1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir;
use cranelift_codegen::ir::condcodes::*;
use cranelift_codegen::ir::immediates::{Imm64, Offset32, Uimm64};
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{AbiParam, ArgumentPurpose, Function, InstBuilder, Signature};
use cranelift_codegen::isa::{self, TargetFrontendConfig, TargetIsa};
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_frontend::FunctionBuilder;
use cranelift_frontend::Variable;
use cranelift_wasm::{
    self, FuncIndex, FuncTranslationState, GlobalIndex, GlobalVariable, Heap, HeapData, HeapStyle,
    MemoryIndex, TableIndex, TargetEnvironment, TypeIndex, WasmError, WasmResult, WasmType,
};
use std::convert::TryFrom;
use std::mem;
use wasmparser::Operator;
use wasmtime_environ::{
    BuiltinFunctionIndex, MemoryPlan, MemoryStyle, Module, ModuleTranslation, ModuleTypes, PtrSize,
    TableStyle, Tunables, VMOffsets, WASM_PAGE_SIZE,
};
use wasmtime_environ::{FUNCREF_INIT_BIT, FUNCREF_MASK};

macro_rules! declare_function_signatures {
    (
        $(
            $( #[$attr:meta] )*
            $name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
        )*
    ) => {
        /// A struct with an `Option<ir::SigRef>` member for every builtin
        /// function, to de-duplicate constructing/getting its signature.
        struct BuiltinFunctionSignatures {
            pointer_type: ir::Type,
            reference_type: ir::Type,
            call_conv: isa::CallConv,
            $(
                $name: Option<ir::SigRef>,
            )*
        }

        impl BuiltinFunctionSignatures {
            fn new(
                pointer_type: ir::Type,
                reference_type: ir::Type,
                call_conv: isa::CallConv,
            ) -> Self {
                Self {
                    pointer_type,
                    reference_type,
                    call_conv,
                    $(
                        $name: None,
                    )*
                }
            }

            fn vmctx(&self) -> AbiParam {
                AbiParam::special(self.pointer_type, ArgumentPurpose::VMContext)
            }

            fn reference(&self) -> AbiParam {
                AbiParam::new(self.reference_type)
            }

            fn pointer(&self) -> AbiParam {
                AbiParam::new(self.pointer_type)
            }

            fn i32(&self) -> AbiParam {
                // Some platform ABIs require i32 values to be zero- or sign-
                // extended to the full register width.  We need to indicate
                // this here by using the appropriate .uext or .sext attribute.
                // The attribute can be added unconditionally; platforms whose
                // ABI does not require such extensions will simply ignore it.
                // Note that currently all i32 arguments or return values used
                // by builtin functions are unsigned, so we always use .uext.
                // If that ever changes, we will have to add a second type
                // marker here.
                AbiParam::new(I32).uext()
            }

            fn i64(&self) -> AbiParam {
                AbiParam::new(I64)
            }

            $(
                fn $name(&mut self, func: &mut Function) -> ir::SigRef {
                    let sig = self.$name.unwrap_or_else(|| {
                        func.import_signature(Signature {
                            params: vec![ $( self.$param() ),* ],
                            returns: vec![ $( self.$result() )? ],
                            call_conv: self.call_conv,
                        })
                    });
                    self.$name = Some(sig);
                    sig
                }
            )*
        }
    };
}

wasmtime_environ::foreach_builtin_function!(declare_function_signatures);

/// The `FuncEnvironment` implementation for use by the `ModuleEnvironment`.
pub struct FuncEnvironment<'module_environment> {
    isa: &'module_environment (dyn TargetIsa + 'module_environment),
    module: &'module_environment Module,
    translation: &'module_environment ModuleTranslation<'module_environment>,
    types: &'module_environment ModuleTypes,

    /// Heaps implementing WebAssembly linear memories.
    heaps: PrimaryMap<Heap, HeapData>,

    /// The Cranelift global holding the vmctx address.
    vmctx: Option<ir::GlobalValue>,

    /// Caches of signatures for builtin functions.
    builtin_function_signatures: BuiltinFunctionSignatures,

    /// Offsets to struct fields accessed by JIT code.
    pub(crate) offsets: VMOffsets<u8>,

    tunables: &'module_environment Tunables,

    /// A function-local variable which stores the cached value of the amount of
    /// fuel remaining to execute. If used this is modified frequently so it's
    /// stored locally as a variable instead of always referenced from the field
    /// in `*const VMRuntimeLimits`
    fuel_var: cranelift_frontend::Variable,

    /// A function-local variable which caches the value of `*const
    /// VMRuntimeLimits` for this function's vmctx argument. This pointer is stored
    /// in the vmctx itself, but never changes for the lifetime of the function,
    /// so if we load it up front we can continue to use it throughout.
    vmruntime_limits_ptr: cranelift_frontend::Variable,

    /// A cached epoch deadline value, when performing epoch-based
    /// interruption. Loaded from `VMRuntimeLimits` and reloaded after
    /// any yield.
    epoch_deadline_var: cranelift_frontend::Variable,

    /// A cached pointer to the per-Engine epoch counter, when
    /// performing epoch-based interruption. Initialized in the
    /// function prologue. We prefer to use a variable here rather
    /// than reload on each check because it's better to let the
    /// regalloc keep it in a register if able; if not, it can always
    /// spill, and this isn't any worse than reloading each time.
    epoch_ptr_var: cranelift_frontend::Variable,

    fuel_consumed: i64,
}

impl<'module_environment> FuncEnvironment<'module_environment> {
    pub fn new(
        isa: &'module_environment (dyn TargetIsa + 'module_environment),
        translation: &'module_environment ModuleTranslation<'module_environment>,
        types: &'module_environment ModuleTypes,
        tunables: &'module_environment Tunables,
    ) -> Self {
        let builtin_function_signatures = BuiltinFunctionSignatures::new(
            isa.pointer_type(),
            match isa.pointer_type() {
                ir::types::I32 => ir::types::R32,
                ir::types::I64 => ir::types::R64,
                _ => panic!(),
            },
            crate::wasmtime_call_conv(isa),
        );
        Self {
            isa,
            module: &translation.module,
            translation,
            types,
            heaps: PrimaryMap::default(),
            vmctx: None,
            builtin_function_signatures,
            offsets: VMOffsets::new(isa.pointer_bytes(), &translation.module),
            tunables,
            fuel_var: Variable::new(0),
            epoch_deadline_var: Variable::new(0),
            epoch_ptr_var: Variable::new(0),
            vmruntime_limits_ptr: Variable::new(0),

            // Start with at least one fuel being consumed because even empty
            // functions should consume at least some fuel.
            fuel_consumed: 1,
        }
    }

    fn pointer_type(&self) -> ir::Type {
        self.isa.pointer_type()
    }

    fn vmctx(&mut self, func: &mut Function) -> ir::GlobalValue {
        self.vmctx.unwrap_or_else(|| {
            let vmctx = func.create_global_value(ir::GlobalValueData::VMContext);
            self.vmctx = Some(vmctx);
            vmctx
        })
    }

    fn get_table_copy_func(
        &mut self,
        func: &mut Function,
        dst_table_index: TableIndex,
        src_table_index: TableIndex,
    ) -> (ir::SigRef, usize, usize, BuiltinFunctionIndex) {
        let sig = self.builtin_function_signatures.table_copy(func);
        (
            sig,
            dst_table_index.as_u32() as usize,
            src_table_index.as_u32() as usize,
            BuiltinFunctionIndex::table_copy(),
        )
    }

    fn get_table_init_func(
        &mut self,
        func: &mut Function,
        table_index: TableIndex,
    ) -> (ir::SigRef, usize, BuiltinFunctionIndex) {
        let sig = self.builtin_function_signatures.table_init(func);
        let table_index = table_index.as_u32() as usize;
        (sig, table_index, BuiltinFunctionIndex::table_init())
    }

    fn get_elem_drop_func(&mut self, func: &mut Function) -> (ir::SigRef, BuiltinFunctionIndex) {
        let sig = self.builtin_function_signatures.elem_drop(func);
        (sig, BuiltinFunctionIndex::elem_drop())
    }

    fn get_memory_atomic_wait(
        &mut self,
        func: &mut Function,
        memory_index: MemoryIndex,
        ty: ir::Type,
    ) -> (ir::SigRef, usize, BuiltinFunctionIndex) {
        match ty {
            I32 => (
                self.builtin_function_signatures.memory_atomic_wait32(func),
                memory_index.index(),
                BuiltinFunctionIndex::memory_atomic_wait32(),
            ),
            I64 => (
                self.builtin_function_signatures.memory_atomic_wait64(func),
                memory_index.index(),
                BuiltinFunctionIndex::memory_atomic_wait64(),
            ),
            x => panic!("get_memory_atomic_wait unsupported type: {:?}", x),
        }
    }

    fn get_memory_init_func(&mut self, func: &mut Function) -> (ir::SigRef, BuiltinFunctionIndex) {
        (
            self.builtin_function_signatures.memory_init(func),
            BuiltinFunctionIndex::memory_init(),
        )
    }

    fn get_data_drop_func(&mut self, func: &mut Function) -> (ir::SigRef, BuiltinFunctionIndex) {
        (
            self.builtin_function_signatures.data_drop(func),
            BuiltinFunctionIndex::data_drop(),
        )
    }

