume and the stack is unwound to the
636 /// original caller of the function where the error is returned.
637 ///
638 /// For more information about errors in Wasmtime see the [`Trap`]
639 /// documentation.
640 ///
641 /// [`Trap`]: crate::Trap
642 ///
643 /// # Examples
644 ///
645 /// First up we can see how simple wasm imports can be implemented, such
646 /// as a function that adds its two arguments and returns the result.
647 ///
648 /// ```
649 /// # use wasmtime::*;
650 /// # fn main() -> anyhow::Result<()> {
651 /// # let mut store = Store::<()>::default();
652 /// let add = Func::wrap(&mut store, |a: i32, b: i32| a + b);
653 /// let module = Module::new(
654 /// store.engine(),
655 /// r#"
656 /// (module
657 /// (import "" "" (func $add (param i32 i32) (result i32)))
658 /// (func (export "foo") (param i32 i32) (result i32)
659 /// local.get 0
660 /// local.get 1
661 /// call $add))
662 /// "#,
663 /// )?;
664 /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
665 /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
666 /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
667 /// # Ok(())
668 /// # }
669 /// ```
670 ///
671 /// We can also do the same thing, but generate a trap if the addition
672 /// overflows:
673 ///
674 /// ```
675 /// # use wasmtime::*;
676 /// # fn main() -> anyhow::Result<()> {
677 /// # let mut store = Store::<()>::default();
678 /// let add = Func::wrap(&mut store, |a: i32, b: i32| {
679 /// match a.checked_add(b) {
680 /// Some(i) => Ok(i),
681 /// None => anyhow::bail!("overflow"),
682 /// }
683 /// });
684 /// let module = Module::new(
685 /// store.engine(),
686 /// r#"
687 /// (module
688 /// (import "" "" (func $add (param i32 i32) (result i32)))
689 /// (func (export "foo") (param i32 i32) (result i32)
690 /// local.get 0
691 /// local.get 1
692 /// call $add))
693 /// "#,
694 /// )?;
695 /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
696 /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
697 /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
698 /// assert!(foo.call(&mut store, (i32::max_value(), 1)).is_err());
699 /// # Ok(())
700 /// # }
701 /// ```
702 ///
703 /// And don't forget all the wasm types are supported!
704 ///
705 /// ```
706 /// # use wasmtime::*;
707 /// # fn main() -> anyhow::Result<()> {
708 /// # let mut store = Store::<()>::default();
709 /// let debug = Func::wrap(&mut store, |a: i32, b: u32, c: f32, d: i64, e: u64, f: f64| {
710 ///
711 /// println!("a={}", a);
712 /// println!("b={}", b);
713 /// println!("c={}", c);
714 /// println!("d={}", d);
715 /// println!("e={}", e);
716 /// println!("f={}", f);
717 /// });
718 /// let module = Module::new(
719 /// store.engine(),
720 /// r#"
721 /// (module
722 /// (import "" "" (func $debug (param i32 i32 f32 i64 i64 f64)))
723 /// (func (export "foo")
724 /// i32.const -1
725 /// i32.const 1
726 /// f32.const 2
727 /// i64.const -3
728 /// i64.const 3
729 /// f64.const 4
730 /// call $debug))
731 /// "#,
732 /// )?;
733 /// let instance = Instance::new(&mut store, &module, &[debug.into()])?;
734 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
735 /// foo.call(&mut store, ())?;
736 /// # Ok(())
737 /// # }
738 /// ```
739 ///
740 /// Finally if you want to get really fancy you can also implement
741 /// imports that read/write wasm module's memory
742 ///
743 /// ```
744 /// use std::str;
745 ///
746 /// # use wasmtime::*;
747 /// # fn main() -> anyhow::Result<()> {
748 /// # let mut store = Store::default();
749 /// let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
750 /// let mem = match caller.get_export("memory") {
751 /// Some(Extern::Memory(mem)) => mem,
752 /// _ => anyhow::bail!("failed to find host memory"),
753 /// };
754 /// let data = mem.data(&caller)
755 /// .get(ptr as u32 as usize..)
756 /// .and_then(|arr| arr.get(..len as u32 as usize));
757 /// let string = match data {
758 /// Some(data) => match str::from_utf8(data) {
759 /// Ok(s) => s,
760 /// Err(_) => anyhow::bail!("invalid utf-8"),
761 /// },
762 /// None => anyhow::bail!("pointer/length out of bounds"),
763 /// };
764 /// assert_eq!(string, "Hello, world!");
765 /// println!("{}", string);
766 /// Ok(())
767 /// });
768 /// let module = Module::new(
769 /// store.engine(),
770 /// r#"
771 /// (module
772 /// (import "" "" (func $log_str (param i32 i32)))
773 /// (func (export "foo")
774 /// i32.const 4 ;; ptr
775 /// i32.const 13 ;; len
776 /// call $log_str)
777 /// (memory (export "memory") 1)
778 /// (data (i32.const 4) "Hello, world!"))
779 /// "#,
780 /// )?;
781 /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
782 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
783 /// foo.call(&mut store, ())?;
784 /// # Ok(())
785 /// # }
786 /// ```
787 pub fn wrap<T, Params, Results>(
788 mut store: impl AsContextMut<Data = T>,
789 func: impl IntoFunc<T, Params, Results>,
790 ) -> Func
791 where
792 T: 'static,
793 {
794 let store = store.as_context_mut().0;
795 // part of this unsafety is about matching the `T` to a `Store<T>`,
796 // which is done through the `AsContextMut` bound above.
797 unsafe {
798 let host = HostFunc::wrap(store.engine(), func);
799 host.into_func(store)
800 }
801 }
802
803 #[cfg(feature = "async")]
804 fn wrap_inner<F, T, Params, Results>(mut store: impl AsContextMut<Data = T>, func: F) -> Func
805 where
806 F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
807 Params: WasmTyList,
808 Results: WasmRet,
809 T: 'static,
810 {
811 let store = store.as_context_mut().0;
812 // part of this unsafety is about matching the `T` to a `Store<T>`,
813 // which is done through the `AsContextMut` bound above.
814 unsafe {
815 let host = HostFunc::wrap_inner(store.engine(), func);
816 host.into_func(store)
817 }
818 }
819
820 /// Same as [`Func::wrap`], except the closure asynchronously produces the
821 /// result and the arguments are passed within a tuple. For more information
822 /// see the [`Func`] documentation.
823 ///
824 /// # Panics
825 ///
826 /// This function will panic if called with a non-asynchronous store.
827 #[cfg(feature = "async")]
828 pub fn wrap_async<T, F, P, R>(store: impl AsContextMut<Data = T>, func: F) -> Func
829 where
830 F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
831 + Send
832 + Sync
833 + 'static,
834 P: WasmTyList,
835 R: WasmRet,
836 T: 'static,
837 {
838 assert!(
839 store.as_context().async_support(),
840 concat!("cannot use `wrap_async` without enabling async support on the config")
841 );
842 Func::wrap_inner(store, move |Caller { store, caller }, args| {
843 match store.block_on(|store| func(Caller { store, caller }, args).into()) {
844 Ok(ret) => ret.into_fallible(),
845 Err(e) => R::fallible_from_error(e),
846 }
847 })
848 }
849
850 /// Returns the underlying wasm type that this `Func` has.
851 ///
852 /// # Panics
853 ///
854 /// Panics if `store` does not own this function.
855 pub fn ty(&self, store: impl AsContext) -> FuncType {
856 self.load_ty(&store.as_context().0)
857 }
858
859 /// Forcibly loads the type of this function from the `Engine`.
860 ///
861 /// Note that this is a somewhat expensive method since it requires taking a
862 /// lock as well as cloning a type.
863 pub(crate) fn load_ty(&self, store: &StoreOpaque) -> FuncType {
864 FuncType::from_shared_type_index(store.engine(), self.type_index(store))
865 }
866
867 /// Does this function match the given type?
868 ///
869 /// That is, is this function's type a subtype of the given type?
870 ///
871 /// # Panics
872 ///
873 /// Panics if this function is not associated with the given store or if the
874 /// function type is not associated with the store's engine.
875 pub fn matches_ty(&self, store: impl AsContext, func_ty: &FuncType) -> bool {
876 self._matches_ty(store.as_context().0, func_ty)
877 }
878
879 pub(crate) fn _matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> bool {
880 let actual_ty = self.load_ty(store);
881 actual_ty.matches(func_ty)
882 }
883
884 pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> Result<()> {
885 if !self.comes_from_same_store(store) {
886 bail!("function used with wrong store");
887 }
888 if self._matches_ty(store, func_ty) {
889 Ok(())
890 } else {
891 let actual_ty = self.load_ty(store);
892 bail!("type mismatch: expected {func_ty}, found {actual_ty}")
893 }
894 }
895
896 pub(crate) fn type_index(&self, data: &StoreOpaque) -> VMSharedTypeIndex {
897 unsafe { self.vm_func_ref(data).as_ref().type_index }
898 }
899
900 /// Invokes this function with the `params` given and writes returned values
901 /// to `results`.
902 ///
903 /// The `params` here must match the type signature of this `Func`, or an
904 /// error will occur. Additionally `results` must have the same
905 /// length as the number of results for this function. Calling this function
906 /// will synchronously execute the WebAssembly function referenced to get
907 /// the results.
908 ///
909 /// This function will return `Ok(())` if execution completed without a trap
910 /// or error of any kind. In this situation the results will be written to
911 /// the provided `results` array.
