1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
//! # `VMExternRef`
//!
//! `VMExternRef` is a reference-counted box for any kind of data that is
//! external and opaque to running Wasm. Sometimes it might hold a Wasmtime
//! thing, other times it might hold something from a Wasmtime embedder and is
//! opaque even to us. It is morally equivalent to `Rc<dyn Any>` in Rust, but
//! additionally always fits in a pointer-sized word. `VMExternRef` is
//! non-nullable, but `Option<VMExternRef>` is a null pointer.
//!
//! The one part of `VMExternRef` that can't ever be opaque to us is the
//! reference count. Even when we don't know what's inside an `VMExternRef`, we
//! need to be able to manipulate its reference count as we add and remove
//! references to it. And we need to do this from compiled Wasm code, so it must
//! be `repr(C)`!
//!
//! ## Memory Layout
//!
//! `VMExternRef` itself is just a pointer to an `VMExternData`, which holds the
//! opaque, boxed value, its reference count, and its vtable pointer.
//!
//! The `VMExternData` struct is *preceded* by the dynamically-sized value boxed
//! up and referenced by one or more `VMExternRef`s:
//!
//! ```text
//! ,-------------------------------------------------------.
//! | |
//! V |
//! +----------------------------+-----------+-----------+ |
//! | dynamically-sized value... | ref_count | value_ptr |---'
//! +----------------------------+-----------+-----------+
//! | VMExternData |
//! +-----------------------+
//! ^
//! +-------------+ |
//! | VMExternRef |-------------------+
//! +-------------+ |
//! |
//! +-------------+ |
//! | VMExternRef |-------------------+
//! +-------------+ |
//! |
//! ... ===
//! |
//! +-------------+ |
//! | VMExternRef |-------------------'
//! +-------------+
//! ```
//!
//! The `value_ptr` member always points backwards to the start of the
//! dynamically-sized value (which is also the start of the heap allocation for
//! this value-and-`VMExternData` pair). Because it is a `dyn` pointer, it is
//! fat, and also points to the value's `Any` vtable.
//!
//! The boxed value and the `VMExternRef` footer are held a single heap
//! allocation. The layout described above is used to make satisfying the
//! value's alignment easy: we just need to ensure that the heap allocation used
//! to hold everything satisfies its alignment. It also ensures that we don't
//! need a ton of excess padding between the `VMExternData` and the value for
//! values with large alignment.
//!
//! ## Reference Counting, Wasm Functions, and Garbage Collection
//!
//! For host VM code, we use plain reference counting, where cloning increments
//! the reference count, and dropping decrements it. We can avoid many of the
//! on-stack increment/decrement operations that typically plague the
//! performance of reference counting via Rust's ownership and borrowing system.
//! Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
//! either avoids the reference count increment or delays it until if/when the
//! `VMExternRef` is cloned.
//!
//! When passing a `VMExternRef` into compiled Wasm code, we don't want to do
//! reference count mutations for every compiled `local.{get,set}`, nor for
//! every function call. Therefore, we use a variation of **deferred reference
//! counting**, where we only mutate reference counts when storing
//! `VMExternRef`s somewhere that outlives the activation: into a global or
//! table. Simultaneously, we over-approximate the set of `VMExternRef`s that
//! are inside Wasm function activations. Periodically, we walk the stack at GC
//! safe points, and use stack map information to precisely identify the set of
//! `VMExternRef`s inside Wasm activations. Then we take the difference between
//! this precise set and our over-approximation, and decrement the reference
//! count for each of the `VMExternRef`s that are in our over-approximation but
//! not in the precise set. Finally, the over-approximation is replaced with the
//! precise set.
//!
//! The `VMExternRefActivationsTable` implements the over-approximized set of
//! `VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
//! passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
//! compiled Wasm function logically "borrows" the `VMExternRef` from the
//! table. Similarly, `global.get` and `table.get` operations clone the gotten
//! `VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
//! reference out of the table.
//!
//! When a `VMExternRef` is returned to host code from a Wasm function, the host
//! increments the reference count (because the reference is logically
//! "borrowed" from the `VMExternRefActivationsTable` and the reference count
//! from the table will be dropped at the next GC).
//!
//! For more general information on deferred reference counting, see *An
//! Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
//! <https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf>
use std::alloc::Layout;
use std::any::Any;
use std::cell::UnsafeCell;
use std::cmp;
use std::collections::HashSet;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::sync::atomic::{self, AtomicUsize, Ordering};
use wasmtime_environ::StackMap;
use crate::Backtrace;
/// An external reference to some opaque data.