    /// Translates load of builtin function and returns a pair of values `vmctx`
    /// and address of the loaded function.
    fn translate_load_builtin_function_address(
        &mut self,
        pos: &mut FuncCursor<'_>,
        callee_func_idx: BuiltinFunctionIndex,
    ) -> (ir::Value, ir::Value) {
        // We use an indirect call so that we don't have to patch the code at runtime.
        let pointer_type = self.pointer_type();
        let vmctx = self.vmctx(&mut pos.func);
        let base = pos.ins().global_value(pointer_type, vmctx);

        let mem_flags = ir::MemFlags::trusted().with_readonly();

        // Load the base of the array of builtin functions
        let array_offset = i32::try_from(self.offsets.vmctx_builtin_functions()).unwrap();
        let array_addr = pos.ins().load(pointer_type, mem_flags, base, array_offset);

        // Load the callee address.
        let body_offset = i32::try_from(callee_func_idx.index() * pointer_type.bytes()).unwrap();
        let func_addr = pos
            .ins()
            .load(pointer_type, mem_flags, array_addr, body_offset);

        (base, func_addr)
    }

    /// Generate code to increment or decrement the given `externref`'s
    /// reference count.
    ///
    /// The new reference count is returned.
    fn mutate_externref_ref_count(
        &mut self,
        builder: &mut FunctionBuilder,
        externref: ir::Value,
        delta: i64,
    ) -> ir::Value {
        debug_assert!(delta == -1 || delta == 1);

        let pointer_type = self.pointer_type();

        // If this changes that's ok, the `atomic_rmw` below just needs to be
        // preceded with an add instruction of `externref` and the offset.
        assert_eq!(self.offsets.vm_extern_data_ref_count(), 0);
        let delta = builder.ins().iconst(pointer_type, delta);
        builder.ins().atomic_rmw(
            pointer_type,
            ir::MemFlags::trusted(),
            ir::AtomicRmwOp::Add,
            externref,
            delta,
        )
    }

    fn get_global_location(
        &mut self,
        func: &mut ir::Function,
        index: GlobalIndex,
    ) -> (ir::GlobalValue, i32) {
        let pointer_type = self.pointer_type();
        let vmctx = self.vmctx(func);
        if let Some(def_index) = self.module.defined_global_index(index) {
            let offset = i32::try_from(self.offsets.vmctx_vmglobal_definition(def_index)).unwrap();
            (vmctx, offset)
        } else {
            let from_offset = self.offsets.vmctx_vmglobal_import_from(index);
            let global = func.create_global_value(ir::GlobalValueData::Load {
                base: vmctx,
                offset: Offset32::new(i32::try_from(from_offset).unwrap()),
                global_type: pointer_type,
                readonly: true,
            });
            (global, 0)
        }
    }

    fn declare_vmruntime_limits_ptr(&mut self, builder: &mut FunctionBuilder<'_>) {
        // We load the `*const VMRuntimeLimits` value stored within vmctx at the
        // head of the function and reuse the same value across the entire
        // function. This is possible since we know that the pointer never
        // changes for the lifetime of the function.
        let pointer_type = self.pointer_type();
        builder.declare_var(self.vmruntime_limits_ptr, pointer_type);
        let vmctx = self.vmctx(builder.func);
        let base = builder.ins().global_value(pointer_type, vmctx);
        let offset = i32::try_from(self.offsets.vmctx_runtime_limits()).unwrap();
        let interrupt_ptr = builder
            .ins()
            .load(pointer_type, ir::MemFlags::trusted(), base, offset);
        builder.def_var(self.vmruntime_limits_ptr, interrupt_ptr);
    }

    fn fuel_function_entry(&mut self, builder: &mut FunctionBuilder<'_>) {
        // On function entry we load the amount of fuel into a function-local
        // `self.fuel_var` to make fuel modifications fast locally. This cache
        // is then periodically flushed to the Store-defined location in
        // `VMRuntimeLimits` later.
        builder.declare_var(self.fuel_var, ir::types::I64);
        self.fuel_load_into_var(builder);
        self.fuel_check(builder);
    }

    fn fuel_function_exit(&mut self, builder: &mut FunctionBuilder<'_>) {
        // On exiting the function we need to be sure to save the fuel we have
        // cached locally in `self.fuel_var` back into the Store-defined
        // location.
        self.fuel_save_from_var(builder);
    }

    fn fuel_before_op(
        &mut self,
        op: &Operator<'_>,
        builder: &mut FunctionBuilder<'_>,
        reachable: bool,
    ) {
        if !reachable {
            // In unreachable code we shouldn't have any leftover fuel we
            // haven't accounted for since the reason for us to become
            // unreachable should have already added it to `self.fuel_var`.
            debug_assert_eq!(self.fuel_consumed, 0);
            return;
        }

        self.fuel_consumed += match op {
            // Nop and drop generate no code, so don't consume fuel for them.
            Operator::Nop | Operator::Drop => 0,

            // Control flow may create branches, but is generally cheap and
            // free, so don't consume fuel. Note the lack of `if` since some
            // cost is incurred with the conditional check.
            Operator::Block { .. }
            | Operator::Loop { .. }
            | Operator::Unreachable
            | Operator::Return
            | Operator::Else
            | Operator::End => 0,

            // everything else, just call it one operation.
            _ => 1,
        };

        match op {
            // Exiting a function (via a return or unreachable) or otherwise
            // entering a different function (via a call) means that we need to
            // update the fuel consumption in `VMRuntimeLimits` because we're
            // about to move control out of this function itself and the fuel
            // may need to be read.
            //
            // Before this we need to update the fuel counter from our own cost
            // leading up to this function call, and then we can store
            // `self.fuel_var` into `VMRuntimeLimits`.
            Operator::Unreachable
            | Operator::Return
            | Operator::CallIndirect { .. }
            | Operator::Call { .. }
            | Operator::ReturnCall { .. }
            | Operator::ReturnCallIndirect { .. } => {
                self.fuel_increment_var(builder);
                self.fuel_save_from_var(builder);
            }

            // To ensure all code preceding a loop is only counted once we
            // update the fuel variable on entry.
            Operator::Loop { .. }

            // Entering into an `if` block means that the edge we take isn't
            // known until runtime, so we need to update our fuel consumption
            // before we take the branch.
            | Operator::If { .. }

            // Control-flow instructions mean that we're moving to the end/exit
            // of a block somewhere else. That means we need to update the fuel
            // counter since we're effectively terminating our basic block.
            | Operator::Br { .. }
            | Operator::BrIf { .. }
            | Operator::BrTable { .. }

            // Exiting a scope means that we need to update the fuel
            // consumption because there are multiple ways to exit a scope and
            // this is the only time we have to account for instructions
            // executed so far.
            | Operator::End

            // This is similar to `end`, except that it's only the terminator
            // for an `if` block. The same reasoning applies though in that we
            // are terminating a basic block and need to update the fuel
            // variable.
            | Operator::Else => self.fuel_increment_var(builder),

            // This is a normal instruction where the fuel is buffered to later
            // get added to `self.fuel_var`.
            //
            // Note that we generally ignore instructions which may trap and
            // therefore result in exiting a block early. Current usage of fuel
            // means that it's not too important to account for a precise amount
            // of fuel consumed but rather "close to the actual amount" is good
            // enough. For 100% precise counting, however, we'd probably need to
            // not only increment but also save the fuel amount more often
            // around trapping instructions. (see the `unreachable` instruction
            // case above)
            //
            // Note that `Block` is specifically omitted from incrementing the
            // fuel variable. Control flow entering a `block` is unconditional
            // which means it's effectively executing straight-line code. We'll
            // update the counter when exiting a block, but we shouldn't need to
            // do so upon entering a block.
            _ => {}
        }
    }

    fn fuel_after_op(&mut self, op: &Operator<'_>, builder: &mut FunctionBuilder<'_>) {
        // After a function call we need to reload our fuel value since the
        // function may have changed it.
        match op {
            Operator::Call { .. } | Operator::CallIndirect { .. } => {
                self.fuel_load_into_var(builder);
            }
            _ => {}
        }
    }

    /// Adds `self.fuel_consumed` to the `fuel_var`, zero-ing out the amount of
    /// fuel consumed at that point.
    fn fuel_increment_var(&mut self, builder: &mut FunctionBuilder<'_>) {
        let consumption = mem::replace(&mut self.fuel_consumed, 0);
        if consumption == 0 {
            return;
        }

        let fuel = builder.use_var(self.fuel_var);
        let fuel = builder.ins().iadd_imm(fuel, consumption);
        builder.def_var(self.fuel_var, fuel);
    }

    /// Loads the fuel consumption value from `VMRuntimeLimits` into `self.fuel_var`
    fn fuel_load_into_var(&mut self, builder: &mut FunctionBuilder<'_>) {
        let (addr, offset) = self.fuel_addr_offset(builder);
        let fuel = builder
            .ins()
            .load(ir::types::I64, ir::MemFlags::trusted(), addr, offset);
        builder.def_var(self.fuel_var, fuel);
    }

    /// Stores the fuel consumption value from `self.fuel_var` into
    /// `VMRuntimeLimits`.
    fn fuel_save_from_var(&mut self, builder: &mut FunctionBuilder<'_>) {
        let (addr, offset) = self.fuel_addr_offset(builder);
        let fuel_consumed = builder.use_var(self.fuel_var);
        builder
            .ins()
            .store(ir::MemFlags::trusted(), fuel_consumed, addr, offset);
    }

    /// Returns the `(address, offset)` of the fuel consumption within
    /// `VMRuntimeLimits`, used to perform loads/stores later.
    fn fuel_addr_offset(
        &mut self,
        builder: &mut FunctionBuilder<'_>,
    ) -> (ir::Value, ir::immediates::Offset32) {
        (
            builder.use_var(self.vmruntime_limits_ptr),
            i32::from(self.offsets.ptr.vmruntime_limits_fuel_consumed()).into(),
        )
    }