912 ///
913 /// # Errors
914 ///
915 /// Any error which occurs throughout the execution of the function will be
916 /// returned as `Err(e)`. The [`Error`](anyhow::Error) type can be inspected
917 /// for the precise error cause such as:
918 ///
919 /// * [`Trap`] - indicates that a wasm trap happened and execution was
920 /// halted.
921 /// * [`WasmBacktrace`] - optionally included on errors for backtrace
922 /// information of the trap/error.
923 /// * Other string-based errors to indicate issues such as type errors with
924 /// `params`.
925 /// * Any host-originating error originally returned from a function defined
926 /// via [`Func::new`], for example.
927 ///
928 /// Errors typically indicate that execution of WebAssembly was halted
929 /// mid-way and did not complete after the error condition happened.
930 ///
931 /// [`Trap`]: crate::Trap
932 ///
933 /// # Panics
934 ///
935 /// This function will panic if called on a function belonging to an async
936 /// store. Asynchronous stores must always use `call_async`. Also panics if
937 /// `store` does not own this function.
938 ///
939 /// [`WasmBacktrace`]: crate::WasmBacktrace
940 pub fn call(
941 &self,
942 mut store: impl AsContextMut,
943 params: &[Val],
944 results: &mut [Val],
945 ) -> Result<()> {
946 assert!(
947 !store.as_context().async_support(),
948 "must use `call_async` when async support is enabled on the config",
949 );
950 let mut store = store.as_context_mut();
951
952 self.call_impl_check_args(&mut store, params, results)?;
953
954 unsafe { self.call_impl_do_call(&mut store, params, results) }
955 }
956
957 /// Invokes this function in an "unchecked" fashion, reading parameters and
958 /// writing results to `params_and_returns`.
959 ///
960 /// This function is the same as [`Func::call`] except that the arguments
961 /// and results both use a different representation. If possible it's
962 /// recommended to use [`Func::call`] if safety isn't necessary or to use
963 /// [`Func::typed`] in conjunction with [`TypedFunc::call`] since that's
964 /// both safer and faster than this method of invoking a function.
965 ///
966 /// Note that if this function takes `externref` arguments then it will
967 /// **not** automatically GC unlike the [`Func::call`] and
968 /// [`TypedFunc::call`] functions. This means that if this function is
969 /// invoked many times with new `ExternRef` values and no other GC happens
970 /// via any other means then no values will get collected.
971 ///
972 /// # Errors
973 ///
974 /// For more information about errors see the [`Func::call`] documentation.
975 ///
976 /// # Unsafety
977 ///
978 /// This function is unsafe because the `params_and_returns` argument is not
979 /// validated at all. It must uphold invariants such as:
980 ///
981 /// * It's a valid pointer to an array
982 /// * It has enough space to store all parameters
983 /// * It has enough space to store all results (not at the same time as
984 /// parameters)
985 /// * Parameters are initially written to the array and have the correct
986 /// types and such.
987 /// * Reference types like `externref` and `funcref` are valid at the
988 /// time of this call and for the `store` specified.
989 ///
990 /// These invariants are all upheld for you with [`Func::call`] and
991 /// [`TypedFunc::call`].
992 pub unsafe fn call_unchecked(
993 &self,
994 mut store: impl AsContextMut,
995 params_and_returns: *mut [ValRaw],
996 ) -> Result<()> {
997 let mut store = store.as_context_mut();
998 let func_ref = self.vm_func_ref(store.0);
999 let params_and_returns = NonNull::new(params_and_returns).unwrap_or(NonNull::from(&mut []));
1000 Self::call_unchecked_raw(&mut store, func_ref, params_and_returns)
1001 }
1002
1003 pub(crate) unsafe fn call_unchecked_raw<T>(
1004 store: &mut StoreContextMut<'_, T>,
1005 func_ref: NonNull<VMFuncRef>,
1006 params_and_returns: NonNull<[ValRaw]>,
1007 ) -> Result<()> {
1008 invoke_wasm_and_catch_traps(store, |caller, vm| {
1009 VMFuncRef::array_call(func_ref, vm, caller, params_and_returns)
1010 })
1011 }
1012
1013 /// Converts the raw representation of a `funcref` into an `Option<Func>`
1014 ///
1015 /// This is intended to be used in conjunction with [`Func::new_unchecked`],
1016 /// [`Func::call_unchecked`], and [`ValRaw`] with its `funcref` field.
1017 ///
1018 /// # Unsafety
1019 ///
1020 /// This function is not safe because `raw` is not validated at all. The
1021 /// caller must guarantee that `raw` is owned by the `store` provided and is
1022 /// valid within the `store`.
1023 pub unsafe fn from_raw(mut store: impl AsContextMut, raw: *mut c_void) -> Option<Func> {
1024 Self::_from_raw(store.as_context_mut().0, raw)
1025 }
1026
1027 pub(crate) unsafe fn _from_raw(store: &mut StoreOpaque, raw: *mut c_void) -> Option<Func> {
1028 Some(Func::from_vm_func_ref(store, NonNull::new(raw.cast())?))
1029 }
1030
1031 /// Extracts the raw value of this `Func`, which is owned by `store`.
1032 ///
1033 /// This function returns a value that's suitable for writing into the
1034 /// `funcref` field of the [`ValRaw`] structure.
1035 ///
1036 /// # Unsafety
1037 ///
1038 /// The returned value is only valid for as long as the store is alive and
1039 /// this function is properly rooted within it. Additionally this function
1040 /// should not be liberally used since it's a very low-level knob.
1041 pub unsafe fn to_raw(&self, mut store: impl AsContextMut) -> *mut c_void {
1042 self.vm_func_ref(store.as_context_mut().0).as_ptr().cast()
1043 }
1044
1045 /// Invokes this function with the `params` given, returning the results
1046 /// asynchronously.
1047 ///
1048 /// This function is the same as [`Func::call`] except that it is
1049 /// asynchronous. This is only compatible with stores associated with an
1050 /// [asynchronous config](crate::Config::async_support).
1051 ///
1052 /// It's important to note that the execution of WebAssembly will happen
1053 /// synchronously in the `poll` method of the future returned from this
1054 /// function. Wasmtime does not manage its own thread pool or similar to
1055 /// execute WebAssembly in. Future `poll` methods are generally expected to
1056 /// resolve quickly, so it's recommended that you run or poll this future
1057 /// in a "blocking context".
1058 ///
1059 /// For more information see the documentation on [asynchronous
1060 /// configs](crate::Config::async_support).
1061 ///
1062 /// # Errors
1063 ///
1064 /// For more information on errors see the [`Func::call`] documentation.
1065 ///
1066 /// # Panics
1067 ///
1068 /// Panics if this is called on a function in a synchronous store. This
1069 /// only works with functions defined within an asynchronous store. Also
1070 /// panics if `store` does not own this function.
1071 #[cfg(feature = "async")]
1072 pub async fn call_async(
1073 &self,
1074 mut store: impl AsContextMut<Data: Send>,
1075 params: &[Val],
1076 results: &mut [Val],
1077 ) -> Result<()> {
1078 let mut store = store.as_context_mut();
1079 assert!(
1080 store.0.async_support(),
1081 "cannot use `call_async` without enabling async support in the config",
1082 );
1083
1084 self.call_impl_check_args(&mut store, params, results)?;
1085
1086 let result = store
1087 .on_fiber(|store| unsafe { self.call_impl_do_call(store, params, results) })
1088 .await??;
1089 Ok(result)
1090 }
1091
1092 /// Perform dynamic checks that the arguments given to us match
1093 /// the signature of this function and are appropriate to pass to this
1094 /// function.
1095 ///
1096 /// This involves checking to make sure we have the right number and types
1097 /// of arguments as well as making sure everything is from the same `Store`.
1098 ///
1099 /// This must be called just before `call_impl_do_call`.
1100 fn call_impl_check_args<T>(
1101 &self,
1102 store: &mut StoreContextMut<'_, T>,
1103 params: &[Val],
1104 results: &mut [Val],
1105 ) -> Result<()> {
1106 let ty = self.load_ty(store.0);
1107 if ty.params().len() != params.len() {
1108 bail!(
1109 "expected {} arguments, got {}",
1110 ty.params().len(),
1111 params.len()
1112 );
1113 }
1114 if ty.results().len() != results.len() {
1115 bail!(
1116 "expected {} results, got {}",
1117 ty.results().len(),
1118 results.len()
1119 );
1120 }
1121
1122 for (ty, arg) in ty.params().zip(params) {
1123 arg.ensure_matches_ty(store.0, &ty)
1124 .context("argument type mismatch")?;
1125 if !arg.comes_from_same_store(store.0) {
1126 bail!("cross-`Store` values are not currently supported");
1127 }
1128 }
1129
1130 Ok(())
1131 }
1132
1133 /// Do the actual call into Wasm.
1134 ///
1135 /// # Safety
1136 ///
1137 /// You must have type checked the arguments by calling
1138 /// `call_impl_check_args` immediately before calling this function. It is
1139 /// only safe to call this function if that one did not return an error.
1140 unsafe fn call_impl_do_call<T>(
1141 &self,
1142 store: &mut StoreContextMut<'_, T>,
1143 params: &[Val],
1144 results: &mut [Val],
1145 ) -> Result<()> {
1146 // Store the argument values into `values_vec`.