///
/// `VMExternRef`s dereference to their underlying opaque data as `dyn Any`.
///
/// Unlike the `externref` in the Wasm spec, `VMExternRef`s are non-nullable,
/// and always point to a valid value. You may use `Option<VMExternRef>` to
/// represent nullable references, and `Option<VMExternRef>` is guaranteed to
/// have the same size and alignment as a raw pointer, with `None` represented
/// with the null pointer.
///
/// `VMExternRef`s are reference counted, so cloning is a cheap, shallow
/// operation. It also means they are inherently shared, so you may not get a
/// mutable, exclusive reference to their inner contents, only a shared,
/// immutable reference. You may use interior mutability with `RefCell` or
/// `Mutex` to work around this restriction, if necessary.
///
/// `VMExternRef`s have pointer-equality semantics, not structural-equality
/// semantics. Given two `VMExternRef`s `a` and `b`, `a == b` only if `a` and
/// `b` point to the same allocation. `a` and `b` are considered not equal, even
/// if `a` and `b` are two different identical copies of the same data, if they
/// are in two different allocations. The hashing and ordering implementations
/// also only operate on the pointer.
///
/// # Example
///
/// ```
/// # fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// use std::cell::RefCell;
/// use wasmtime_runtime::VMExternRef;
///
/// // Open a file. Wasm doesn't know about files, but we can let Wasm instances
/// // work with files via opaque `externref` handles.
/// let file = std::fs::File::create("some/file/path")?;
///
/// // Wrap the file up as an `VMExternRef` that can be passed to Wasm.
/// let extern_ref_to_file = VMExternRef::new(file);
///
/// // `VMExternRef`s dereference to `dyn Any`, so you can use `Any` methods to
/// // perform runtime type checks and downcasts.
///
/// assert!(extern_ref_to_file.is::<std::fs::File>());
/// assert!(!extern_ref_to_file.is::<String>());
///
/// if let Some(mut file) = extern_ref_to_file.downcast_ref::<std::fs::File>() {
/// use std::io::Write;
/// writeln!(&mut file, "Hello, `VMExternRef`!")?;
/// }
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
#[repr(transparent)]
pub struct VMExternRef(NonNull<VMExternData>);
impl std::fmt::Pointer for VMExternRef {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Pointer::fmt(&self.0, f)
}
}
// Data contained is always Send+Sync so these should be safe.
unsafe impl Send for VMExternRef {}
unsafe impl Sync for VMExternRef {}
#[repr(C)]
pub(crate) struct VMExternData {
// Implicit, dynamically-sized member that always preceded an
// `VMExternData`.
//
// value: [u8],
//
/// The reference count for this `VMExternData` and value. When it reaches
/// zero, we can safely destroy the value and free this heap
/// allocation. This is an `UnsafeCell`, rather than plain `Cell`, because
/// it can be modified by compiled Wasm code.
///
/// Note: this field's offset must be kept in sync with
/// `wasmtime_environ::VMOffsets::vm_extern_data_ref_count()` which is
/// currently always zero.
ref_count: AtomicUsize,
/// Always points to the implicit, dynamically-sized `value` member that
/// precedes this `VMExternData`.
value_ptr: NonNull<dyn Any + Send + Sync>,
}
impl Clone for VMExternRef {
#[inline]
fn clone(&self) -> VMExternRef {
self.extern_data().increment_ref_count();
VMExternRef(self.0)
}
}
impl Drop for VMExternRef {
#[inline]
fn drop(&mut self) {
let data = self.extern_data();
// Note that the memory orderings here also match the standard library
// itself. Documentation is more available in the implementation of
// `Arc`, but the general idea is that this is a special pattern allowed
// by the C standard with atomic orderings where we "release" for all
// the decrements and only the final decrementer performs an acquire
// fence. This properly ensures that the final thread, which actually
// destroys the data, sees all the updates from all other threads.
if data.ref_count.fetch_sub(1, Ordering::Release) != 1 {
return;
}
atomic::fence(Ordering::Acquire);
// Drop our live reference to `data` before we drop it itself.
drop(data);
unsafe {
VMExternData::drop_and_dealloc(self.0);
}
}
}
impl VMExternData {
/// Get the `Layout` for a value with the given size and alignment, and the
/// offset within that layout where the `VMExternData` footer resides.