    /// Checks the amount of remaining, and if we've run out of fuel we call
    /// the out-of-fuel function.
    fn fuel_check(&mut self, builder: &mut FunctionBuilder) {
        self.fuel_increment_var(builder);
        let out_of_gas_block = builder.create_block();
        let continuation_block = builder.create_block();

        // Note that our fuel is encoded as adding positive values to a
        // negative number. Whenever the negative number goes positive that
        // means we ran out of fuel.
        //
        // Compare to see if our fuel is positive, and if so we ran out of gas.
        // Otherwise we can continue on like usual.
        let zero = builder.ins().iconst(ir::types::I64, 0);
        let fuel = builder.use_var(self.fuel_var);
        let cmp = builder
            .ins()
            .icmp(IntCC::SignedGreaterThanOrEqual, fuel, zero);
        builder
            .ins()
            .brif(cmp, out_of_gas_block, &[], continuation_block, &[]);
        builder.seal_block(out_of_gas_block);

        // If we ran out of gas then we call our out-of-gas intrinsic and it
        // figures out what to do. Note that this may raise a trap, or do
        // something like yield to an async runtime. In either case we don't
        // assume what happens and handle the case the intrinsic returns.
        //
        // Note that we save/reload fuel around this since the out-of-gas
        // intrinsic may alter how much fuel is in the system.
        builder.switch_to_block(out_of_gas_block);
        self.fuel_save_from_var(builder);
        let out_of_gas_sig = self.builtin_function_signatures.out_of_gas(builder.func);
        let (vmctx, out_of_gas) = self.translate_load_builtin_function_address(
            &mut builder.cursor(),
            BuiltinFunctionIndex::out_of_gas(),
        );
        builder
            .ins()
            .call_indirect(out_of_gas_sig, out_of_gas, &[vmctx]);
        self.fuel_load_into_var(builder);
        builder.ins().jump(continuation_block, &[]);
        builder.seal_block(continuation_block);

        builder.switch_to_block(continuation_block);
    }

    fn epoch_function_entry(&mut self, builder: &mut FunctionBuilder<'_>) {
        builder.declare_var(self.epoch_deadline_var, ir::types::I64);
        self.epoch_load_deadline_into_var(builder);
        builder.declare_var(self.epoch_ptr_var, self.pointer_type());
        let epoch_ptr = self.epoch_ptr(builder);
        builder.def_var(self.epoch_ptr_var, epoch_ptr);

        // We must check for an epoch change when entering a
        // function. Why? Why aren't checks at loops sufficient to
        // bound runtime to O(|static program size|)?
        //
        // The reason is that one can construct a "zip-bomb-like"
        // program with exponential-in-program-size runtime, with no
        // backedges (loops), by building a tree of function calls: f0
        // calls f1 ten times, f1 calls f2 ten times, etc. E.g., nine
        // levels of this yields a billion function calls with no
        // backedges. So we can't do checks only at backedges.
        //
        // In this "call-tree" scenario, and in fact in any program
        // that uses calls as a sort of control flow to try to evade
        // backedge checks, a check at every function entry is
        // sufficient. Then, combined with checks at every backedge
        // (loop) the longest runtime between checks is bounded by the
        // straightline length of any function body.
        self.epoch_check(builder);
    }

    fn epoch_ptr(&mut self, builder: &mut FunctionBuilder<'_>) -> ir::Value {
        let vmctx = self.vmctx(builder.func);
        let pointer_type = self.pointer_type();
        let base = builder.ins().global_value(pointer_type, vmctx);
        let offset = i32::try_from(self.offsets.vmctx_epoch_ptr()).unwrap();
        let epoch_ptr = builder
            .ins()
            .load(pointer_type, ir::MemFlags::trusted(), base, offset);
        epoch_ptr
    }

    fn epoch_load_current(&mut self, builder: &mut FunctionBuilder<'_>) -> ir::Value {
        let addr = builder.use_var(self.epoch_ptr_var);
        builder.ins().load(
            ir::types::I64,
            ir::MemFlags::trusted(),
            addr,
            ir::immediates::Offset32::new(0),
        )
    }

    fn epoch_load_deadline_into_var(&mut self, builder: &mut FunctionBuilder<'_>) {
        let interrupts = builder.use_var(self.vmruntime_limits_ptr);
        let deadline =
            builder.ins().load(
                ir::types::I64,
                ir::MemFlags::trusted(),
                interrupts,
                ir::immediates::Offset32::new(
                    self.offsets.ptr.vmruntime_limits_epoch_deadline() as i32
                ),
            );
        builder.def_var(self.epoch_deadline_var, deadline);
    }

    fn epoch_check(&mut self, builder: &mut FunctionBuilder<'_>) {
        let new_epoch_block = builder.create_block();
        let new_epoch_doublecheck_block = builder.create_block();
        let continuation_block = builder.create_block();
        builder.set_cold_block(new_epoch_block);
        builder.set_cold_block(new_epoch_doublecheck_block);

        let epoch_deadline = builder.use_var(self.epoch_deadline_var);
        // Load new epoch and check against cached deadline. The
        // deadline may be out of date if it was updated (within
        // another yield) during some function that we called; this is
        // fine, as we'll reload it and check again before yielding in
        // the cold path.
        let cur_epoch_value = self.epoch_load_current(builder);
        let cmp = builder.ins().icmp(
            IntCC::UnsignedGreaterThanOrEqual,
            cur_epoch_value,
            epoch_deadline,
        );
        builder
            .ins()
            .brif(cmp, new_epoch_block, &[], continuation_block, &[]);
        builder.seal_block(new_epoch_block);

        // In the "new epoch block", we've noticed that the epoch has
        // exceeded our cached deadline. However the real deadline may
        // have been moved in the meantime. We keep the cached value
        // in a register to speed the checks in the common case
        // (between epoch ticks) but we want to do a precise check
        // here, on the cold path, by reloading the latest value
        // first.
        builder.switch_to_block(new_epoch_block);
        self.epoch_load_deadline_into_var(builder);
        let fresh_epoch_deadline = builder.use_var(self.epoch_deadline_var);
        let fresh_cmp = builder.ins().icmp(
            IntCC::UnsignedGreaterThanOrEqual,
            cur_epoch_value,
            fresh_epoch_deadline,
        );
        builder.ins().brif(
            fresh_cmp,
            new_epoch_doublecheck_block,
            &[],
            continuation_block,
            &[],
        );
        builder.seal_block(new_epoch_doublecheck_block);

        builder.switch_to_block(new_epoch_doublecheck_block);
        let new_epoch_sig = self.builtin_function_signatures.new_epoch(builder.func);
        let (vmctx, new_epoch) = self.translate_load_builtin_function_address(
            &mut builder.cursor(),
            BuiltinFunctionIndex::new_epoch(),
        );
        // new_epoch() returns the new deadline, so we don't have to
        // reload it.
        let call = builder
            .ins()
            .call_indirect(new_epoch_sig, new_epoch, &[vmctx]);
        let new_deadline = *builder.func.dfg.inst_results(call).first().unwrap();
        builder.def_var(self.epoch_deadline_var, new_deadline);
        builder.ins().jump(continuation_block, &[]);
        builder.seal_block(continuation_block);

        builder.switch_to_block(continuation_block);
    }

    fn memory_index_type(&self, index: MemoryIndex) -> ir::Type {
        if self.module.memory_plans[index].memory.memory64 {
            I64
        } else {
            I32
        }
    }

    fn cast_pointer_to_memory_index(
        &self,
        mut pos: FuncCursor<'_>,
        val: ir::Value,
        index: MemoryIndex,
    ) -> ir::Value {
        let desired_type = self.memory_index_type(index);
        let pointer_type = self.pointer_type();
        assert_eq!(pos.func.dfg.value_type(val), pointer_type);

        // The current length is of type `pointer_type` but we need to fit it
        // into `desired_type`. We are guaranteed that the result will always
        // fit, so we just need to do the right ireduce/sextend here.
        if pointer_type == desired_type {
            val
        } else if pointer_type.bits() > desired_type.bits() {
            pos.ins().ireduce(desired_type, val)
        } else {
            // Note that we `sextend` instead of the probably expected
            // `uextend`. This function is only used within the contexts of
            // `memory.size` and `memory.grow` where we're working with units of
            // pages instead of actual bytes, so we know that the upper bit is
            // always cleared for "valid values". The one case we care about
            // sextend would be when the return value of `memory.grow` is `-1`,
            // in which case we want to copy the sign bit.
            //
            // This should only come up on 32-bit hosts running wasm64 modules,
            // which at some point also makes you question various assumptions
            // made along the way...
            pos.ins().sextend(desired_type, val)
        }
    }

    fn cast_memory_index_to_i64(
        &self,
        pos: &mut FuncCursor<'_>,
        val: ir::Value,
        index: MemoryIndex,
    ) -> ir::Value {
        if self.memory_index_type(index) == I64 {
            val
        } else {
            pos.ins().uextend(I64, val)
        }
    }

    fn get_or_init_funcref_table_elem(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        table: ir::Table,
        index: ir::Value,
    ) -> ir::Value {
        let pointer_type = self.pointer_type();