1147 let ty = self.load_ty(store.0);
1148 let values_vec_size = params.len().max(ty.results().len());
1149 let mut values_vec = store.0.take_wasm_val_raw_storage();
1150 debug_assert!(values_vec.is_empty());
1151 values_vec.resize_with(values_vec_size, || ValRaw::v128(0));
1152 for (arg, slot) in params.iter().cloned().zip(&mut values_vec) {
1153 unsafe {
1154 *slot = arg.to_raw(&mut *store)?;
1155 }
1156 }
1157
1158 unsafe {
1159 self.call_unchecked(
1160 &mut *store,
1161 core::ptr::slice_from_raw_parts_mut(values_vec.as_mut_ptr(), values_vec_size),
1162 )?;
1163 }
1164
1165 for ((i, slot), val) in results.iter_mut().enumerate().zip(&values_vec) {
1166 let ty = ty.results().nth(i).unwrap();
1167 *slot = unsafe { Val::from_raw(&mut *store, *val, ty) };
1168 }
1169 values_vec.truncate(0);
1170 store.0.save_wasm_val_raw_storage(values_vec);
1171 Ok(())
1172 }
1173
1174 #[inline]
1175 pub(crate) fn vm_func_ref(&self, store: &StoreOpaque) -> NonNull<VMFuncRef> {
1176 self.store.assert_belongs_to(store.id());
1177 self.unsafe_func_ref.as_non_null()
1178 }
1179
1180 pub(crate) unsafe fn from_wasmtime_function(
1181 export: ExportFunction,
1182 store: &StoreOpaque,
1183 ) -> Self {
1184 Self::from_vm_func_ref(store, export.func_ref)
1185 }
1186
1187 pub(crate) fn vmimport(&self, store: &StoreOpaque) -> VMFunctionImport {
1188 unsafe {
1189 let f = self.vm_func_ref(store);
1190 VMFunctionImport {
1191 // Note that this is a load-bearing `unwrap` here, but is
1192 // never expected to trip at runtime. The general problem is
1193 // that host functions do not have a `wasm_call` function so
1194 // the `VMFuncRef` type has an optional pointer there. This is
1195 // only able to be filled out when a function is "paired" with
1196 // a module where trampolines are present to fill out
1197 // `wasm_call` pointers.
1198 //
1199 // This pairing of modules doesn't happen explicitly but is
1200 // instead managed lazily throughout Wasmtime. Specifically the
1201 // way this works is one of:
1202 //
1203 // * When a host function is created the store's list of
1204 // modules are searched for a wasm trampoline. If not found
1205 // the `wasm_call` field is left blank.
1206 //
1207 // * When a module instantiation happens, which uses this
1208 // function, the module will be used to fill any outstanding
1209 // holes that it has trampolines for.
1210 //
1211 // This means that by the time we get to this point any
1212 // relevant holes should be filled out. Thus if this panic
1213 // actually triggers then it's indicative of a missing `fill`
1214 // call somewhere else.
1215 wasm_call: f.as_ref().wasm_call.unwrap(),
1216 array_call: f.as_ref().array_call,
1217 vmctx: f.as_ref().vmctx,
1218 }
1219 }
1220 }
1221
1222 pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
1223 self.store == store.id()
1224 }
1225
1226 fn invoke_host_func_for_wasm<T>(
1227 mut caller: Caller<'_, T>,
1228 ty: &FuncType,
1229 values_vec: &mut [ValRaw],
1230 func: &dyn Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()>,
1231 ) -> Result<()> {
1232 // Translate the raw JIT arguments in `values_vec` into a `Val` which
1233 // we'll be passing as a slice. The storage for our slice-of-`Val` we'll
1234 // be taking from the `Store`. We preserve our slice back into the
1235 // `Store` after the hostcall, ideally amortizing the cost of allocating
1236 // the storage across wasm->host calls.
1237 //
1238 // Note that we have a dynamic guarantee that `values_vec` is the
1239 // appropriate length to both read all arguments from as well as store
1240 // all results into.
1241 let mut val_vec = caller.store.0.take_hostcall_val_storage();
1242 debug_assert!(val_vec.is_empty());
1243 let nparams = ty.params().len();
1244 val_vec.reserve(nparams + ty.results().len());
1245 for (i, ty) in ty.params().enumerate() {
1246 val_vec.push(unsafe { Val::from_raw(&mut caller.store, values_vec[i], ty) })
1247 }
1248
1249 val_vec.extend((0..ty.results().len()).map(|_| Val::null_func_ref()));
1250 let (params, results) = val_vec.split_at_mut(nparams);
1251 func(caller.sub_caller(), params, results)?;
1252
1253 // Unlike our arguments we need to dynamically check that the return
1254 // values produced are correct. There could be a bug in `func` that
1255 // produces the wrong number, wrong types, or wrong stores of
1256 // values, and we need to catch that here.
1257 for (i, (ret, ty)) in results.iter().zip(ty.results()).enumerate() {
1258 ret.ensure_matches_ty(caller.store.0, &ty)
1259 .context("function attempted to return an incompatible value")?;
1260 unsafe {
1261 values_vec[i] = ret.to_raw(&mut caller.store)?;
1262 }
1263 }
1264
1265 // Restore our `val_vec` back into the store so it's usable for the next
1266 // hostcall to reuse our own storage.
1267 val_vec.truncate(0);
1268 caller.store.0.save_hostcall_val_storage(val_vec);
1269 Ok(())
1270 }
1271
1272 /// Attempts to extract a typed object from this `Func` through which the
1273 /// function can be called.
1274 ///
1275 /// This function serves as an alternative to [`Func::call`] and
1276 /// [`Func::call_async`]. This method performs a static type check (using
1277 /// the `Params` and `Results` type parameters on the underlying wasm
1278 /// function. If the type check passes then a `TypedFunc` object is returned,
1279 /// otherwise an error is returned describing the typecheck failure.
1280 ///
1281 /// The purpose of this relative to [`Func::call`] is that it's much more
1282 /// efficient when used to invoke WebAssembly functions. With the types
1283 /// statically known far less setup/teardown is required when invoking
1284 /// WebAssembly. If speed is desired then this function is recommended to be
1285 /// used instead of [`Func::call`] (which is more general, hence its
1286 /// slowdown).
1287 ///
1288 /// The `Params` type parameter is used to describe the parameters of the
1289 /// WebAssembly function. This can either be a single type (like `i32`), or
1290 /// a tuple of types representing the list of parameters (like `(i32, f32,
1291 /// f64)`). Additionally you can use `()` to represent that the function has
1292 /// no parameters.
1293 ///
1294 /// The `Results` type parameter is used to describe the results of the
1295 /// function. This behaves the same way as `Params`, but just for the
1296 /// results of the function.
1297 ///
1298 /// # Translating Between WebAssembly and Rust Types
1299 ///
1300 /// Translation between Rust types and WebAssembly types looks like:
1301 ///
1302 /// | WebAssembly | Rust |
1303 /// |-------------------------------------------|---------------------------------------|
1304 /// | `i32` | `i32` or `u32` |
1305 /// | `i64` | `i64` or `u64` |
1306 /// | `f32` | `f32` |
1307 /// | `f64` | `f64` |
1308 /// | `externref` aka `(ref null extern)` | `Option<Rooted<ExternRef>>` |
1309 /// | `(ref extern)` | `Rooted<ExternRef>` |
1310 /// | `nullexternref` aka `(ref null noextern)` | `Option<NoExtern>` |
1311 /// | `(ref noextern)` | `NoExtern` |
1312 /// | `anyref` aka `(ref null any)` | `Option<Rooted<AnyRef>>` |
1313 /// | `(ref any)` | `Rooted<AnyRef>` |
1314 /// | `eqref` aka `(ref null eq)` | `Option<Rooted<EqRef>>` |
1315 /// | `(ref eq)` | `Rooted<EqRef>` |
1316 /// | `i31ref` aka `(ref null i31)` | `Option<I31>` |
1317 /// | `(ref i31)` | `I31` |
1318 /// | `structref` aka `(ref null struct)` | `Option<Rooted<StructRef>>` |
1319 /// | `(ref struct)` | `Rooted<StructRef>` |
1320 /// | `arrayref` aka `(ref null array)` | `Option<Rooted<ArrayRef>>` |
1321 /// | `(ref array)` | `Rooted<ArrayRef>` |
1322 /// | `nullref` aka `(ref null none)` | `Option<NoneRef>` |
1323 /// | `(ref none)` | `NoneRef` |
1324 /// | `funcref` aka `(ref null func)` | `Option<Func>` |
1325 /// | `(ref func)` | `Func` |
1326 /// | `(ref null <func type index>)` | `Option<Func>` |
1327 /// | `(ref <func type index>)` | `Func` |
1328 /// | `nullfuncref` aka `(ref null nofunc)` | `Option<NoFunc>` |
1329 /// | `(ref nofunc)` | `NoFunc` |
1330 /// | `v128` | `V128` on `x86-64` and `aarch64` only |
1331 ///
1332 /// (Note that this mapping is the same as that of [`Func::wrap`], and that
1333 /// anywhere a `Rooted<T>` appears, a `ManuallyRooted<T>` may also appear).
1334 ///
1335 /// Note that once the [`TypedFunc`] return value is acquired you'll use either
1336 /// [`TypedFunc::call`] or [`TypedFunc::call_async`] as necessary to actually invoke
1337 /// the function. This method does not invoke any WebAssembly code, it
1338 /// simply performs a typecheck before returning the [`TypedFunc`] value.
1339 ///
1340 /// This method also has a convenience wrapper as
1341 /// [`Instance::get_typed_func`](crate::Instance::get_typed_func) to
1342 /// directly get a typed function value from an
1343 /// [`Instance`](crate::Instance).
1344 ///
1345 /// ## Subtyping
1346 ///
1347 /// For result types, you can always use a supertype of the WebAssembly
1348 /// function's actual declared result type. For example, if the WebAssembly
1349 /// function was declared with type `(func (result nullfuncref))` you could
1350 /// successfully call `f.typed::<(), Option<Func>>()` because `Option<Func>`
1351 /// corresponds to `funcref`, which is a supertype of `nullfuncref`.