///
/// This doesn't take a `value: &T` because `VMExternRef::new_with` hasn't
/// constructed a `T` value yet, and it isn't generic over `T` because
/// `VMExternData::drop_and_dealloc` doesn't know what `T` to use, and has
/// to use `std::mem::{size,align}_of_val` instead.
unsafe fn layout_for(value_size: usize, value_align: usize) -> (Layout, usize) {
let extern_data_size = mem::size_of::<VMExternData>();
let extern_data_align = mem::align_of::<VMExternData>();
let value_and_padding_size = round_up_to_align(value_size, extern_data_align).unwrap();
let alloc_align = std::cmp::max(value_align, extern_data_align);
let alloc_size = value_and_padding_size + extern_data_size;
debug_assert!(
Layout::from_size_align(alloc_size, alloc_align).is_ok(),
"should create a `Layout` for size={} and align={} okay",
alloc_size,
alloc_align,
);
(
Layout::from_size_align_unchecked(alloc_size, alloc_align),
value_and_padding_size,
)
}
/// Drop the inner value and then free this `VMExternData` heap allocation.
pub(crate) unsafe fn drop_and_dealloc(mut data: NonNull<VMExternData>) {
log::trace!("Dropping externref data @ {:p}", data);
// Note: we introduce a block scope so that we drop the live
// reference to the data before we free the heap allocation it
// resides within after this block.
let (alloc_ptr, layout) = {
let data = data.as_mut();
debug_assert_eq!(data.ref_count.load(Ordering::SeqCst), 0);
// Same thing, but for the dropping the reference to `value` before
// we drop it itself.
let (layout, _) = {
let value = data.value_ptr.as_ref();
Self::layout_for(mem::size_of_val(value), mem::align_of_val(value))
};
ptr::drop_in_place(data.value_ptr.as_ptr());
let alloc_ptr = data.value_ptr.cast::<u8>();
(alloc_ptr, layout)
};
ptr::drop_in_place(data.as_ptr());
std::alloc::dealloc(alloc_ptr.as_ptr(), layout);
}
#[inline]
fn increment_ref_count(&self) {
// This is only using during cloning operations, and like the standard
// library we use `Relaxed` here. The rationale is better documented in
// libstd's implementation of `Arc`, but the general gist is that we're
// creating a new pointer for our own thread, so there's no need to have
// any synchronization with orderings. The synchronization with other
// threads with respect to orderings happens when the pointer is sent to
// another thread.
self.ref_count.fetch_add(1, Ordering::Relaxed);
}
}
#[inline]
fn round_up_to_align(n: usize, align: usize) -> Option<usize> {
debug_assert!(align.is_power_of_two());
let align_minus_one = align - 1;
Some(n.checked_add(align_minus_one)? & !align_minus_one)
}
impl VMExternRef {
/// Wrap the given value inside an `VMExternRef`.
pub fn new<T>(value: T) -> VMExternRef
where
T: 'static + Any + Send + Sync,
{
VMExternRef::new_with(|| value)
}
/// Construct a new `VMExternRef` in place by invoking `make_value`.
pub fn new_with<T>(make_value: impl FnOnce() -> T) -> VMExternRef
where
T: 'static + Any + Send + Sync,
{
unsafe {
let (layout, footer_offset) =
VMExternData::layout_for(mem::size_of::<T>(), mem::align_of::<T>());
let alloc_ptr = std::alloc::alloc(layout);
let alloc_ptr = NonNull::new(alloc_ptr).unwrap_or_else(|| {
std::alloc::handle_alloc_error(layout);
});
let value_ptr = alloc_ptr.cast::<T>();
ptr::write(value_ptr.as_ptr(), make_value());
let extern_data_ptr =
alloc_ptr.cast::<u8>().as_ptr().add(footer_offset) as *mut VMExternData;
ptr::write(
extern_data_ptr,
VMExternData {
ref_count: AtomicUsize::new(1),
// Cast from `*mut T` to `*mut dyn Any` here.
value_ptr: NonNull::new_unchecked(value_ptr.as_ptr()),
},
);
log::trace!("New externref data @ {:p}", extern_data_ptr);
VMExternRef(NonNull::new_unchecked(extern_data_ptr))
}
}
/// Turn this `VMExternRef` into a raw, untyped pointer.
///
/// Unlike `into_raw`, this does not consume and forget `self`. It is *not*
/// safe to use `from_raw` on pointers returned from this method; only use
/// `clone_from_raw`!
///
/// Nor does this method increment the reference count. You must ensure
/// that `self` (or some other clone of `self`) stays alive until
/// `clone_from_raw` is called.