        // To support lazy initialization of table
        // contents, we check for a null entry here, and
        // if null, we take a slow-path that invokes a
        // libcall.
        let table_entry_addr = builder.ins().table_addr(pointer_type, table, index, 0);
        let flags = ir::MemFlags::trusted().with_table();
        let value = builder.ins().load(pointer_type, flags, table_entry_addr, 0);
        // Mask off the "initialized bit". See documentation on
        // FUNCREF_INIT_BIT in crates/environ/src/ref_bits.rs for more
        // details.
        let value_masked = builder
            .ins()
            .band_imm(value, Imm64::from(FUNCREF_MASK as i64));

        let null_block = builder.create_block();
        let continuation_block = builder.create_block();
        let result_param = builder.append_block_param(continuation_block, pointer_type);
        builder.set_cold_block(null_block);

        builder
            .ins()
            .brif(value, continuation_block, &[value_masked], null_block, &[]);
        builder.seal_block(null_block);

        builder.switch_to_block(null_block);
        let table_index = builder.ins().iconst(I32, table_index.index() as i64);
        let builtin_idx = BuiltinFunctionIndex::table_get_lazy_init_funcref();
        let builtin_sig = self
            .builtin_function_signatures
            .table_get_lazy_init_funcref(builder.func);
        let (vmctx, builtin_addr) =
            self.translate_load_builtin_function_address(&mut builder.cursor(), builtin_idx);
        let call_inst =
            builder
                .ins()
                .call_indirect(builtin_sig, builtin_addr, &[vmctx, table_index, index]);
        let returned_entry = builder.func.dfg.inst_results(call_inst)[0];
        builder.ins().jump(continuation_block, &[returned_entry]);
        builder.seal_block(continuation_block);

        builder.switch_to_block(continuation_block);
        result_param
    }
}

impl<'module_environment> TargetEnvironment for FuncEnvironment<'module_environment> {
    fn target_config(&self) -> TargetFrontendConfig {
        self.isa.frontend_config()
    }

    fn reference_type(&self, ty: WasmType) -> ir::Type {
        crate::reference_type(ty, self.pointer_type())
    }

    fn heap_access_spectre_mitigation(&self) -> bool {
        self.isa.flags().enable_heap_access_spectre_mitigation()
    }
}

impl<'module_environment> cranelift_wasm::FuncEnvironment for FuncEnvironment<'module_environment> {
    fn heaps(&self) -> &PrimaryMap<Heap, HeapData> {
        &self.heaps
    }

    fn is_wasm_parameter(&self, _signature: &ir::Signature, index: usize) -> bool {
        // The first two parameters are the vmctx and caller vmctx. The rest are
        // the wasm parameters.
        index >= 2
    }

    fn after_locals(&mut self, num_locals: usize) {
        self.vmruntime_limits_ptr = Variable::new(num_locals);
        self.fuel_var = Variable::new(num_locals + 1);
        self.epoch_deadline_var = Variable::new(num_locals + 2);
        self.epoch_ptr_var = Variable::new(num_locals + 3);
    }

    fn make_table(&mut self, func: &mut ir::Function, index: TableIndex) -> WasmResult<ir::Table> {
        let pointer_type = self.pointer_type();

        let (ptr, base_offset, current_elements_offset) = {
            let vmctx = self.vmctx(func);
            if let Some(def_index) = self.module.defined_table_index(index) {
                let base_offset =
                    i32::try_from(self.offsets.vmctx_vmtable_definition_base(def_index)).unwrap();
                let current_elements_offset = i32::try_from(
                    self.offsets
                        .vmctx_vmtable_definition_current_elements(def_index),
                )
                .unwrap();
                (vmctx, base_offset, current_elements_offset)
            } else {
                let from_offset = self.offsets.vmctx_vmtable_import_from(index);
                let table = func.create_global_value(ir::GlobalValueData::Load {
                    base: vmctx,
                    offset: Offset32::new(i32::try_from(from_offset).unwrap()),
                    global_type: pointer_type,
                    readonly: true,
                });
                let base_offset = i32::from(self.offsets.vmtable_definition_base());
                let current_elements_offset =
                    i32::from(self.offsets.vmtable_definition_current_elements());
                (table, base_offset, current_elements_offset)
            }
        };

        let base_gv = func.create_global_value(ir::GlobalValueData::Load {
            base: ptr,
            offset: Offset32::new(base_offset),
            global_type: pointer_type,
            readonly: false,
        });
        let bound_gv = func.create_global_value(ir::GlobalValueData::Load {
            base: ptr,
            offset: Offset32::new(current_elements_offset),
            global_type: ir::Type::int(
                u16::from(self.offsets.size_of_vmtable_definition_current_elements()) * 8,
            )
            .unwrap(),
            readonly: false,
        });

        let element_size = u64::from(
            self.reference_type(self.module.table_plans[index].table.wasm_ty)
                .bytes(),
        );

        Ok(func.create_table(ir::TableData {
            base_gv,
            min_size: Uimm64::new(0),
            bound_gv,
            element_size: Uimm64::new(element_size),
            index_type: I32,
        }))
    }

    fn translate_table_grow(
        &mut self,
        mut pos: cranelift_codegen::cursor::FuncCursor<'_>,
        table_index: TableIndex,
        _table: ir::Table,
        delta: ir::Value,
        init_value: ir::Value,
    ) -> WasmResult<ir::Value> {
        let (func_idx, func_sig) =
            match self.module.table_plans[table_index].table.wasm_ty {
                WasmType::FuncRef => (
                    BuiltinFunctionIndex::table_grow_funcref(),
                    self.builtin_function_signatures
                        .table_grow_funcref(&mut pos.func),
                ),
                WasmType::ExternRef => (
                    BuiltinFunctionIndex::table_grow_externref(),
                    self.builtin_function_signatures
                        .table_grow_externref(&mut pos.func),
                ),
                _ => return Err(WasmError::Unsupported(
                    "`table.grow` with a table element type that is not `funcref` or `externref`"
                        .into(),
                )),
            };

        let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);

        let table_index_arg = pos.ins().iconst(I32, table_index.as_u32() as i64);
        let call_inst = pos.ins().call_indirect(
            func_sig,
            func_addr,
            &[vmctx, table_index_arg, delta, init_value],
        );

        Ok(pos.func.dfg.first_result(call_inst))
    }

    fn translate_table_get(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        table: ir::Table,
        index: ir::Value,
    ) -> WasmResult<ir::Value> {
        let pointer_type = self.pointer_type();

        let plan = &self.module.table_plans[table_index];
        match plan.table.wasm_ty {
            WasmType::FuncRef => match plan.style {
                TableStyle::CallerChecksSignature => {
                    Ok(self.get_or_init_funcref_table_elem(builder, table_index, table, index))
                }
            },
            WasmType::ExternRef => {
                // Our read barrier for `externref` tables is roughly equivalent
                // to the following pseudocode:
                //
                // ```
                // let elem = table[index]
                // if elem is not null:
                //     let (next, end) = VMExternRefActivationsTable bump region
                //     if next != end:
                //         elem.ref_count += 1
                //         *next = elem
                //         next += 1
                //     else:
                //         call activations_table_insert_with_gc(elem)
                // return elem
                // ```
                //
                // This ensures that all `externref`s coming out of tables and
                // onto the stack are safely held alive by the
                // `VMExternRefActivationsTable`.

                let reference_type = self.reference_type(WasmType::ExternRef);

                builder.ensure_inserted_block();
                let continue_block = builder.create_block();
                let non_null_elem_block = builder.create_block();
                let gc_block = builder.create_block();
                let no_gc_block = builder.create_block();
                let current_block = builder.current_block().unwrap();
                builder.insert_block_after(non_null_elem_block, current_block);
                builder.insert_block_after(no_gc_block, non_null_elem_block);
                builder.insert_block_after(gc_block, no_gc_block);
                builder.insert_block_after(continue_block, gc_block);

                // Load the table element.
                let elem_addr = builder.ins().table_addr(pointer_type, table, index, 0);
                let flags = ir::MemFlags::trusted().with_table();
                let elem = builder.ins().load(reference_type, flags, elem_addr, 0);

                let elem_is_null = builder.ins().is_null(elem);
                builder
                    .ins()
                    .brif(elem_is_null, continue_block, &[], non_null_elem_block, &[]);

                // Load the `VMExternRefActivationsTable::next` bump finger and
                // the `VMExternRefActivationsTable::end` bump boundary.
                builder.switch_to_block(non_null_elem_block);
                let vmctx = self.vmctx(&mut builder.func);
                let vmctx = builder.ins().global_value(pointer_type, vmctx);
                let activations_table = builder.ins().load(
                    pointer_type,
                    ir::MemFlags::trusted(),
                    vmctx,
                    i32::try_from(self.offsets.vmctx_externref_activations_table()).unwrap(),
                );
                let next = builder.ins().load(
                    pointer_type,
                    ir::MemFlags::trusted(),
                    activations_table,
                    i32::try_from(self.offsets.vm_extern_ref_activation_table_next()).unwrap(),
                );
                let end = builder.ins().load(
                    pointer_type,
                    ir::MemFlags::trusted(),
                    activations_table,
                    i32::try_from(self.offsets.vm_extern_ref_activation_table_end()).unwrap(),
                );

                // If `next == end`, then we are at full capacity. Call a
                // builtin to do a GC and insert this reference into the
                // just-swept table for us.
                let at_capacity = builder.ins().icmp(ir::condcodes::IntCC::Equal, next, end);
                builder
                    .ins()
                    .brif(at_capacity, gc_block, &[], no_gc_block, &[]);
                builder.switch_to_block(gc_block);
                let builtin_idx = BuiltinFunctionIndex::activations_table_insert_with_gc();
                let builtin_sig = self
                    .builtin_function_signatures
                    .activations_table_insert_with_gc(builder.func);
                let (vmctx, builtin_addr) = self
                    .translate_load_builtin_function_address(&mut builder.cursor(), builtin_idx);
                builder
                    .ins()
                    .call_indirect(builtin_sig, builtin_addr, &[vmctx, elem]);
                builder.ins().jump(continue_block, &[]);