1352 ///
1353 /// For parameter types, you can always use a subtype of the WebAssembly
1354 /// function's actual declared parameter type. For example, if the
1355 /// WebAssembly function was declared with type `(func (param (ref null
1356 /// func)))` you could successfully call `f.typed::<Func, ()>()` because
1357 /// `Func` corresponds to `(ref func)`, which is a subtype of `(ref null
1358 /// func)`.
1359 ///
1360 /// Additionally, for functions which take a reference to a concrete type as
1361 /// a parameter, you can also use the concrete type's supertype. Consider a
1362 /// WebAssembly function that takes a reference to a function with a
1363 /// concrete type: `(ref null <func type index>)`. In this scenario, there
1364 /// is no static `wasmtime::Foo` Rust type that corresponds to that
1365 /// particular Wasm-defined concrete reference type because Wasm modules are
1366 /// loaded dynamically at runtime. You *could* do `f.typed::<Option<NoFunc>,
1367 /// ()>()`, and while that is correctly typed and valid, it is often overly
1368 /// restrictive. The only value you could call the resulting typed function
1369 /// with is the null function reference, but we'd like to call it with
1370 /// non-null function references that happen to be of the correct
1371 /// type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
1372 /// case, even though `Option<Func>` represents `(ref null func)` which is
1373 /// the supertype, not subtype, of `(ref null <func type index>)`. This does
1374 /// imply some minimal dynamic type checks in this case, but it is supported
1375 /// for better ergonomics, to enable passing non-null references into the
1376 /// function.
1377 ///
1378 /// # Errors
1379 ///
1380 /// This function will return an error if `Params` or `Results` does not
1381 /// match the native type of this WebAssembly function.
1382 ///
1383 /// # Panics
1384 ///
1385 /// This method will panic if `store` does not own this function.
1386 ///
1387 /// # Examples
1388 ///
1389 /// An end-to-end example of calling a function which takes no parameters
1390 /// and has no results:
1391 ///
1392 /// ```
1393 /// # use wasmtime::*;
1394 /// # fn main() -> anyhow::Result<()> {
1395 /// let engine = Engine::default();
1396 /// let mut store = Store::new(&engine, ());
1397 /// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
1398 /// let instance = Instance::new(&mut store, &module, &[])?;
1399 /// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
1400 ///
1401 /// // Note that this call can fail due to the typecheck not passing, but
1402 /// // in our case we statically know the module so we know this should
1403 /// // pass.
1404 /// let typed = foo.typed::<(), ()>(&store)?;
1405 ///
1406 /// // Note that this can fail if the wasm traps at runtime.
1407 /// typed.call(&mut store, ())?;
1408 /// # Ok(())
1409 /// # }
1410 /// ```
1411 ///
1412 /// You can also pass in multiple parameters and get a result back
1413 ///
1414 /// ```
1415 /// # use wasmtime::*;
1416 /// # fn foo(add: &Func, mut store: Store<()>) -> anyhow::Result<()> {
1417 /// let typed = add.typed::<(i32, i64), f32>(&store)?;
1418 /// assert_eq!(typed.call(&mut store, (1, 2))?, 3.0);
1419 /// # Ok(())
1420 /// # }
1421 /// ```
1422 ///
1423 /// and similarly if a function has multiple results you can bind that too
1424 ///
1425 /// ```
1426 /// # use wasmtime::*;
1427 /// # fn foo(add_with_overflow: &Func, mut store: Store<()>) -> anyhow::Result<()> {
1428 /// let typed = add_with_overflow.typed::<(u32, u32), (u32, i32)>(&store)?;
1429 /// let (result, overflow) = typed.call(&mut store, (u32::max_value(), 2))?;
1430 /// assert_eq!(result, 1);
1431 /// assert_eq!(overflow, 1);
1432 /// # Ok(())
1433 /// # }
1434 /// ```
1435 pub fn typed<Params, Results>(
1436 &self,
1437 store: impl AsContext,
1438 ) -> Result<TypedFunc<Params, Results>>
1439 where
1440 Params: WasmParams,
1441 Results: WasmResults,
1442 {
1443 // Type-check that the params/results are all valid
1444 let store = store.as_context().0;
1445 let ty = self.load_ty(store);
1446 Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
1447 .context("type mismatch with parameters")?;
1448 Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
1449 .context("type mismatch with results")?;
1450
1451 // and then we can construct the typed version of this function
1452 // (unsafely), which should be safe since we just did the type check above.
1453 unsafe { Ok(TypedFunc::_new_unchecked(store, *self)) }
1454 }
1455
1456 /// Get a stable hash key for this function.
1457 ///
1458 /// Even if the same underlying function is added to the `StoreData`
1459 /// multiple times and becomes multiple `wasmtime::Func`s, this hash key
1460 /// will be consistent across all of these functions.
1461 #[allow(dead_code)] // Not used yet, but added for consistency.
1462 pub(crate) fn hash_key(&self, store: &mut StoreOpaque) -> impl core::hash::Hash + Eq + use<> {
1463 self.vm_func_ref(store).as_ptr().addr()
1464 }
1465}
1466
1467/// Prepares for entrance into WebAssembly.
1468///
1469/// This function will set up context such that `closure` is allowed to call a
1470/// raw trampoline or a raw WebAssembly function. This *must* be called to do
1471/// things like catch traps and set up GC properly.
1472///
1473/// The `closure` provided receives a default "caller" `VMContext` parameter it
1474/// can pass to the called wasm function, if desired.
1475pub(crate) fn invoke_wasm_and_catch_traps<T>(
1476 store: &mut StoreContextMut<'_, T>,
1477 closure: impl FnMut(NonNull<VMContext>, Option<InterpreterRef<'_>>) -> bool,
1478) -> Result<()> {
1479 unsafe {
1480 // The `enter_wasm` call below will reset the store context's
1481 // `stack_chain` to a new `InitialStack`, pointing to the
1482 // stack-allocated `initial_stack_csi`.
1483 let mut initial_stack_csi = VMCommonStackInformation::running_default();
1484 // Stores some state of the runtime just before entering Wasm. Will be
1485 // restored upon exiting Wasm. Note that the `CallThreadState` that is
1486 // created by the `catch_traps` call below will store a pointer to this
1487 // stack-allocated `previous_runtime_state`.
1488 let previous_runtime_state = EntryStoreContext::enter_wasm(store, &mut initial_stack_csi);
1489
1490 if let Err(trap) = store.0.call_hook(CallHook::CallingWasm) {
1491 // `previous_runtime_state` implicitly dropped here
1492 return Err(trap);
1493 }
1494 let result = crate::runtime::vm::catch_traps(store, &previous_runtime_state, closure);
1495 core::mem::drop(previous_runtime_state);
1496 store.0.call_hook(CallHook::ReturningFromWasm)?;
1497 result.map_err(|t| crate::trap::from_runtime_box(store.0, t))
1498 }
1499}
1500
1501/// This type helps managing the state of the runtime when entering and exiting
1502/// Wasm. To this end, it contains a subset of the data in `VMStoreContext`.
1503/// Upon entering Wasm, it updates various runtime fields and their
1504/// original values saved in this struct. Upon exiting Wasm, the previous values
1505/// are restored.
1506pub(crate) struct EntryStoreContext {
1507 /// If set, contains value of `stack_limit` field to restore in
1508 /// `VMStoreContext` when exiting Wasm.
1509 pub stack_limit: Option<usize>,
1510 /// Contains value of `last_wasm_exit_pc` field to restore in
1511 /// `VMStoreContext` when exiting Wasm.
1512 pub last_wasm_exit_pc: usize,
1513 /// Contains value of `last_wasm_exit_fp` field to restore in
1514 /// `VMStoreContext` when exiting Wasm.
1515 pub last_wasm_exit_fp: usize,
1516 /// Contains value of `last_wasm_entry_fp` field to restore in
1517 /// `VMStoreContext` when exiting Wasm.
1518 pub last_wasm_entry_fp: usize,
1519 /// Contains value of `stack_chain` field to restore in
1520 /// `VMStoreContext` when exiting Wasm.
1521 pub stack_chain: VMStackChain,
1522
1523 /// We need a pointer to the runtime limits, so we can update them from
1524 /// `drop`/`exit_wasm`.
1525 vm_store_context: *const VMStoreContext,
1526}
1527
1528impl EntryStoreContext {
1529 /// This function is called to update and save state when
1530 /// WebAssembly is entered within the `Store`.
1531 ///
1532 /// This updates various fields such as:
1533 ///
1534 /// * The stack limit. This is what ensures that we limit the stack space
1535 /// allocated by WebAssembly code and it's relative to the initial stack
1536 /// pointer that called into wasm.
1537 ///
1538 /// It also saves the different last_wasm_* values in the `VMStoreContext`.
1539 pub fn enter_wasm<T>(
1540 store: &mut StoreContextMut<'_, T>,
1541 initial_stack_information: *mut VMCommonStackInformation,
1542 ) -> Self {
1543 let stack_limit;
1544
1545 // If this is a recursive call, e.g. our stack limit is already set, then
1546 // we may be able to skip this function.
1547 //
1548 // For synchronous stores there's nothing else to do because all wasm calls
1549 // happen synchronously and on the same stack. This means that the previous
1550 // stack limit will suffice for the next recursive call.
1551 //
1552 // For asynchronous stores then each call happens on a separate native
1553 // stack. This means that the previous stack limit is no longer relevant
1554 // because we're on a separate stack.