#[inline]
pub fn as_raw(&self) -> *mut u8 {
let ptr = self.0.cast::<u8>().as_ptr();
ptr
}
/// Consume this `VMExternRef` into a raw, untyped pointer.
///
/// # Safety
///
/// This method forgets self, so it is possible to create a leak of the
/// underlying reference counted data if not used carefully.
///
/// Use `from_raw` to recreate the `VMExternRef`.
pub unsafe fn into_raw(self) -> *mut u8 {
let ptr = self.0.cast::<u8>().as_ptr();
std::mem::forget(self);
ptr
}
/// Recreate a `VMExternRef` from a pointer returned from a previous call to
/// `as_raw`.
///
/// # Safety
///
/// Unlike `clone_from_raw`, this does not increment the reference count of the
/// underlying data. It is not safe to continue to use the pointer passed to this
/// function.
pub unsafe fn from_raw(ptr: *mut u8) -> Self {
debug_assert!(!ptr.is_null());
VMExternRef(NonNull::new_unchecked(ptr).cast())
}
/// Recreate a `VMExternRef` from a pointer returned from a previous call to
/// `as_raw`.
///
/// # Safety
///
/// Wildly unsafe to use with anything other than the result of a previous
/// `as_raw` call!
///
/// Additionally, it is your responsibility to ensure that this raw
/// `VMExternRef`'s reference count has not dropped to zero. Failure to do
/// so will result in use after free!
pub unsafe fn clone_from_raw(ptr: *mut u8) -> Self {
debug_assert!(!ptr.is_null());
let x = VMExternRef(NonNull::new_unchecked(ptr).cast());
x.extern_data().increment_ref_count();
x
}
/// Get the strong reference count for this `VMExternRef`.
///
/// Note that this loads with a `SeqCst` ordering to synchronize with other
/// threads.
pub fn strong_count(&self) -> usize {
self.extern_data().ref_count.load(Ordering::SeqCst)
}
#[inline]
fn extern_data(&self) -> &VMExternData {
unsafe { self.0.as_ref() }
}
}
/// Methods that would normally be trait implementations, but aren't to avoid
/// potential footguns around `VMExternRef`'s pointer-equality semantics.
///
/// Note that none of these methods are on `&self`, they all require a
/// fully-qualified `VMExternRef::foo(my_ref)` invocation.
impl VMExternRef {
/// Check whether two `VMExternRef`s point to the same inner allocation.
///
/// Note that this uses pointer-equality semantics, not structural-equality
/// semantics, and so only pointers are compared, and doesn't use any `Eq`
/// or `PartialEq` implementation of the pointed-to values.
#[inline]
pub fn eq(a: &Self, b: &Self) -> bool {
ptr::eq(a.0.as_ptr(), b.0.as_ptr())
}
/// Hash a given `VMExternRef`.
///
/// Note that this just hashes the pointer to the inner value, it does *not*
/// use the inner value's `Hash` implementation (if any).
#[inline]
pub fn hash<H>(externref: &Self, hasher: &mut H)
where
H: Hasher,
{
ptr::hash(externref.0.as_ptr(), hasher);
}
/// Compare two `VMExternRef`s.
///
/// Note that this uses pointer-equality semantics, not structural-equality
/// semantics, and so only pointers are compared, and doesn't use any `Cmp`
/// or `PartialCmp` implementation of the pointed-to values.
#[inline]
pub fn cmp(a: &Self, b: &Self) -> cmp::Ordering {
let a = a.0.as_ptr() as usize;
let b = b.0.as_ptr() as usize;
a.cmp(&b)
}
}
impl Deref for VMExternRef {
type Target = dyn Any;
fn deref(&self) -> &dyn Any {
unsafe { self.extern_data().value_ptr.as_ref() }
}
}
/// A wrapper around a `VMExternRef` that implements `Eq` and `Hash` with
/// pointer semantics.
///
/// We use this so that we can morally put `VMExternRef`s inside of `HashSet`s
/// even though they don't implement `Eq` and `Hash` to avoid foot guns.
#[derive(Clone, Debug)]
struct VMExternRefWithTraits(VMExternRef);
impl Hash for VMExternRefWithTraits {
fn hash<H>(&self, hasher: &mut H)
where
H: Hasher,
{
VMExternRef::hash(&self.0, hasher)
}
}
impl PartialEq for VMExternRefWithTraits {
fn eq(&self, other: &Self) -> bool {
VMExternRef::eq(&self.0, &other.0)
}
}
impl Eq for VMExternRefWithTraits {}
type TableElem = UnsafeCell<Option<VMExternRef>>;
/// A table that over-approximizes the set of `VMExternRef`s that any Wasm
/// activation on this thread is currently using.