                // If `next != end`, then:
                //
                // * increment this reference's ref count,
                // * store the reference into the bump table at `*next`,
                // * and finally increment the `next` bump finger.
                builder.switch_to_block(no_gc_block);
                self.mutate_externref_ref_count(builder, elem, 1);
                builder.ins().store(ir::MemFlags::trusted(), elem, next, 0);

                let new_next = builder
                    .ins()
                    .iadd_imm(next, i64::from(reference_type.bytes()));
                builder.ins().store(
                    ir::MemFlags::trusted(),
                    new_next,
                    activations_table,
                    i32::try_from(self.offsets.vm_extern_ref_activation_table_next()).unwrap(),
                );

                builder.ins().jump(continue_block, &[]);
                builder.switch_to_block(continue_block);

                builder.seal_block(non_null_elem_block);
                builder.seal_block(gc_block);
                builder.seal_block(no_gc_block);
                builder.seal_block(continue_block);

                Ok(elem)
            }
            ty => Err(WasmError::Unsupported(format!(
                "unsupported table type for `table.get` instruction: {:?}",
                ty
            ))),
        }
    }

    fn translate_table_set(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        table: ir::Table,
        value: ir::Value,
        index: ir::Value,
    ) -> WasmResult<()> {
        let pointer_type = self.pointer_type();

        let plan = &self.module.table_plans[table_index];
        match plan.table.wasm_ty {
            WasmType::FuncRef => match plan.style {
                TableStyle::CallerChecksSignature => {
                    let table_entry_addr = builder.ins().table_addr(pointer_type, table, index, 0);
                    // Set the "initialized bit". See doc-comment on
                    // `FUNCREF_INIT_BIT` in
                    // crates/environ/src/ref_bits.rs for details.
                    let value_with_init_bit = builder
                        .ins()
                        .bor_imm(value, Imm64::from(FUNCREF_INIT_BIT as i64));
                    let flags = ir::MemFlags::trusted().with_table();
                    builder
                        .ins()
                        .store(flags, value_with_init_bit, table_entry_addr, 0);
                    Ok(())
                }
            },
            WasmType::ExternRef => {
                // Our write barrier for `externref`s being copied out of the
                // stack and into a table is roughly equivalent to the following
                // pseudocode:
                //
                // ```
                // if value != null:
                //     value.ref_count += 1
                // let current_elem = table[index]
                // table[index] = value
                // if current_elem != null:
                //     current_elem.ref_count -= 1
                //     if current_elem.ref_count == 0:
                //         call drop_externref(current_elem)
                // ```
                //
                // This write barrier is responsible for ensuring that:
                //
                // 1. The value's ref count is incremented now that the
                //    table is holding onto it. This is required for memory safety.
                //
                // 2. The old table element, if any, has its ref count
                //    decremented, and that the wrapped data is dropped if the
                //    ref count reaches zero. This is not required for memory
                //    safety, but is required to avoid leaks. Furthermore, the
                //    destructor might GC or touch this table, so we must only
                //    drop the old table element *after* we've replaced it with
                //    the new `value`!

                builder.ensure_inserted_block();
                let current_block = builder.current_block().unwrap();
                let inc_ref_count_block = builder.create_block();
                builder.insert_block_after(inc_ref_count_block, current_block);
                let check_current_elem_block = builder.create_block();
                builder.insert_block_after(check_current_elem_block, inc_ref_count_block);
                let dec_ref_count_block = builder.create_block();
                builder.insert_block_after(dec_ref_count_block, check_current_elem_block);
                let drop_block = builder.create_block();
                builder.insert_block_after(drop_block, dec_ref_count_block);
                let continue_block = builder.create_block();
                builder.insert_block_after(continue_block, drop_block);

                // Calculate the table address of the current element and do
                // bounds checks. This is the first thing we do, because we
                // don't want to modify any ref counts if this `table.set` is
                // going to trap.
                let table_entry_addr = builder.ins().table_addr(pointer_type, table, index, 0);

                // If value is not null, increment `value`'s ref count.
                //
                // This has to come *before* decrementing the current table
                // element's ref count, because it might reach ref count == zero,
                // causing us to deallocate the current table element. However,
                // if `value` *is* the current table element (and therefore this
                // whole `table.set` is a no-op), then we would incorrectly
                // deallocate `value` and leave it in the table, leading to use
                // after free.
                let value_is_null = builder.ins().is_null(value);
                builder.ins().brif(
                    value_is_null,
                    check_current_elem_block,
                    &[],
                    inc_ref_count_block,
                    &[],
                );
                builder.switch_to_block(inc_ref_count_block);
                self.mutate_externref_ref_count(builder, value, 1);
                builder.ins().jump(check_current_elem_block, &[]);

                // Grab the current element from the table, and store the new
                // `value` into the table.
                //
                // Note that we load the current element as a pointer, not a
                // reference. This is so that if we call out-of-line to run its
                // destructor, and its destructor triggers GC, this reference is
                // not recorded in the stack map (which would lead to the GC
                // saving a reference to a deallocated object, and then using it
                // after its been freed).
                builder.switch_to_block(check_current_elem_block);
                let flags = ir::MemFlags::trusted().with_table();
                let current_elem = builder.ins().load(pointer_type, flags, table_entry_addr, 0);
                builder.ins().store(flags, value, table_entry_addr, 0);

                // If the current element is non-null, decrement its reference
                // count. And if its reference count has reached zero, then make
                // an out-of-line call to deallocate it.
                let current_elem_is_null =
                    builder
                        .ins()
                        .icmp_imm(ir::condcodes::IntCC::Equal, current_elem, 0);
                builder.ins().brif(
                    current_elem_is_null,
                    continue_block,
                    &[],
                    dec_ref_count_block,
                    &[],
                );

                builder.switch_to_block(dec_ref_count_block);
                let prev_ref_count = self.mutate_externref_ref_count(builder, current_elem, -1);
                let one = builder.ins().iconst(pointer_type, 1);
                let cond = builder.ins().icmp(IntCC::Equal, one, prev_ref_count);
                builder
                    .ins()
                    .brif(cond, drop_block, &[], continue_block, &[]);

                // Call the `drop_externref` builtin to (you guessed it) drop
                // the `externref`.
                builder.switch_to_block(drop_block);
                let builtin_idx = BuiltinFunctionIndex::drop_externref();
                let builtin_sig = self
                    .builtin_function_signatures
                    .drop_externref(builder.func);
                let (vmctx, builtin_addr) = self
                    .translate_load_builtin_function_address(&mut builder.cursor(), builtin_idx);
                builder
                    .ins()
                    .call_indirect(builtin_sig, builtin_addr, &[vmctx, current_elem]);
                builder.ins().jump(continue_block, &[]);

                builder.switch_to_block(continue_block);

                builder.seal_block(inc_ref_count_block);
                builder.seal_block(check_current_elem_block);
                builder.seal_block(dec_ref_count_block);
                builder.seal_block(drop_block);
                builder.seal_block(continue_block);

                Ok(())
            }
            ty => Err(WasmError::Unsupported(format!(
                "unsupported table type for `table.set` instruction: {:?}",
                ty
            ))),
        }
    }

    fn translate_table_fill(
        &mut self,
        mut pos: cranelift_codegen::cursor::FuncCursor<'_>,
        table_index: TableIndex,
        dst: ir::Value,
        val: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()> {
        let (builtin_idx, builtin_sig) =
            match self.module.table_plans[table_index].table.wasm_ty {
                WasmType::FuncRef => (
                    BuiltinFunctionIndex::table_fill_funcref(),
                    self.builtin_function_signatures
                        .table_fill_funcref(&mut pos.func),
                ),
                WasmType::ExternRef => (
                    BuiltinFunctionIndex::table_fill_externref(),
                    self.builtin_function_signatures
                        .table_fill_externref(&mut pos.func),
                ),
                _ => return Err(WasmError::Unsupported(
                    "`table.fill` with a table element type that is not `funcref` or `externref`"
                        .into(),
                )),
            };

        let (vmctx, builtin_addr) =
            self.translate_load_builtin_function_address(&mut pos, builtin_idx);

        let table_index_arg = pos.ins().iconst(I32, table_index.as_u32() as i64);
        pos.ins().call_indirect(
            builtin_sig,
            builtin_addr,
            &[vmctx, table_index_arg, dst, val, len],
        );

        Ok(())
    }

    fn translate_ref_null(
        &mut self,
        mut pos: cranelift_codegen::cursor::FuncCursor,
        ty: WasmType,
    ) -> WasmResult<ir::Value> {
        Ok(match ty {
            WasmType::FuncRef => pos.ins().iconst(self.pointer_type(), 0),
            WasmType::ExternRef => pos.ins().null(self.reference_type(ty)),
            _ => {
                return Err(WasmError::Unsupported(
                    "`ref.null T` that is not a `funcref` or an `externref`".into(),
                ));
            }
        })
    }

    fn translate_ref_is_null(
        &mut self,
        mut pos: cranelift_codegen::cursor::FuncCursor,
        value: ir::Value,
    ) -> WasmResult<ir::Value> {
        let bool_is_null = match pos.func.dfg.value_type(value) {
            // `externref`
            ty if ty.is_ref() => pos.ins().is_null(value),
            // `funcref`
            ty if ty == self.pointer_type() => {
                pos.ins()
                    .icmp_imm(cranelift_codegen::ir::condcodes::IntCC::Equal, value, 0)
            }
            _ => unreachable!(),
        };