1555 if unsafe { *store.0.vm_store_context().stack_limit.get() } != usize::MAX
1556 && !store.0.async_support()
1557 {
1558 stack_limit = None;
1559 }
1560 // Ignore this stack pointer business on miri since we can't execute wasm
1561 // anyway and the concept of a stack pointer on miri is a bit nebulous
1562 // regardless.
1563 else if cfg!(miri) {
1564 stack_limit = None;
1565 } else {
1566 // When Cranelift has support for the host then we might be running native
1567 // compiled code meaning we need to read the actual stack pointer. If
1568 // Cranelift can't be used though then we're guaranteed to be running pulley
1569 // in which case this stack pointer isn't actually used as Pulley has custom
1570 // mechanisms for stack overflow.
1571 #[cfg(has_host_compiler_backend)]
1572 let stack_pointer = crate::runtime::vm::get_stack_pointer();
1573 #[cfg(not(has_host_compiler_backend))]
1574 let stack_pointer = {
1575 use wasmtime_environ::TripleExt;
1576 debug_assert!(store.engine().target().is_pulley());
1577 usize::MAX
1578 };
1579
1580 // Determine the stack pointer where, after which, any wasm code will
1581 // immediately trap. This is checked on the entry to all wasm functions.
1582 //
1583 // Note that this isn't 100% precise. We are requested to give wasm
1584 // `max_wasm_stack` bytes, but what we're actually doing is giving wasm
1585 // probably a little less than `max_wasm_stack` because we're
1586 // calculating the limit relative to this function's approximate stack
1587 // pointer. Wasm will be executed on a frame beneath this one (or next
1588 // to it). In any case it's expected to be at most a few hundred bytes
1589 // of slop one way or another. When wasm is typically given a MB or so
1590 // (a million bytes) the slop shouldn't matter too much.
1591 //
1592 // After we've got the stack limit then we store it into the `stack_limit`
1593 // variable.
1594 let wasm_stack_limit = stack_pointer
1595 .checked_sub(store.engine().config().max_wasm_stack)
1596 .unwrap();
1597 let prev_stack = unsafe {
1598 mem::replace(
1599 &mut *store.0.vm_store_context().stack_limit.get(),
1600 wasm_stack_limit,
1601 )
1602 };
1603 stack_limit = Some(prev_stack);
1604 }
1605
1606 unsafe {
1607 let last_wasm_exit_pc = *store.0.vm_store_context().last_wasm_exit_pc.get();
1608 let last_wasm_exit_fp = *store.0.vm_store_context().last_wasm_exit_fp.get();
1609 let last_wasm_entry_fp = *store.0.vm_store_context().last_wasm_entry_fp.get();
1610
1611 let stack_chain = (*store.0.vm_store_context().stack_chain.get()).clone();
1612
1613 let new_stack_chain = VMStackChain::InitialStack(initial_stack_information);
1614 *store.0.vm_store_context().stack_chain.get() = new_stack_chain;
1615
1616 let vm_store_context = store.0.vm_store_context();
1617
1618 Self {
1619 stack_limit,
1620 last_wasm_exit_pc,
1621 last_wasm_exit_fp,
1622 last_wasm_entry_fp,
1623 stack_chain,
1624 vm_store_context,
1625 }
1626 }
1627 }
1628
1629 /// This function restores the values stored in this struct. We invoke this
1630 /// function through this type's `Drop` implementation. This ensures that we
1631 /// even restore the values if we unwind the stack (e.g., because we are
1632 /// panicing out of a Wasm execution).
1633 #[inline]
1634 fn exit_wasm(&mut self) {
1635 unsafe {
1636 if let Some(limit) = self.stack_limit {
1637 *(&*self.vm_store_context).stack_limit.get() = limit;
1638 }
1639
1640 *(*self.vm_store_context).last_wasm_exit_fp.get() = self.last_wasm_exit_fp;
1641 *(*self.vm_store_context).last_wasm_exit_pc.get() = self.last_wasm_exit_pc;
1642 *(*self.vm_store_context).last_wasm_entry_fp.get() = self.last_wasm_entry_fp;
1643 *(*self.vm_store_context).stack_chain.get() = self.stack_chain.clone();
1644 }
1645 }
1646}
1647
1648impl Drop for EntryStoreContext {
1649 #[inline]
1650 fn drop(&mut self) {
1651 self.exit_wasm();
1652 }
1653}
1654
1655/// A trait implemented for types which can be returned from closures passed to
1656/// [`Func::wrap`] and friends.
1657///
1658/// This trait should not be implemented by user types. This trait may change at
1659/// any time internally. The types which implement this trait, however, are
1660/// stable over time.
1661///
1662/// For more information see [`Func::wrap`]
1663pub unsafe trait WasmRet {
1664 // Same as `WasmTy::compatible_with_store`.
1665 #[doc(hidden)]
1666 fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
1667
1668 /// Stores this return value into the `ptr` specified using the rooted
1669 /// `store`.
1670 ///
1671 /// Traps are communicated through the `Result<_>` return value.
1672 ///
1673 /// # Unsafety
1674 ///
1675 /// This method is unsafe as `ptr` must have the correct length to store
1676 /// this result. This property is only checked in debug mode, not in release
1677 /// mode.
1678 #[doc(hidden)]
1679 unsafe fn store(
1680 self,
1681 store: &mut AutoAssertNoGc<'_>,
1682 ptr: &mut [MaybeUninit<ValRaw>],
1683 ) -> Result<()>;
1684
1685 #[doc(hidden)]
1686 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType;
1687 #[doc(hidden)]
1688 fn may_gc() -> bool;
1689
1690 // Utilities used to convert an instance of this type to a `Result`
1691 // explicitly, used when wrapping async functions which always bottom-out
1692 // in a function that returns a trap because futures can be cancelled.
1693 #[doc(hidden)]
1694 type Fallible: WasmRet;
1695 #[doc(hidden)]
1696 fn into_fallible(self) -> Self::Fallible;
1697 #[doc(hidden)]
1698 fn fallible_from_error(error: Error) -> Self::Fallible;
1699}
1700
1701unsafe impl<T> WasmRet for T
1702where
1703 T: WasmTy,
1704{
1705 type Fallible = Result<T>;
1706
1707 fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1708 <Self as WasmTy>::compatible_with_store(self, store)
1709 }
1710
1711 unsafe fn store(
1712 self,
1713 store: &mut AutoAssertNoGc<'_>,
1714 ptr: &mut [MaybeUninit<ValRaw>],
1715 ) -> Result<()> {
1716 debug_assert!(ptr.len() > 0);
1717 <Self as WasmTy>::store(self, store, ptr.get_unchecked_mut(0))
1718 }
1719
1720 fn may_gc() -> bool {
1721 T::may_gc()
1722 }
1723
1724 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1725 FuncType::new(engine, params, Some(<Self as WasmTy>::valtype()))
1726 }
1727
1728 fn into_fallible(self) -> Result<T> {
1729 Ok(self)
1730 }
1731
1732 fn fallible_from_error(error: Error) -> Result<T> {
1733 Err(error)
1734 }
1735}
1736
1737unsafe impl<T> WasmRet for Result<T>
1738where
1739 T: WasmRet,
1740{
1741 type Fallible = Self;
1742
1743 fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1744 match self {
1745 Ok(x) => <T as WasmRet>::compatible_with_store(x, store),
1746 Err(_) => true,
1747 }
1748 }
1749
1750 unsafe fn store(
1751 self,
1752 store: &mut AutoAssertNoGc<'_>,
1753 ptr: &mut [MaybeUninit<ValRaw>],
1754 ) -> Result<()> {
1755 self.and_then(|val| val.store(store, ptr))
1756 }
1757
1758 fn may_gc() -> bool {
1759 T::may_gc()
1760 }
1761
1762 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1763 T::func_type(engine, params)
1764 }
1765
1766 fn into_fallible(self) -> Result<T> {
1767 self
1768 }
1769
1770 fn fallible_from_error(error: Error) -> Result<T> {
1771 Err(error)
1772 }
1773}
1774
1775macro_rules! impl_wasm_host_results {
1776 ($n:tt $($t:ident)*) => (
1777 #[allow(non_snake_case)]
1778 unsafe impl<$($t),*> WasmRet for ($($t,)*)
1779 where
1780 $($t: WasmTy,)*
1781 {
1782 type Fallible = Result<Self>;
1783
1784 #[inline]
1785 fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
1786 let ($($t,)*) = self;
1787 $( $t.compatible_with_store(_store) && )* true
1788 }
1789
1790 #[inline]
1791 unsafe fn store(
1792 self,
1793 _store: &mut AutoAssertNoGc<'_>,
1794 _ptr: &mut [MaybeUninit<ValRaw>],
1795 ) -> Result<()> {
1796 let ($($t,)*) = self;
1797 let mut _cur = 0;
1798 $(
1799 debug_assert!(_cur < _ptr.len());
1800 let val = _ptr.get_unchecked_mut(_cur);
1801 _cur += 1;
1802 WasmTy::store($t, _store, val)?;
1803 )*
1804 Ok(())
1805 }
1806
1807 #[doc(hidden)]
1808 fn may_gc() -> bool {
1809 $( $t::may_gc() || )* false
1810 }
1811
1812 fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1813 FuncType::new(
1814 engine,
1815 params,
1816 IntoIterator::into_iter([$($t::valtype(),)*]),
1817 )
1818 }
1819
1820 #[inline]
1821 fn into_fallible(self) -> Result<Self> {
1822 Ok(self)
1823 }
1824
1825 #[inline]
1826 fn fallible_from_error(error: Error) -> Result<Self> {
1827 Err(error)
1828 }
1829 }
1830 )
1831}
1832
1833for_each_function_signature!(impl_wasm_host_results);
1834
1835/// Internal trait implemented for all arguments that can be passed to
1836/// [`Func::wrap`] and [`Linker::func_wrap`](crate::Linker::func_wrap).