///
/// Under the covers, this is a simple bump allocator that allows duplicate
/// entries. Deduplication happens at GC time.
#[repr(C)] // `alloc` must be the first member, it's accessed from JIT code.
pub struct VMExternRefActivationsTable {
/// Structures used to perform fast bump allocation of storage of externref
/// values.
///
/// This is the only member of this structure accessed from JIT code.
alloc: VMExternRefTableAlloc,
/// When unioned with `chunk`, this is an over-approximation of the GC roots
/// on the stack, inside Wasm frames.
///
/// This is used by slow-path insertion, and when a GC cycle finishes, is
/// re-initialized to the just-discovered precise set of stack roots (which
/// immediately becomes an over-approximation again as soon as Wasm runs and
/// potentially drops references).
over_approximated_stack_roots: HashSet<VMExternRefWithTraits>,
/// The precise set of on-stack, inside-Wasm GC roots that we discover via
/// walking the stack and interpreting stack maps.
///
/// This is *only* used inside the `gc` function, and is empty otherwise. It
/// is just part of this struct so that we can reuse the allocation, rather
/// than create a new hash set every GC.
precise_stack_roots: HashSet<VMExternRefWithTraits>,
/// A debug-only field for asserting that we are in a region of code where
/// GC is okay to preform.
#[cfg(debug_assertions)]
gc_okay: bool,
}
#[repr(C)] // This is accessed from JIT code.
struct VMExternRefTableAlloc {
/// Bump-allocation finger within the `chunk`.
///
/// NB: this is an `UnsafeCell` because it is written to by compiled Wasm
/// code.
next: UnsafeCell<NonNull<TableElem>>,
/// Pointer to just after the `chunk`.
///
/// This is *not* within the current chunk and therefore is not a valid
/// place to insert a reference!
end: NonNull<TableElem>,
/// Bump allocation chunk that stores fast-path insertions.
///
/// This is not accessed from JIT code.
chunk: Box<[TableElem]>,
}
// This gets around the usage of `UnsafeCell` throughout the internals of this
// allocator, but the storage should all be Send/Sync and synchronization isn't
// necessary since operations require `&mut self`.
unsafe impl Send for VMExternRefTableAlloc {}
unsafe impl Sync for VMExternRefTableAlloc {}
fn _assert_send_sync() {
fn _assert<T: Send + Sync>() {}
_assert::<VMExternRefActivationsTable>();
_assert::<VMExternRef>();
}
impl VMExternRefActivationsTable {
const CHUNK_SIZE: usize = 4096 / mem::size_of::<usize>();
/// Create a new `VMExternRefActivationsTable`.
pub fn new() -> Self {
// Start with an empty chunk in case this activations table isn't used.
// This means that there's no space in the bump-allocation area which
// will force any path trying to use this to the slow gc path. The first
// time this happens, though, the slow gc path will allocate a new chunk
// for actual fast-bumping.
let mut chunk: Box<[TableElem]> = Box::new([]);
let next = chunk.as_mut_ptr();
let end = unsafe { next.add(chunk.len()) };
VMExternRefActivationsTable {
alloc: VMExternRefTableAlloc {
next: UnsafeCell::new(NonNull::new(next).unwrap()),
end: NonNull::new(end).unwrap(),
chunk,
},
over_approximated_stack_roots: HashSet::new(),
precise_stack_roots: HashSet::new(),
#[cfg(debug_assertions)]
gc_okay: true,
}
}
fn new_chunk(size: usize) -> Box<[UnsafeCell<Option<VMExternRef>>]> {
assert!(size >= Self::CHUNK_SIZE);
(0..size).map(|_| UnsafeCell::new(None)).collect()
}
/// Get the available capacity in the bump allocation chunk.
#[inline]
pub fn bump_capacity_remaining(&self) -> usize {
let end = self.alloc.end.as_ptr() as usize;
let next = unsafe { *self.alloc.next.get() };
end - next.as_ptr() as usize
}
/// Try and insert a `VMExternRef` into this table.
///
/// This is a fast path that only succeeds when the bump chunk has the
/// capacity for the requested insertion.
///
/// If the insertion fails, then the `VMExternRef` is given back. Callers
/// may attempt a GC to free up space and try again, or may call
/// `insert_slow_path` to infallibly insert the reference (potentially
/// allocating additional space in the table to hold it).