        Ok(pos.ins().uextend(ir::types::I32, bool_is_null))
    }

    fn translate_ref_func(
        &mut self,
        mut pos: cranelift_codegen::cursor::FuncCursor<'_>,
        func_index: FuncIndex,
    ) -> WasmResult<ir::Value> {
        let func_index = pos.ins().iconst(I32, func_index.as_u32() as i64);
        let builtin_index = BuiltinFunctionIndex::ref_func();
        let builtin_sig = self.builtin_function_signatures.ref_func(&mut pos.func);
        let (vmctx, builtin_addr) =
            self.translate_load_builtin_function_address(&mut pos, builtin_index);

        let call_inst = pos
            .ins()
            .call_indirect(builtin_sig, builtin_addr, &[vmctx, func_index]);
        Ok(pos.func.dfg.first_result(call_inst))
    }

    fn translate_custom_global_get(
        &mut self,
        mut pos: cranelift_codegen::cursor::FuncCursor<'_>,
        index: cranelift_wasm::GlobalIndex,
    ) -> WasmResult<ir::Value> {
        debug_assert_eq!(
            self.module.globals[index].wasm_ty,
            WasmType::ExternRef,
            "We only use GlobalVariable::Custom for externref"
        );

        let builtin_index = BuiltinFunctionIndex::externref_global_get();
        let builtin_sig = self
            .builtin_function_signatures
            .externref_global_get(&mut pos.func);

        let (vmctx, builtin_addr) =
            self.translate_load_builtin_function_address(&mut pos, builtin_index);

        let global_index_arg = pos.ins().iconst(I32, index.as_u32() as i64);
        let call_inst =
            pos.ins()
                .call_indirect(builtin_sig, builtin_addr, &[vmctx, global_index_arg]);

        Ok(pos.func.dfg.first_result(call_inst))
    }

    fn translate_custom_global_set(
        &mut self,
        mut pos: cranelift_codegen::cursor::FuncCursor<'_>,
        index: cranelift_wasm::GlobalIndex,
        value: ir::Value,
    ) -> WasmResult<()> {
        debug_assert_eq!(
            self.module.globals[index].wasm_ty,
            WasmType::ExternRef,
            "We only use GlobalVariable::Custom for externref"
        );

        let builtin_index = BuiltinFunctionIndex::externref_global_set();
        let builtin_sig = self
            .builtin_function_signatures
            .externref_global_set(&mut pos.func);

        let (vmctx, builtin_addr) =
            self.translate_load_builtin_function_address(&mut pos, builtin_index);

        let global_index_arg = pos.ins().iconst(I32, index.as_u32() as i64);
        pos.ins()
            .call_indirect(builtin_sig, builtin_addr, &[vmctx, global_index_arg, value]);

        Ok(())
    }

    fn make_heap(&mut self, func: &mut ir::Function, index: MemoryIndex) -> WasmResult<Heap> {
        let pointer_type = self.pointer_type();
        let is_shared = self.module.memory_plans[index].memory.shared;

        let min_size = self.module.memory_plans[index]
            .memory
            .minimum
            .checked_mul(u64::from(WASM_PAGE_SIZE))
            .unwrap_or_else(|| {
                // The only valid Wasm memory size that won't fit in a 64-bit
                // integer is the maximum memory64 size (2^64) which is one
                // larger than `u64::MAX` (2^64 - 1). In this case, just say the
                // minimum heap size is `u64::MAX`.
                debug_assert_eq!(self.module.memory_plans[index].memory.minimum, 1 << 48);
                u64::MAX
            });

        let (ptr, base_offset, current_length_offset) = {
            let vmctx = self.vmctx(func);
            if let Some(def_index) = self.module.defined_memory_index(index) {
                if is_shared {
                    // As with imported memory, the `VMMemoryDefinition` for a
                    // shared memory is stored elsewhere. We store a `*mut
                    // VMMemoryDefinition` to it and dereference that when
                    // atomically growing it.
                    let from_offset = self.offsets.vmctx_vmmemory_pointer(def_index);
                    let memory = func.create_global_value(ir::GlobalValueData::Load {
                        base: vmctx,
                        offset: Offset32::new(i32::try_from(from_offset).unwrap()),
                        global_type: pointer_type,
                        readonly: true,
                    });
                    let base_offset = i32::from(self.offsets.ptr.vmmemory_definition_base());
                    let current_length_offset =
                        i32::from(self.offsets.ptr.vmmemory_definition_current_length());
                    (memory, base_offset, current_length_offset)
                } else {
                    let owned_index = self.module.owned_memory_index(def_index);
                    let owned_base_offset =
                        self.offsets.vmctx_vmmemory_definition_base(owned_index);
                    let owned_length_offset = self
                        .offsets
                        .vmctx_vmmemory_definition_current_length(owned_index);
                    let current_base_offset = i32::try_from(owned_base_offset).unwrap();
                    let current_length_offset = i32::try_from(owned_length_offset).unwrap();
                    (vmctx, current_base_offset, current_length_offset)
                }
            } else {
                let from_offset = self.offsets.vmctx_vmmemory_import_from(index);
                let memory = func.create_global_value(ir::GlobalValueData::Load {
                    base: vmctx,
                    offset: Offset32::new(i32::try_from(from_offset).unwrap()),
                    global_type: pointer_type,
                    readonly: true,
                });
                let base_offset = i32::from(self.offsets.ptr.vmmemory_definition_base());
                let current_length_offset =
                    i32::from(self.offsets.ptr.vmmemory_definition_current_length());
                (memory, base_offset, current_length_offset)
            }
        };

        // If we have a declared maximum, we can make this a "static" heap, which is
        // allocated up front and never moved.
        let (offset_guard_size, heap_style, readonly_base) = match self.module.memory_plans[index] {
            MemoryPlan {
                style: MemoryStyle::Dynamic { .. },
                offset_guard_size,
                pre_guard_size: _,
                memory: _,
            } => {
                let heap_bound = func.create_global_value(ir::GlobalValueData::Load {
                    base: ptr,
                    offset: Offset32::new(current_length_offset),
                    global_type: pointer_type,
                    readonly: false,
                });
                (
                    offset_guard_size,
                    HeapStyle::Dynamic {
                        bound_gv: heap_bound,
                    },
                    false,
                )
            }
            MemoryPlan {
                style: MemoryStyle::Static { bound },
                offset_guard_size,
                pre_guard_size: _,
                memory: _,
            } => (
                offset_guard_size,
                HeapStyle::Static {
                    bound: u64::from(bound) * u64::from(WASM_PAGE_SIZE),
                },
                true,
            ),
        };

        let heap_base = func.create_global_value(ir::GlobalValueData::Load {
            base: ptr,
            offset: Offset32::new(base_offset),
            global_type: pointer_type,
            readonly: readonly_base,
        });
        Ok(self.heaps.push(HeapData {
            base: heap_base,
            min_size,
            offset_guard_size,
            style: heap_style,
            index_type: self.memory_index_type(index),
        }))
    }

    fn make_global(
        &mut self,
        func: &mut ir::Function,
        index: GlobalIndex,
    ) -> WasmResult<GlobalVariable> {
        // Although `ExternRef`s live at the same memory location as any other
        // type of global at the same index would, getting or setting them
        // requires ref counting barriers. Therefore, we need to use
        // `GlobalVariable::Custom`, as that is the only kind of
        // `GlobalVariable` for which `cranelift-wasm` supports custom access
        // translation.
        if self.module.globals[index].wasm_ty == WasmType::ExternRef {
            return Ok(GlobalVariable::Custom);
        }

        let (gv, offset) = self.get_global_location(func, index);
        Ok(GlobalVariable::Memory {
            gv,
            offset: offset.into(),
            ty: super::value_type(self.isa, self.module.globals[index].wasm_ty),
        })
    }

    fn make_indirect_sig(
        &mut self,
        func: &mut ir::Function,
        index: TypeIndex,
    ) -> WasmResult<ir::SigRef> {
        let index = self.module.types[index].unwrap_function();
        let sig = crate::indirect_signature(self.isa, &self.types[index]);
        Ok(func.import_signature(sig))
    }

    fn make_direct_func(
        &mut self,
        func: &mut ir::Function,
        index: FuncIndex,
    ) -> WasmResult<ir::FuncRef> {
        let sig = crate::func_signature(self.isa, self.translation, self.types, index);
        let signature = func.import_signature(sig);
        let name =
            ir::ExternalName::User(func.declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: index.as_u32(),
            }));
        Ok(func.import_function(ir::ExtFuncData {
            name,
            signature,

            // The value of this flag determines the codegen for calls to this
            // function. If this flag is `false` then absolute relocations will
            // be generated for references to the function, which requires
            // load-time relocation resolution. If this flag is set to `true`
            // then relative relocations are emitted which can be resolved at
            // object-link-time, just after all functions are compiled.
            //
            // This flag is set to `true` for functions defined in the object
            // we'll be defining in this compilation unit, or everything local
            // to the wasm module. This means that between functions in a wasm
            // module there's relative calls encoded. All calls external to a
            // wasm module (e.g. imports or libcalls) are either encoded through
            // the `VMContext` as relative jumps (hence no relocations) or
            // they're libcalls with absolute relocations.
            colocated: self.module.defined_func_index(index).is_some(),
        }))
    }

    fn translate_call_indirect(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        table: ir::Table,
        ty_index: TypeIndex,
        sig_ref: ir::SigRef,
        callee: ir::Value,
        call_args: &[ir::Value],
    ) -> WasmResult<ir::Inst> {
        let pointer_type = self.pointer_type();