1837///
1838/// This trait should not be implemented by external users, it's only intended
1839/// as an implementation detail of this crate.
1840pub trait IntoFunc<T, Params, Results>: Send + Sync + 'static {
1841 /// Convert this function into a `VM{Array,Native}CallHostFuncContext` and
1842 /// internal `VMFuncRef`.
1843 #[doc(hidden)]
1844 fn into_func(self, engine: &Engine) -> HostContext;
1845}
1846
1847macro_rules! impl_into_func {
1848 ($num:tt $arg:ident) => {
1849 // Implement for functions without a leading `&Caller` parameter,
1850 // delegating to the implementation below which does have the leading
1851 // `Caller` parameter.
1852 #[allow(non_snake_case)]
1853 impl<T, F, $arg, R> IntoFunc<T, $arg, R> for F
1854 where
1855 F: Fn($arg) -> R + Send + Sync + 'static,
1856 $arg: WasmTy,
1857 R: WasmRet,
1858 T: 'static,
1859 {
1860 fn into_func(self, engine: &Engine) -> HostContext {
1861 let f = move |_: Caller<'_, T>, $arg: $arg| {
1862 self($arg)
1863 };
1864
1865 f.into_func(engine)
1866 }
1867 }
1868
1869 #[allow(non_snake_case)]
1870 impl<T, F, $arg, R> IntoFunc<T, (Caller<'_, T>, $arg), R> for F
1871 where
1872 F: Fn(Caller<'_, T>, $arg) -> R + Send + Sync + 'static,
1873 $arg: WasmTy,
1874 R: WasmRet,
1875 T: 'static,
1876 {
1877 fn into_func(self, engine: &Engine) -> HostContext {
1878 HostContext::from_closure(engine, move |caller: Caller<'_, T>, ($arg,)| {
1879 self(caller, $arg)
1880 })
1881 }
1882 }
1883 };
1884 ($num:tt $($args:ident)*) => {
1885 // Implement for functions without a leading `&Caller` parameter,
1886 // delegating to the implementation below which does have the leading
1887 // `Caller` parameter.
1888 #[allow(non_snake_case)]
1889 impl<T, F, $($args,)* R> IntoFunc<T, ($($args,)*), R> for F
1890 where
1891 F: Fn($($args),*) -> R + Send + Sync + 'static,
1892 $($args: WasmTy,)*
1893 R: WasmRet,
1894 T: 'static,
1895 {
1896 fn into_func(self, engine: &Engine) -> HostContext {
1897 let f = move |_: Caller<'_, T>, $($args:$args),*| {
1898 self($($args),*)
1899 };
1900
1901 f.into_func(engine)
1902 }
1903 }
1904
1905 #[allow(non_snake_case)]
1906 impl<T, F, $($args,)* R> IntoFunc<T, (Caller<'_, T>, $($args,)*), R> for F
1907 where
1908 F: Fn(Caller<'_, T>, $($args),*) -> R + Send + Sync + 'static,
1909 $($args: WasmTy,)*
1910 R: WasmRet,
1911 T: 'static,
1912 {
1913 fn into_func(self, engine: &Engine) -> HostContext {
1914 HostContext::from_closure(engine, move |caller: Caller<'_, T>, ( $( $args ),* )| {
1915 self(caller, $( $args ),* )
1916 })
1917 }
1918 }
1919 }
1920}
1921
1922for_each_function_signature!(impl_into_func);
1923
1924/// Trait implemented for various tuples made up of types which implement
1925/// [`WasmTy`] that can be passed to [`Func::wrap_inner`] and
1926/// [`HostContext::from_closure`].
1927pub unsafe trait WasmTyList {
1928 /// Get the value type that each Type in the list represents.
1929 fn valtypes() -> impl Iterator<Item = ValType>;
1930
1931 // Load a version of `Self` from the `values` provided.
1932 //
1933 // # Safety
1934 //
1935 // This function is unsafe as it's up to the caller to ensure that `values` are
1936 // valid for this given type.
1937 #[doc(hidden)]
1938 unsafe fn load(store: &mut AutoAssertNoGc<'_>, values: &mut [MaybeUninit<ValRaw>]) -> Self;
1939
1940 #[doc(hidden)]
1941 fn may_gc() -> bool;
1942}
1943
1944macro_rules! impl_wasm_ty_list {
1945 ($num:tt $($args:ident)*) => (
1946 #[allow(non_snake_case)]
1947 unsafe impl<$($args),*> WasmTyList for ($($args,)*)
1948 where
1949 $($args: WasmTy,)*
1950 {
1951 fn valtypes() -> impl Iterator<Item = ValType> {
1952 IntoIterator::into_iter([$($args::valtype(),)*])
1953 }
1954
1955 unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _values: &mut [MaybeUninit<ValRaw>]) -> Self {
1956 let mut _cur = 0;
1957 ($({
1958 debug_assert!(_cur < _values.len());
1959 let ptr = _values.get_unchecked(_cur).assume_init_ref();
1960 _cur += 1;
1961 $args::load(_store, ptr)
1962 },)*)
1963 }
1964
1965 fn may_gc() -> bool {
1966 $( $args::may_gc() || )* false
1967 }
1968 }
1969 );
1970}
1971
1972for_each_function_signature!(impl_wasm_ty_list);
1973
1974/// A structure representing the caller's context when creating a function
1975/// via [`Func::wrap`].
1976///
1977/// This structure can be taken as the first parameter of a closure passed to
1978/// [`Func::wrap`] or other constructors, and serves two purposes:
1979///
1980/// * First consumers can use [`Caller<'_, T>`](crate::Caller) to get access to
1981/// [`StoreContextMut<'_, T>`](crate::StoreContextMut) and/or get access to
1982/// `T` itself. This means that the [`Caller`] type can serve as a proxy to
1983/// the original [`Store`](crate::Store) itself and is used to satisfy
1984/// [`AsContext`] and [`AsContextMut`] bounds.
1985///
1986/// * Second a [`Caller`] can be used as the name implies, learning about the
1987/// caller's context, namely it's exported memory and exported functions. This
1988/// allows functions which take pointers as arguments to easily read the
1989/// memory the pointers point into, or if a function is expected to call
1990/// malloc in the wasm module to reserve space for the output you can do that.
1991///
1992/// Host functions which want access to [`Store`](crate::Store)-level state are
1993/// recommended to use this type.
1994pub struct Caller<'a, T: 'static> {
1995 pub(crate) store: StoreContextMut<'a, T>,
1996 caller: Instance,
1997}
1998
1999impl<T> Caller<'_, T> {
2000 #[cfg(feature = "async")]
2001 pub(crate) fn new(store: StoreContextMut<'_, T>, caller: Instance) -> Caller<'_, T> {
2002 Caller { store, caller }
2003 }
2004
2005 #[cfg(feature = "async")]
2006 pub(crate) fn caller(&self) -> Instance {
2007 self.caller
2008 }
2009
2010 unsafe fn with<F, R>(caller: NonNull<VMContext>, f: F) -> R
2011 where
2012 // The closure must be valid for any `Caller` it is given; it doesn't
2013 // get to choose the `Caller`'s lifetime.
2014 F: for<'a> FnOnce(Caller<'a, T>) -> R,
2015 // And the return value must not borrow from the caller/store.
2016 R: 'static,
2017 {
2018 crate::runtime::vm::InstanceAndStore::from_vmctx(caller, |pair| {
2019 let (instance, store) = pair.unpack_mut();
2020 let mut store = store.unchecked_context_mut::<T>();
2021 let caller = Instance::from_wasmtime(instance.id(), store.0);
2022
2023 let (gc_lifo_scope, ret) = {
2024 let gc_lifo_scope = store.0.gc_roots().enter_lifo_scope();
2025
2026 let ret = f(Caller {
2027 store: store.as_context_mut(),
2028 caller,
2029 });
2030
2031 (gc_lifo_scope, ret)
2032 };
2033
2034 // Safe to recreate a mutable borrow of the store because `ret`
2035 // cannot be borrowing from the store.
2036 store.0.exit_gc_lifo_scope(gc_lifo_scope);
2037
2038 ret
2039 })
2040 }
2041
2042 fn sub_caller(&mut self) -> Caller<'_, T> {
2043 Caller {
2044 store: self.store.as_context_mut(),
2045 caller: self.caller,
2046 }
2047 }
2048
2049 /// Looks up an export from the caller's module by the `name` given.
2050 ///
2051 /// This is a low-level function that's typically used to implement passing
2052 /// of pointers or indices between core Wasm instances, where the callee
2053 /// needs to consult the caller's exports to perform memory management and
2054 /// resolve the references.
2055 ///
2056 /// For comparison, in components, the component model handles translating
2057 /// arguments from one component instance to another and managing memory, so
2058 /// that callees don't need to be aware of their callers, which promotes
2059 /// virtualizability of APIs.
2060 ///
2061 /// # Return
2062 ///
2063 /// If an export with the `name` provided was found, then it is returned as an
2064 /// `Extern`. There are a number of situations, however, where the export may not
2065 /// be available:
2066 ///
2067 /// * The caller instance may not have an export named `name`
2068 /// * There may not be a caller available, for example if `Func` was called
2069 /// directly from host code.