#[inline]
pub fn try_insert(&mut self, externref: VMExternRef) -> Result<(), VMExternRef> {
unsafe {
let next = *self.alloc.next.get();
if next == self.alloc.end {
return Err(externref);
}
debug_assert!(
(*next.as_ref().get()).is_none(),
"slots >= the `next` bump finger are always `None`"
);
ptr::write(next.as_ptr(), UnsafeCell::new(Some(externref)));
let next = NonNull::new_unchecked(next.as_ptr().add(1));
debug_assert!(next <= self.alloc.end);
*self.alloc.next.get() = next;
Ok(())
}
}
/// Insert a reference into the table, falling back on a GC to clear up
/// space if the table is already full.
///
/// # Unsafety
///
/// The same as `gc`.
#[inline]
pub unsafe fn insert_with_gc(
&mut self,
externref: VMExternRef,
module_info_lookup: &dyn ModuleInfoLookup,
) {
#[cfg(debug_assertions)]
assert!(self.gc_okay);
if let Err(externref) = self.try_insert(externref) {
self.gc_and_insert_slow(externref, module_info_lookup);
}
}
#[inline(never)]
unsafe fn gc_and_insert_slow(
&mut self,
externref: VMExternRef,
module_info_lookup: &dyn ModuleInfoLookup,
) {
gc(module_info_lookup, self);
// Might as well insert right into the hash set, rather than the bump
// chunk, since we are already on a slow path and we get de-duplication
// this way.
self.over_approximated_stack_roots
.insert(VMExternRefWithTraits(externref));
}
/// Insert a reference into the table, without ever performing GC.
#[inline]
pub fn insert_without_gc(&mut self, externref: VMExternRef) {
if let Err(externref) = self.try_insert(externref) {
self.insert_slow_without_gc(externref);
}
}
#[inline(never)]
fn insert_slow_without_gc(&mut self, externref: VMExternRef) {
self.over_approximated_stack_roots
.insert(VMExternRefWithTraits(externref));
}
fn num_filled_in_bump_chunk(&self) -> usize {
let next = unsafe { *self.alloc.next.get() };
let bytes_unused = (self.alloc.end.as_ptr() as usize) - (next.as_ptr() as usize);
let slots_unused = bytes_unused / mem::size_of::<TableElem>();
self.alloc.chunk.len().saturating_sub(slots_unused)
}
fn elements(&self, mut f: impl FnMut(&VMExternRef)) {
for elem in self.over_approximated_stack_roots.iter() {
f(&elem.0);
}
// The bump chunk is not all the way full, so we only iterate over its
// filled-in slots.
let num_filled = self.num_filled_in_bump_chunk();
for slot in self.alloc.chunk.iter().take(num_filled) {
if let Some(elem) = unsafe { &*slot.get() } {
f(elem);
}
}
}
fn insert_precise_stack_root(
precise_stack_roots: &mut HashSet<VMExternRefWithTraits>,
root: NonNull<VMExternData>,
) {
let root = unsafe { VMExternRef::clone_from_raw(root.as_ptr().cast()) };
log::trace!("Found externref on stack: {:p}", root);
precise_stack_roots.insert(VMExternRefWithTraits(root));
}
/// Sweep the bump allocation table after we've discovered our precise stack
/// roots.
fn sweep(&mut self) {
log::trace!("begin GC sweep");
// Sweep our bump chunk.
let num_filled = self.num_filled_in_bump_chunk();
unsafe {
*self.alloc.next.get() = self.alloc.end;
}
for slot in self.alloc.chunk.iter().take(num_filled) {
unsafe {
*slot.get() = None;
}
}
debug_assert!(
self.alloc
.chunk
.iter()
.all(|slot| unsafe { (*slot.get()).as_ref().is_none() }),
"after sweeping the bump chunk, all slots should be `None`"
);
// If this is the first instance of gc then the initial chunk is empty,
// so we lazily allocate space for fast bump-allocation in the future.
if self.alloc.chunk.is_empty() {
self.alloc.chunk = Self::new_chunk(Self::CHUNK_SIZE);
self.alloc.end =
NonNull::new(unsafe { self.alloc.chunk.as_mut_ptr().add(self.alloc.chunk.len()) })
.unwrap();
}
// Reset our `next` finger to the start of the bump allocation chunk.
unsafe {
let next = self.alloc.chunk.as_mut_ptr();
debug_assert!(!next.is_null());
*self.alloc.next.get() = NonNull::new_unchecked(next);
}
// The current `precise_stack_roots` becomes our new over-appoximated
// set for the next GC cycle.
mem::swap(
&mut self.precise_stack_roots,
&mut self.over_approximated_stack_roots,
);
// And finally, the new `precise_stack_roots` should be cleared and
// remain empty until the next GC cycle.