        // Get the funcref pointer from the table.
        let funcref_ptr = self.get_or_init_funcref_table_elem(builder, table_index, table, callee);

        // Check for whether the table element is null, and trap if so.
        builder
            .ins()
            .trapz(funcref_ptr, ir::TrapCode::IndirectCallToNull);

        // Dereference the funcref pointer to get the function address.
        let mem_flags = ir::MemFlags::trusted();
        let func_addr = builder.ins().load(
            pointer_type,
            mem_flags,
            funcref_ptr,
            i32::from(self.offsets.ptr.vmcaller_checked_func_ref_func_ptr()),
        );

        // If necessary, check the signature.
        match self.module.table_plans[table_index].style {
            TableStyle::CallerChecksSignature => {
                let sig_id_size = self.offsets.size_of_vmshared_signature_index();
                let sig_id_type = Type::int(u16::from(sig_id_size) * 8).unwrap();
                let vmctx = self.vmctx(builder.func);
                let base = builder.ins().global_value(pointer_type, vmctx);

                // Load the caller ID. This requires loading the
                // `*mut VMCallerCheckedFuncRef` base pointer from `VMContext`
                // and then loading, based on `SignatureIndex`, the
                // corresponding entry.
                let mem_flags = ir::MemFlags::trusted().with_readonly();
                let signatures = builder.ins().load(
                    pointer_type,
                    mem_flags,
                    base,
                    i32::try_from(self.offsets.vmctx_signature_ids_array()).unwrap(),
                );
                let sig_index = self.module.types[ty_index].unwrap_function();
                let offset =
                    i32::try_from(sig_index.as_u32().checked_mul(sig_id_type.bytes()).unwrap())
                        .unwrap();
                let caller_sig_id = builder
                    .ins()
                    .load(sig_id_type, mem_flags, signatures, offset);

                // Load the callee ID.
                let mem_flags = ir::MemFlags::trusted();
                let callee_sig_id = builder.ins().load(
                    sig_id_type,
                    mem_flags,
                    funcref_ptr,
                    i32::from(self.offsets.ptr.vmcaller_checked_func_ref_type_index()),
                );

                // Check that they match.
                let cmp = builder
                    .ins()
                    .icmp(IntCC::Equal, callee_sig_id, caller_sig_id);
                builder.ins().trapz(cmp, ir::TrapCode::BadSignature);
            }
        }

        let mut real_call_args = Vec::with_capacity(call_args.len() + 2);
        let caller_vmctx = builder
            .func
            .special_param(ArgumentPurpose::VMContext)
            .unwrap();

        // First append the callee vmctx address.
        let vmctx = builder.ins().load(
            pointer_type,
            mem_flags,
            funcref_ptr,
            i32::from(self.offsets.ptr.vmcaller_checked_func_ref_vmctx()),
        );
        real_call_args.push(vmctx);
        real_call_args.push(caller_vmctx);

        // Then append the regular call arguments.
        real_call_args.extend_from_slice(call_args);

        Ok(builder
            .ins()
            .call_indirect(sig_ref, func_addr, &real_call_args))
    }

    fn translate_call(
        &mut self,
        mut pos: FuncCursor<'_>,
        callee_index: FuncIndex,
        callee: ir::FuncRef,
        call_args: &[ir::Value],
    ) -> WasmResult<ir::Inst> {
        let mut real_call_args = Vec::with_capacity(call_args.len() + 2);
        let caller_vmctx = pos.func.special_param(ArgumentPurpose::VMContext).unwrap();

        // Handle direct calls to locally-defined functions.
        if !self.module.is_imported_function(callee_index) {
            // First append the callee vmctx address, which is the same as the caller vmctx in
            // this case.
            real_call_args.push(caller_vmctx);

            // Then append the caller vmctx address.
            real_call_args.push(caller_vmctx);

            // Then append the regular call arguments.
            real_call_args.extend_from_slice(call_args);

            return Ok(pos.ins().call(callee, &real_call_args));
        }

        // Handle direct calls to imported functions. We use an indirect call
        // so that we don't have to patch the code at runtime.
        let pointer_type = self.pointer_type();
        let sig_ref = pos.func.dfg.ext_funcs[callee].signature;
        let vmctx = self.vmctx(&mut pos.func);
        let base = pos.ins().global_value(pointer_type, vmctx);

        let mem_flags = ir::MemFlags::trusted();

        // Load the callee address.
        let body_offset =
            i32::try_from(self.offsets.vmctx_vmfunction_import_body(callee_index)).unwrap();
        let func_addr = pos.ins().load(pointer_type, mem_flags, base, body_offset);

        // First append the callee vmctx address.
        let vmctx_offset =
            i32::try_from(self.offsets.vmctx_vmfunction_import_vmctx(callee_index)).unwrap();
        let vmctx = pos.ins().load(pointer_type, mem_flags, base, vmctx_offset);
        real_call_args.push(vmctx);
        real_call_args.push(caller_vmctx);

        // Then append the regular call arguments.
        real_call_args.extend_from_slice(call_args);

        Ok(pos.ins().call_indirect(sig_ref, func_addr, &real_call_args))
    }

    fn translate_memory_grow(
        &mut self,
        mut pos: FuncCursor<'_>,
        index: MemoryIndex,
        _heap: Heap,
        val: ir::Value,
    ) -> WasmResult<ir::Value> {
        let func_sig = self
            .builtin_function_signatures
            .memory32_grow(&mut pos.func);
        let index_arg = index.index();

        let memory_index = pos.ins().iconst(I32, index_arg as i64);
        let (vmctx, func_addr) = self.translate_load_builtin_function_address(
            &mut pos,
            BuiltinFunctionIndex::memory32_grow(),
        );

        let val = self.cast_memory_index_to_i64(&mut pos, val, index);
        let call_inst = pos
            .ins()
            .call_indirect(func_sig, func_addr, &[vmctx, val, memory_index]);
        let result = *pos.func.dfg.inst_results(call_inst).first().unwrap();
        Ok(self.cast_pointer_to_memory_index(pos, result, index))
    }

    fn translate_memory_size(
        &mut self,
        mut pos: FuncCursor<'_>,
        index: MemoryIndex,
        _heap: Heap,
    ) -> WasmResult<ir::Value> {
        let pointer_type = self.pointer_type();
        let vmctx = self.vmctx(&mut pos.func);
        let is_shared = self.module.memory_plans[index].memory.shared;
        let base = pos.ins().global_value(pointer_type, vmctx);
        let current_length_in_bytes = match self.module.defined_memory_index(index) {
            Some(def_index) => {
                if is_shared {
                    let offset =
                        i32::try_from(self.offsets.vmctx_vmmemory_pointer(def_index)).unwrap();
                    let vmmemory_ptr =
                        pos.ins()
                            .load(pointer_type, ir::MemFlags::trusted(), base, offset);
                    let vmmemory_definition_offset =
                        i64::from(self.offsets.ptr.vmmemory_definition_current_length());
                    let vmmemory_definition_ptr =
                        pos.ins().iadd_imm(vmmemory_ptr, vmmemory_definition_offset);
                    // This atomic access of the
                    // `VMMemoryDefinition::current_length` is direct; no bounds
                    // check is needed. This is possible because shared memory
                    // has a static size (the maximum is always known). Shared
                    // memory is thus built with a static memory plan and no
                    // bounds-checked version of this is implemented.
                    pos.ins().atomic_load(
                        pointer_type,
                        ir::MemFlags::trusted(),
                        vmmemory_definition_ptr,
                    )
                } else {
                    let owned_index = self.module.owned_memory_index(def_index);
                    let offset = i32::try_from(
                        self.offsets
                            .vmctx_vmmemory_definition_current_length(owned_index),
                    )
                    .unwrap();
                    pos.ins()
                        .load(pointer_type, ir::MemFlags::trusted(), base, offset)
                }
            }
            None => {
                let offset = i32::try_from(self.offsets.vmctx_vmmemory_import_from(index)).unwrap();
                let vmmemory_ptr =
                    pos.ins()
                        .load(pointer_type, ir::MemFlags::trusted(), base, offset);
                if is_shared {
                    let vmmemory_definition_offset =
                        i64::from(self.offsets.ptr.vmmemory_definition_current_length());
                    let vmmemory_definition_ptr =
                        pos.ins().iadd_imm(vmmemory_ptr, vmmemory_definition_offset);
                    pos.ins().atomic_load(
                        pointer_type,
                        ir::MemFlags::trusted(),
                        vmmemory_definition_ptr,
                    )
                } else {
                    pos.ins().load(
                        pointer_type,
                        ir::MemFlags::trusted(),
                        vmmemory_ptr,
                        i32::from(self.offsets.ptr.vmmemory_definition_current_length()),
                    )
                }
            }
        };
        let current_length_in_pages = pos
            .ins()
            .udiv_imm(current_length_in_bytes, i64::from(WASM_PAGE_SIZE));