2070 ///
2071 /// It's recommended to take care when calling this API and gracefully
2072 /// handling a `None` return value.
2073 pub fn get_export(&mut self, name: &str) -> Option<Extern> {
2074 // All instances created have a `host_state` with a pointer pointing
2075 // back to themselves. If this caller doesn't have that `host_state`
2076 // then it probably means it was a host-created object like `Func::new`
2077 // which doesn't have any exports we want to return anyway.
2078 self.caller.get_export(&mut self.store, name)
2079 }
2080
2081 /// Looks up an exported [`Extern`] value by a [`ModuleExport`] value.
2082 ///
2083 /// This is similar to [`Self::get_export`] but uses a [`ModuleExport`] value to avoid
2084 /// string lookups where possible. [`ModuleExport`]s can be obtained by calling
2085 /// [`Module::get_export_index`] on the [`Module`] that an instance was instantiated with.
2086 ///
2087 /// This method will search the module for an export with a matching entity index and return
2088 /// the value, if found.
2089 ///
2090 /// Returns `None` if there was no export with a matching entity index.
2091 /// # Panics
2092 ///
2093 /// Panics if `store` does not own this instance.
2094 ///
2095 /// # Usage
2096 /// ```
2097 /// use std::str;
2098 ///
2099 /// # use wasmtime::*;
2100 /// # fn main() -> anyhow::Result<()> {
2101 /// # let mut store = Store::default();
2102 ///
2103 /// let module = Module::new(
2104 /// store.engine(),
2105 /// r#"
2106 /// (module
2107 /// (import "" "" (func $log_str (param i32 i32)))
2108 /// (func (export "foo")
2109 /// i32.const 4 ;; ptr
2110 /// i32.const 13 ;; len
2111 /// call $log_str)
2112 /// (memory (export "memory") 1)
2113 /// (data (i32.const 4) "Hello, world!"))
2114 /// "#,
2115 /// )?;
2116 ///
2117 /// let Some(module_export) = module.get_export_index("memory") else {
2118 /// anyhow::bail!("failed to find `memory` export in module");
2119 /// };
2120 ///
2121 /// let log_str = Func::wrap(&mut store, move |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
2122 /// let mem = match caller.get_module_export(&module_export) {
2123 /// Some(Extern::Memory(mem)) => mem,
2124 /// _ => anyhow::bail!("failed to find host memory"),
2125 /// };
2126 /// let data = mem.data(&caller)
2127 /// .get(ptr as u32 as usize..)
2128 /// .and_then(|arr| arr.get(..len as u32 as usize));
2129 /// let string = match data {
2130 /// Some(data) => match str::from_utf8(data) {
2131 /// Ok(s) => s,
2132 /// Err(_) => anyhow::bail!("invalid utf-8"),
2133 /// },
2134 /// None => anyhow::bail!("pointer/length out of bounds"),
2135 /// };
2136 /// assert_eq!(string, "Hello, world!");
2137 /// println!("{}", string);
2138 /// Ok(())
2139 /// });
2140 /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
2141 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
2142 /// foo.call(&mut store, ())?;
2143 /// # Ok(())
2144 /// # }
2145 /// ```
2146 pub fn get_module_export(&mut self, export: &ModuleExport) -> Option<Extern> {
2147 self.caller.get_module_export(&mut self.store, export)
2148 }
2149
2150 /// Access the underlying data owned by this `Store`.
2151 ///
2152 /// Same as [`Store::data`](crate::Store::data)
2153 pub fn data(&self) -> &T {
2154 self.store.data()
2155 }
2156
2157 /// Access the underlying data owned by this `Store`.
2158 ///
2159 /// Same as [`Store::data_mut`](crate::Store::data_mut)
2160 pub fn data_mut(&mut self) -> &mut T {
2161 self.store.data_mut()
2162 }
2163
2164 /// Returns the underlying [`Engine`] this store is connected to.
2165 pub fn engine(&self) -> &Engine {
2166 self.store.engine()
2167 }
2168
2169 /// Perform garbage collection.
2170 ///
2171 /// Same as [`Store::gc`](crate::Store::gc).
2172 #[cfg(feature = "gc")]
2173 pub fn gc(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>) {
2174 self.store.gc(why);
2175 }
2176
2177 /// Perform garbage collection asynchronously.
2178 ///
2179 /// Same as [`Store::gc_async`](crate::Store::gc_async).
2180 #[cfg(all(feature = "async", feature = "gc"))]
2181 pub async fn gc_async(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>) -> Result<()>
2182 where
2183 T: Send + 'static,
2184 {
2185 self.store.gc_async(why).await
2186 }
2187
2188 /// Returns the remaining fuel in the store.
2189 ///
2190 /// For more information see [`Store::get_fuel`](crate::Store::get_fuel)
2191 pub fn get_fuel(&self) -> Result<u64> {
2192 self.store.get_fuel()
2193 }
2194
2195 /// Set the amount of fuel in this store to be consumed when executing wasm code.
2196 ///
2197 /// For more information see [`Store::set_fuel`](crate::Store::set_fuel)
2198 pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
2199 self.store.set_fuel(fuel)
2200 }
2201
2202 /// Configures this `Store` to yield while executing futures every N units of fuel.
2203 ///
2204 /// For more information see
2205 /// [`Store::fuel_async_yield_interval`](crate::Store::fuel_async_yield_interval)
2206 pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
2207 self.store.fuel_async_yield_interval(interval)
2208 }
2209}
2210
2211impl<T: 'static> AsContext for Caller<'_, T> {
2212 type Data = T;
2213 fn as_context(&self) -> StoreContext<'_, T> {
2214 self.store.as_context()
2215 }
2216}
2217
2218impl<T: 'static> AsContextMut for Caller<'_, T> {
2219 fn as_context_mut(&mut self) -> StoreContextMut<'_, T> {
2220 self.store.as_context_mut()
2221 }
2222}
2223
2224// State stored inside a `VMArrayCallHostFuncContext`.
2225struct HostFuncState<F> {
2226 // The actual host function.
2227 func: F,
2228
2229 // NB: We have to keep our `VMSharedTypeIndex` registered in the engine for
2230 // as long as this function exists.
2231 #[allow(dead_code)]
2232 ty: RegisteredType,
2233}
2234
2235#[doc(hidden)]
2236pub enum HostContext {
2237 Array(StoreBox<VMArrayCallHostFuncContext>),
2238}
2239
2240impl From<StoreBox<VMArrayCallHostFuncContext>> for HostContext {
2241 fn from(ctx: StoreBox<VMArrayCallHostFuncContext>) -> Self {
2242 HostContext::Array(ctx)
2243 }
2244}
2245
2246impl HostContext {
2247 fn from_closure<F, T, P, R>(engine: &Engine, func: F) -> Self
2248 where
2249 F: Fn(Caller<'_, T>, P) -> R + Send + Sync + 'static,
2250 P: WasmTyList,
2251 R: WasmRet,
2252 T: 'static,
2253 {
2254 let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()));
2255 let type_index = ty.type_index();
2256
2257 let array_call = Self::array_call_trampoline::<T, F, P, R>;
2258
2259 let ctx = unsafe {
2260 VMArrayCallHostFuncContext::new(
2261 array_call,
2262 type_index,
2263 Box::new(HostFuncState {
2264 func,
2265 ty: ty.into_registered_type(),
2266 }),
2267 )
2268 };
2269
2270 ctx.into()
2271 }
2272
2273 unsafe extern "C" fn array_call_trampoline<T, F, P, R>(
2274 callee_vmctx: NonNull<VMOpaqueContext>,
2275 caller_vmctx: NonNull<VMContext>,
2276 args: NonNull<ValRaw>,
2277 args_len: usize,
2278 ) -> bool
2279 where
2280 F: Fn(Caller<'_, T>, P) -> R + 'static,
2281 P: WasmTyList,
2282 R: WasmRet,
2283 T: 'static,
2284 {
2285 // Note that this function is intentionally scoped into a
2286 // separate closure. Handling traps and panics will involve
2287 // longjmp-ing from this function which means we won't run
2288 // destructors. As a result anything requiring a destructor
2289 // should be part of this closure, and the long-jmp-ing
2290 // happens after the closure in handling the result.
2291 let run = move |mut caller: Caller<'_, T>| {
2292 let mut args =
2293 NonNull::slice_from_raw_parts(args.cast::<MaybeUninit<ValRaw>>(), args_len);
2294 let vmctx = VMArrayCallHostFuncContext::from_opaque(callee_vmctx);
2295 let state = vmctx.as_ref().host_state();
2296
2297 // Double-check ourselves in debug mode, but we control
2298 // the `Any` here so an unsafe downcast should also
2299 // work.
2300 debug_assert!(state.is::<HostFuncState<F>>());
2301 let state = &*(state as *const _ as *const HostFuncState<F>);
2302 let func = &state.func;
2303
2304 let ret = 'ret: {
2305 if let Err(trap) = caller.store.0.call_hook(CallHook::CallingHost) {
2306 break 'ret R::fallible_from_error(trap);
2307 }
2308
2309 let mut store = if P::may_gc() {
2310 AutoAssertNoGc::new(caller.store.0)
2311 } else {
2312 unsafe { AutoAssertNoGc::disabled(caller.store.0) }
2313 };
2314 let params = P::load(&mut store, args.as_mut());
2315 let _ = &mut store;
2316 drop(store);
2317
2318 let r = func(caller.sub_caller(), params);
2319 if let Err(trap) = caller.store.0.call_hook(CallHook::ReturningFromHost) {
2320 break 'ret R::fallible_from_error(trap);
2321 }
2322 r.into_fallible()
2323 };
2324
2325 if !ret.compatible_with_store(caller.store.0) {
2326 bail!("host function attempted to return cross-`Store` value to Wasm")
2327 } else {
2328 let mut store = if R::may_gc() {
2329 AutoAssertNoGc::new(caller.store.0)
2330 } else {
2331 unsafe { AutoAssertNoGc::disabled(caller.store.0) }
2332 };
2333 let ret = ret.store(&mut store, args.as_mut())?;
2334 Ok(ret)
2335 }
2336 };
2337
2338 // With nothing else on the stack move `run` into this
2339 // closure and then run it as part of `Caller::with`.