//
// Note that this may run arbitrary code as we run externref
// destructors. Because of our `&mut` borrow above on this table,
// though, we're guaranteed that nothing will touch this table.
self.precise_stack_roots.clear();
log::trace!("end GC sweep");
}
/// Set whether it is okay to GC or not right now.
///
/// This is provided as a helper for enabling various debug-only assertions
/// and checking places where the `wasmtime-runtime` user expects there not
/// to be any GCs.
#[inline]
pub fn set_gc_okay(&mut self, okay: bool) -> bool {
#[cfg(debug_assertions)]
{
return std::mem::replace(&mut self.gc_okay, okay);
}
#[cfg(not(debug_assertions))]
{
let _ = okay;
return true;
}
}
}
/// Used by the runtime to lookup information about a module given a
/// program counter value.
pub trait ModuleInfoLookup {
/// Lookup the module information from a program counter value.
fn lookup(&self, pc: usize) -> Option<&dyn ModuleInfo>;
}
/// Used by the runtime to query module information.
pub trait ModuleInfo {
/// Lookup the stack map at a program counter value.
fn lookup_stack_map(&self, pc: usize) -> Option<&StackMap>;
}
#[derive(Debug, Default)]
struct DebugOnly<T> {
inner: T,
}
impl<T> std::ops::Deref for DebugOnly<T> {
type Target = T;
fn deref(&self) -> &T {
if cfg!(debug_assertions) {
&self.inner
} else {
panic!(
"only deref `DebugOnly` when `cfg(debug_assertions)` or \
inside a `debug_assert!(..)`"
)
}
}
}
impl<T> std::ops::DerefMut for DebugOnly<T> {
fn deref_mut(&mut self) -> &mut T {
if cfg!(debug_assertions) {
&mut self.inner
} else {
panic!(
"only deref `DebugOnly` when `cfg(debug_assertions)` or \
inside a `debug_assert!(..)`"
)
}
}
}
/// Perform garbage collection of `VMExternRef`s.
///
/// # Unsafety
///
/// You must have called `VMExternRefActivationsTable::set_stack_canary` for at
/// least the oldest host-->Wasm stack frame transition on this thread's stack
/// (it is idempotent to call it more than once) and keep its return value alive
/// across the duration of that host-->Wasm call.
///
/// Additionally, you must have registered the stack maps for every Wasm module
/// that has frames on the stack with the given `stack_maps_registry`.
pub unsafe fn gc(
module_info_lookup: &dyn ModuleInfoLookup,
externref_activations_table: &mut VMExternRefActivationsTable,
) {
log::debug!("start GC");
#[cfg(debug_assertions)]
assert!(externref_activations_table.gc_okay);
debug_assert!({
// This set is only non-empty within this function. It is built up when
// walking the stack and interpreting stack maps, and then drained back
// into the activations table's bump-allocated space at the
// end. Therefore, it should always be empty upon entering this
// function.
externref_activations_table.precise_stack_roots.is_empty()
});
// This function proceeds by:
//
// * walking the stack,
//
// * finding the precise set of roots inside Wasm frames via our stack maps,
// and
//
// * resetting our bump-allocated table's over-approximation to the
// newly-discovered precise set.
// The `activations_table_set` is used for `debug_assert!`s checking that
// every reference we read out from the stack via stack maps is actually in
// the table. If that weren't true, than either we forgot to insert a
// reference in the table when passing it into Wasm (a bug) or we are
// reading invalid references from the stack (another bug).
let mut activations_table_set: DebugOnly<HashSet<_>> = Default::default();
if cfg!(debug_assertions) {
externref_activations_table.elements(|elem| {
activations_table_set.insert(elem.as_raw() as *mut VMExternData);
});
}
log::trace!("begin GC trace");
Backtrace::trace(|frame| {
let pc = frame.pc();
debug_assert!(pc != 0, "we should always get a valid PC for Wasm frames");
let fp = frame.fp();
debug_assert!(
fp != 0,
"we should always get a valid frame pointer for Wasm frames"
);
let module_info = module_info_lookup
.lookup(pc)
.expect("should have module info for Wasm frame");
let stack_map = match module_info.lookup_stack_map(pc) {
Some(sm) => sm,
None => {
log::trace!("No stack map for this Wasm frame");
return std::ops::ControlFlow::Continue(());
}
};
log::trace!(
"We have a stack map that maps {} words in this Wasm frame",
stack_map.mapped_words()
);
let sp = fp - stack_map.mapped_words() as usize * mem::size_of::<usize>();
for i in 0..(stack_map.mapped_words() as usize) {
// Stack maps have one bit per word in the frame, and the
// zero^th bit is the *lowest* addressed word in the frame,
// i.e. the closest to the SP. So to get the `i`^th word in
// this frame, we add `i * sizeof(word)` to the SP.