        Ok(self.cast_pointer_to_memory_index(pos, current_length_in_pages, index))
    }

    fn translate_memory_copy(
        &mut self,
        mut pos: FuncCursor,
        src_index: MemoryIndex,
        _src_heap: Heap,
        dst_index: MemoryIndex,
        _dst_heap: Heap,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()> {
        let (vmctx, func_addr) = self
            .translate_load_builtin_function_address(&mut pos, BuiltinFunctionIndex::memory_copy());

        let func_sig = self.builtin_function_signatures.memory_copy(&mut pos.func);
        let dst = self.cast_memory_index_to_i64(&mut pos, dst, dst_index);
        let src = self.cast_memory_index_to_i64(&mut pos, src, src_index);
        // The length is 32-bit if either memory is 32-bit, but if they're both
        // 64-bit then it's 64-bit. Our intrinsic takes a 64-bit length for
        // compatibility across all memories, so make sure that it's cast
        // correctly here (this is a bit special so no generic helper unlike for
        // `dst`/`src` above)
        let len = if self.memory_index_type(dst_index) == I64
            && self.memory_index_type(src_index) == I64
        {
            len
        } else {
            pos.ins().uextend(I64, len)
        };
        let src_index = pos.ins().iconst(I32, i64::from(src_index.as_u32()));
        let dst_index = pos.ins().iconst(I32, i64::from(dst_index.as_u32()));
        pos.ins().call_indirect(
            func_sig,
            func_addr,
            &[vmctx, dst_index, dst, src_index, src, len],
        );

        Ok(())
    }

    fn translate_memory_fill(
        &mut self,
        mut pos: FuncCursor,
        memory_index: MemoryIndex,
        _heap: Heap,
        dst: ir::Value,
        val: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()> {
        let func_sig = self.builtin_function_signatures.memory_fill(&mut pos.func);
        let dst = self.cast_memory_index_to_i64(&mut pos, dst, memory_index);
        let len = self.cast_memory_index_to_i64(&mut pos, len, memory_index);
        let memory_index_arg = pos.ins().iconst(I32, i64::from(memory_index.as_u32()));

        let (vmctx, func_addr) = self
            .translate_load_builtin_function_address(&mut pos, BuiltinFunctionIndex::memory_fill());

        pos.ins().call_indirect(
            func_sig,
            func_addr,
            &[vmctx, memory_index_arg, dst, val, len],
        );

        Ok(())
    }

    fn translate_memory_init(
        &mut self,
        mut pos: FuncCursor,
        memory_index: MemoryIndex,
        _heap: Heap,
        seg_index: u32,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()> {
        let (func_sig, func_idx) = self.get_memory_init_func(&mut pos.func);

        let memory_index_arg = pos.ins().iconst(I32, memory_index.index() as i64);
        let seg_index_arg = pos.ins().iconst(I32, seg_index as i64);

        let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);

        let dst = self.cast_memory_index_to_i64(&mut pos, dst, memory_index);

        pos.ins().call_indirect(
            func_sig,
            func_addr,
            &[vmctx, memory_index_arg, seg_index_arg, dst, src, len],
        );

        Ok(())
    }

    fn translate_data_drop(&mut self, mut pos: FuncCursor, seg_index: u32) -> WasmResult<()> {
        let (func_sig, func_idx) = self.get_data_drop_func(&mut pos.func);
        let seg_index_arg = pos.ins().iconst(I32, seg_index as i64);
        let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);
        pos.ins()
            .call_indirect(func_sig, func_addr, &[vmctx, seg_index_arg]);
        Ok(())
    }

    fn translate_table_size(
        &mut self,
        mut pos: FuncCursor,
        _table_index: TableIndex,
        table: ir::Table,
    ) -> WasmResult<ir::Value> {
        let size_gv = pos.func.tables[table].bound_gv;
        Ok(pos.ins().global_value(ir::types::I32, size_gv))
    }

    fn translate_table_copy(
        &mut self,
        mut pos: FuncCursor,
        dst_table_index: TableIndex,
        _dst_table: ir::Table,
        src_table_index: TableIndex,
        _src_table: ir::Table,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()> {
        let (func_sig, dst_table_index_arg, src_table_index_arg, func_idx) =
            self.get_table_copy_func(&mut pos.func, dst_table_index, src_table_index);

        let dst_table_index_arg = pos.ins().iconst(I32, dst_table_index_arg as i64);
        let src_table_index_arg = pos.ins().iconst(I32, src_table_index_arg as i64);

        let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);

        pos.ins().call_indirect(
            func_sig,
            func_addr,
            &[
                vmctx,
                dst_table_index_arg,
                src_table_index_arg,
                dst,
                src,
                len,
            ],
        );

        Ok(())
    }

    fn translate_table_init(
        &mut self,
        mut pos: FuncCursor,
        seg_index: u32,
        table_index: TableIndex,
        _table: ir::Table,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()> {
        let (func_sig, table_index_arg, func_idx) =
            self.get_table_init_func(&mut pos.func, table_index);

        let table_index_arg = pos.ins().iconst(I32, table_index_arg as i64);
        let seg_index_arg = pos.ins().iconst(I32, seg_index as i64);

        let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);

        pos.ins().call_indirect(
            func_sig,
            func_addr,
            &[vmctx, table_index_arg, seg_index_arg, dst, src, len],
        );

        Ok(())
    }

    fn translate_elem_drop(&mut self, mut pos: FuncCursor, elem_index: u32) -> WasmResult<()> {
        let (func_sig, func_idx) = self.get_elem_drop_func(&mut pos.func);

        let elem_index_arg = pos.ins().iconst(I32, elem_index as i64);

        let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);

        pos.ins()
            .call_indirect(func_sig, func_addr, &[vmctx, elem_index_arg]);

        Ok(())
    }

    fn translate_atomic_wait(
        &mut self,
        mut pos: FuncCursor,
        memory_index: MemoryIndex,
        _heap: Heap,
        addr: ir::Value,
        expected: ir::Value,
        timeout: ir::Value,
    ) -> WasmResult<ir::Value> {
        let addr = self.cast_memory_index_to_i64(&mut pos, addr, memory_index);
        let implied_ty = pos.func.dfg.value_type(expected);
        let (func_sig, memory_index, func_idx) =
            self.get_memory_atomic_wait(&mut pos.func, memory_index, implied_ty);

        let memory_index_arg = pos.ins().iconst(I32, memory_index as i64);

        let (vmctx, func_addr) = self.translate_load_builtin_function_address(&mut pos, func_idx);

        let call_inst = pos.ins().call_indirect(
            func_sig,
            func_addr,
            &[vmctx, memory_index_arg, addr, expected, timeout],
        );

        Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
    }

    fn translate_atomic_notify(
        &mut self,
        mut pos: FuncCursor,
        memory_index: MemoryIndex,
        _heap: Heap,
        addr: ir::Value,
        count: ir::Value,
    ) -> WasmResult<ir::Value> {
        let addr = self.cast_memory_index_to_i64(&mut pos, addr, memory_index);
        let func_sig = self
            .builtin_function_signatures
            .memory_atomic_notify(&mut pos.func);

        let memory_index_arg = pos.ins().iconst(I32, memory_index.index() as i64);

        let (vmctx, func_addr) = self.translate_load_builtin_function_address(
            &mut pos,
            BuiltinFunctionIndex::memory_atomic_notify(),
        );

        let call_inst =
            pos.ins()
                .call_indirect(func_sig, func_addr, &[vmctx, memory_index_arg, addr, count]);

        Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
    }

    fn translate_loop_header(&mut self, builder: &mut FunctionBuilder) -> WasmResult<()> {
        // Additionally if enabled check how much fuel we have remaining to see
        // if we've run out by this point.
        if self.tunables.consume_fuel {
            self.fuel_check(builder);
        }

        // If we are performing epoch-based interruption, check to see
        // if the epoch counter has changed.
        if self.tunables.epoch_interruption {
            self.epoch_check(builder);
        }

        Ok(())
    }

    fn before_translate_operator(
        &mut self,
        op: &Operator,
        builder: &mut FunctionBuilder,
        state: &FuncTranslationState,
    ) -> WasmResult<()> {
        if self.tunables.consume_fuel {
            self.fuel_before_op(op, builder, state.reachable());
        }
        Ok(())
    }

    fn after_translate_operator(
        &mut self,
        op: &Operator,
        builder: &mut FunctionBuilder,
        state: &FuncTranslationState,
    ) -> WasmResult<()> {
        if self.tunables.consume_fuel && state.reachable() {
            self.fuel_after_op(op, builder);
        }
        Ok(())
    }

    fn before_unconditionally_trapping_memory_access(
        &mut self,
        builder: &mut FunctionBuilder,
    ) -> WasmResult<()> {
        if self.tunables.consume_fuel {
            self.fuel_increment_var(builder);
            self.fuel_save_from_var(builder);
        }
        Ok(())
    }

    fn before_translate_function(
        &mut self,
        builder: &mut FunctionBuilder,
        _state: &FuncTranslationState,
    ) -> WasmResult<()> {
        // If the `vmruntime_limits_ptr` variable will get used then we initialize
        // it here.
        if self.tunables.consume_fuel || self.tunables.epoch_interruption {
            self.declare_vmruntime_limits_ptr(builder);
        }
        // Additionally we initialize `fuel_var` if it will get used.
        if self.tunables.consume_fuel {
            self.fuel_function_entry(builder);
        }
        // Initialize `epoch_var` with the current epoch.
        if self.tunables.epoch_interruption {
            self.epoch_function_entry(builder);
        }
        Ok(())
    }

    fn after_translate_function(
        &mut self,
        builder: &mut FunctionBuilder,
        state: &FuncTranslationState,
    ) -> WasmResult<()> {
        if self.tunables.consume_fuel && state.reachable() {
            self.fuel_function_exit(builder);
        }
        Ok(())
    }

    fn unsigned_add_overflow_condition(&self) -> ir::condcodes::IntCC {
        self.isa.unsigned_add_overflow_condition()
    }

    fn relaxed_simd_deterministic(&self) -> bool {
        self.tunables.relaxed_simd_deterministic
    }

    fn has_native_fma(&self) -> bool {
        self.isa.has_native_fma()
    }

    fn is_x86(&self) -> bool {
        self.isa.triple().architecture == target_lexicon::Architecture::X86_64
    }
}