2340 crate::runtime::vm::catch_unwind_and_record_trap(move || Caller::with(caller_vmctx, run))
2341 }
2342}
2343
2344/// Representation of a host-defined function.
2345///
2346/// This is used for `Func::new` but also for `Linker`-defined functions. For
2347/// `Func::new` this is stored within a `Store`, and for `Linker`-defined
2348/// functions they wrap this up in `Arc` to enable shared ownership of this
2349/// across many stores.
2350///
2351/// Technically this structure needs a `<T>` type parameter to connect to the
2352/// `Store<T>` itself, but that's an unsafe contract of using this for now
2353/// rather than part of the struct type (to avoid `Func<T>` in the API).
2354pub(crate) struct HostFunc {
2355 ctx: HostContext,
2356
2357 // Stored to unregister this function's signature with the engine when this
2358 // is dropped.
2359 engine: Engine,
2360}
2361
2362impl core::fmt::Debug for HostFunc {
2363 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
2364 f.debug_struct("HostFunc").finish_non_exhaustive()
2365 }
2366}
2367
2368impl HostFunc {
2369 /// Analog of [`Func::new`]
2370 ///
2371 /// # Panics
2372 ///
2373 /// Panics if the given function type is not associated with the given
2374 /// engine.
2375 pub fn new<T>(
2376 engine: &Engine,
2377 ty: FuncType,
2378 func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
2379 ) -> Self
2380 where
2381 T: 'static,
2382 {
2383 assert!(ty.comes_from_same_engine(engine));
2384 let ty_clone = ty.clone();
2385 unsafe {
2386 HostFunc::new_unchecked(engine, ty, move |caller, values| {
2387 Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
2388 })
2389 }
2390 }
2391
2392 /// Analog of [`Func::new_unchecked`]
2393 ///
2394 /// # Panics
2395 ///
2396 /// Panics if the given function type is not associated with the given
2397 /// engine.
2398 pub unsafe fn new_unchecked<T>(
2399 engine: &Engine,
2400 ty: FuncType,
2401 func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
2402 ) -> Self
2403 where
2404 T: 'static,
2405 {
2406 assert!(ty.comes_from_same_engine(engine));
2407 let func = move |caller_vmctx, values: &mut [ValRaw]| {
2408 Caller::<T>::with(caller_vmctx, |mut caller| {
2409 caller.store.0.call_hook(CallHook::CallingHost)?;
2410 let result = func(caller.sub_caller(), values)?;
2411 caller.store.0.call_hook(CallHook::ReturningFromHost)?;
2412 Ok(result)
2413 })
2414 };
2415 let ctx = crate::trampoline::create_array_call_function(&ty, func)
2416 .expect("failed to create function");
2417 HostFunc::_new(engine, ctx.into())
2418 }
2419
2420 /// Analog of [`Func::wrap_inner`]
2421 #[cfg(any(feature = "component-model", feature = "async"))]
2422 pub fn wrap_inner<F, T, Params, Results>(engine: &Engine, func: F) -> Self
2423 where
2424 F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
2425 Params: WasmTyList,
2426 Results: WasmRet,
2427 T: 'static,
2428 {
2429 let ctx = HostContext::from_closure(engine, func);
2430 HostFunc::_new(engine, ctx)
2431 }
2432
2433 /// Analog of [`Func::wrap`]
2434 pub fn wrap<T, Params, Results>(
2435 engine: &Engine,
2436 func: impl IntoFunc<T, Params, Results>,
2437 ) -> Self
2438 where
2439 T: 'static,
2440 {
2441 let ctx = func.into_func(engine);
2442 HostFunc::_new(engine, ctx)
2443 }
2444
2445 /// Requires that this function's signature is already registered within
2446 /// `Engine`. This happens automatically during the above two constructors.
2447 fn _new(engine: &Engine, ctx: HostContext) -> Self {
2448 HostFunc {
2449 ctx,
2450 engine: engine.clone(),
2451 }
2452 }
2453
2454 /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2455 /// it.
2456 ///
2457 /// # Unsafety
2458 ///
2459 /// Can only be inserted into stores with a matching `T` relative to when
2460 /// this `HostFunc` was first created.
2461 pub unsafe fn to_func(self: &Arc<Self>, store: &mut StoreOpaque) -> Func {
2462 self.validate_store(store);
2463 let (funcrefs, modules) = store.func_refs_and_modules();
2464 let funcref = funcrefs.push_arc_host(self.clone(), modules);
2465 Func::from_vm_func_ref(store, funcref)
2466 }
2467
2468 /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2469 /// it.
2470 ///
2471 /// This function is similar to, but not equivalent, to `HostFunc::to_func`.
2472 /// Notably this function requires that the `Arc<Self>` pointer is otherwise
2473 /// rooted within the `StoreOpaque` via another means. When in doubt use
2474 /// `to_func` above as it's safer.
2475 ///
2476 /// # Unsafety
2477 ///
2478 /// Can only be inserted into stores with a matching `T` relative to when
2479 /// this `HostFunc` was first created.
2480 ///
2481 /// Additionally the `&Arc<Self>` is not cloned in this function. Instead a
2482 /// raw pointer to `Self` is stored within the `Store` for this function.
2483 /// The caller must arrange for the `Arc<Self>` to be "rooted" in the store
2484 /// provided via another means, probably by pushing to
2485 /// `StoreOpaque::rooted_host_funcs`.
2486 ///
2487 /// Similarly, the caller must arrange for `rooted_func_ref` to be rooted in
2488 /// the same store.
2489 pub unsafe fn to_func_store_rooted(
2490 self: &Arc<Self>,
2491 store: &mut StoreOpaque,
2492 rooted_func_ref: Option<NonNull<VMFuncRef>>,
2493 ) -> Func {
2494 self.validate_store(store);
2495
2496 match rooted_func_ref {
2497 Some(funcref) => {
2498 debug_assert!(funcref.as_ref().wasm_call.is_some());
2499 Func::from_vm_func_ref(store, funcref)
2500 }
2501 None => {
2502 debug_assert!(self.func_ref().wasm_call.is_some());
2503 Func::from_vm_func_ref(store, self.func_ref().into())
2504 }
2505 }
2506 }
2507
2508 /// Same as [`HostFunc::to_func`], different ownership.
2509 unsafe fn into_func(self, store: &mut StoreOpaque) -> Func {
2510 self.validate_store(store);
2511 let (funcrefs, modules) = store.func_refs_and_modules();
2512 let funcref = funcrefs.push_box_host(Box::new(self), modules);
2513 Func::from_vm_func_ref(store, funcref)
2514 }
2515
2516 fn validate_store(&self, store: &mut StoreOpaque) {
2517 // This assert is required to ensure that we can indeed safely insert
2518 // `self` into the `store` provided, otherwise the type information we
2519 // have listed won't be correct. This is possible to hit with the public
2520 // API of Wasmtime, and should be documented in relevant functions.
2521 assert!(
2522 Engine::same(&self.engine, store.engine()),
2523 "cannot use a store with a different engine than a linker was created with",
2524 );
2525 }
2526
2527 pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2528 self.func_ref().type_index
2529 }
2530
2531 pub(crate) fn func_ref(&self) -> &VMFuncRef {
2532 match &self.ctx {
2533 HostContext::Array(ctx) => unsafe { ctx.get().as_ref().func_ref() },
2534 }
2535 }
2536
2537 pub(crate) fn host_ctx(&self) -> &HostContext {
2538 &self.ctx
2539 }
2540}
2541
2542#[cfg(test)]
2543mod tests {
2544 use super::*;
2545 use crate::{Module, Store};
2546
2547 #[test]
2548 #[cfg_attr(miri, ignore)]
2549 fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
2550 let mut store = Store::<()>::default();
2551 let module = Module::new(
2552 store.engine(),
2553 r#"
2554 (module
2555 (func (export "f")
2556 nop
2557 )
2558 )
2559 "#,
2560 )?;
2561 let instance = Instance::new(&mut store, &module, &[])?;
2562
2563 // Each time we `get_func`, we call `Func::from_wasmtime` which adds a
2564 // new entry to `StoreData`, so `f1` and `f2` will have different
2565 // indices into `StoreData`.
2566 let f1 = instance.get_func(&mut store, "f").unwrap();
2567 let f2 = instance.get_func(&mut store, "f").unwrap();
2568
2569 // But their hash keys are the same.
2570 assert!(
2571 f1.hash_key(&mut store.as_context_mut().0)
2572 == f2.hash_key(&mut store.as_context_mut().0)
2573 );
2574
2575 // But the hash keys are different from different funcs.
2576 let instance2 = Instance::new(&mut store, &module, &[])?;
2577 let f3 = instance2.get_func(&mut store, "f").unwrap();
2578 assert!(
2579 f1.hash_key(&mut store.as_context_mut().0)
2580 != f3.hash_key(&mut store.as_context_mut().0)
2581 );
2582
2583 Ok(())
2584 }
2585}