let stack_slot = sp + i * mem::size_of::<usize>();
if !stack_map.get_bit(i) {
log::trace!(
"Stack slot @ {:p} does not contain externrefs",
stack_slot as *const (),
);
continue;
}
let stack_slot = stack_slot as *const *mut VMExternData;
let r = std::ptr::read(stack_slot);
log::trace!("Stack slot @ {:p} = {:p}", stack_slot, r);
debug_assert!(
r.is_null() || activations_table_set.contains(&r),
"every on-stack externref inside a Wasm frame should \
have an entry in the VMExternRefActivationsTable; \
{:?} is not in the table",
r
);
if let Some(r) = NonNull::new(r) {
VMExternRefActivationsTable::insert_precise_stack_root(
&mut externref_activations_table.precise_stack_roots,
r,
);
}
}
std::ops::ControlFlow::Continue(())
});
log::trace!("end GC trace");
externref_activations_table.sweep();
log::debug!("end GC");
}
#[cfg(test)]
mod tests {
use super::*;
use std::convert::TryInto;
#[test]
fn extern_ref_is_pointer_sized_and_aligned() {
assert_eq!(mem::size_of::<VMExternRef>(), mem::size_of::<*mut ()>());
assert_eq!(mem::align_of::<VMExternRef>(), mem::align_of::<*mut ()>());
assert_eq!(
mem::size_of::<Option<VMExternRef>>(),
mem::size_of::<*mut ()>()
);
assert_eq!(
mem::align_of::<Option<VMExternRef>>(),
mem::align_of::<*mut ()>()
);
}
#[test]
fn ref_count_is_at_correct_offset() {
let s = "hi";
let s: &(dyn Any + Send + Sync) = &s as _;
let s: *const (dyn Any + Send + Sync) = s as _;
let s: *mut (dyn Any + Send + Sync) = s as _;
let extern_data = VMExternData {
ref_count: AtomicUsize::new(0),
value_ptr: NonNull::new(s).unwrap(),
};
let extern_data_ptr = &extern_data as *const _;
let ref_count_ptr = &extern_data.ref_count as *const _;
let actual_offset = (ref_count_ptr as usize) - (extern_data_ptr as usize);
let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
ptr: 8,
num_imported_functions: 0,
num_imported_tables: 0,
num_imported_memories: 0,
num_imported_globals: 0,
num_defined_tables: 0,
num_defined_memories: 0,
num_owned_memories: 0,
num_defined_globals: 0,
num_escaped_funcs: 0,
});
assert_eq!(
offsets.vm_extern_data_ref_count(),
actual_offset.try_into().unwrap(),
);
}
#[test]
fn table_next_is_at_correct_offset() {
let table = VMExternRefActivationsTable::new();
let table_ptr = &table as *const _;
let next_ptr = &table.alloc.next as *const _;
let actual_offset = (next_ptr as usize) - (table_ptr as usize);
let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
ptr: 8,
num_imported_functions: 0,
num_imported_tables: 0,
num_imported_memories: 0,
num_imported_globals: 0,
num_defined_tables: 0,
num_defined_memories: 0,
num_owned_memories: 0,
num_defined_globals: 0,
num_escaped_funcs: 0,
});
assert_eq!(
offsets.vm_extern_ref_activation_table_next() as usize,
actual_offset
);
}
#[test]
fn table_end_is_at_correct_offset() {
let table = VMExternRefActivationsTable::new();
let table_ptr = &table as *const _;
let end_ptr = &table.alloc.end as *const _;
let actual_offset = (end_ptr as usize) - (table_ptr as usize);
let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
ptr: 8,
num_imported_functions: 0,
num_imported_tables: 0,
num_imported_memories: 0,
num_imported_globals: 0,
num_defined_tables: 0,
num_defined_memories: 0,
num_owned_memories: 0,
num_defined_globals: 0,
num_escaped_funcs: 0,
});
assert_eq!(
offsets.vm_extern_ref_activation_table_end() as usize,
actual_offset
);
}
}