1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
use crate::imports::Imports;
use crate::instance::{Instance, InstanceHandle, RuntimeMemoryCreator};
use crate::memory::{DefaultMemoryCreator, Memory};
use crate::table::Table;
use crate::{CompiledModuleId, ModuleRuntimeInfo, Store};
use anyhow::{anyhow, bail, Result};
use std::alloc;
use std::any::Any;
use std::convert::TryFrom;
use std::ptr;
use std::sync::Arc;
use wasmtime_environ::{
DefinedMemoryIndex, DefinedTableIndex, HostPtr, InitMemory, MemoryInitialization,
MemoryInitializer, Module, PrimaryMap, TableInitialization, TableInitializer, Trap, VMOffsets,
WasmType, WASM_PAGE_SIZE,
};
#[cfg(feature = "pooling-allocator")]
mod pooling;
#[cfg(feature = "pooling-allocator")]
pub use self::pooling::{InstanceLimits, PoolingInstanceAllocator, PoolingInstanceAllocatorConfig};
/// Represents a request for a new runtime instance.
pub struct InstanceAllocationRequest<'a> {
/// The info related to the compiled version of this module,
/// needed for instantiation: function metadata, JIT code
/// addresses, precomputed images for lazy memory and table
/// initialization, and the like. This Arc is cloned and held for
/// the lifetime of the instance.
pub runtime_info: &'a Arc<dyn ModuleRuntimeInfo>,
/// The imports to use for the instantiation.
pub imports: Imports<'a>,
/// The host state to associate with the instance.
pub host_state: Box<dyn Any + Send + Sync>,
/// A pointer to the "store" for this instance to be allocated. The store
/// correlates with the `Store` in wasmtime itself, and lots of contextual
/// information about the execution of wasm can be learned through the store.
///
/// Note that this is a raw pointer and has a static lifetime, both of which
/// are a bit of a lie. This is done purely so a store can learn about
/// itself when it gets called as a host function, and additionally so this
/// runtime can access internals as necessary (such as the
/// VMExternRefActivationsTable or the resource limiter methods).
///
/// Note that this ends up being a self-pointer to the instance when stored.
/// The reason is that the instance itself is then stored within the store.
/// We use a number of `PhantomPinned` declarations to indicate this to the
/// compiler. More info on this in `wasmtime/src/store.rs`
pub store: StorePtr,
}
/// A pointer to a Store. This Option<*mut dyn Store> is wrapped in a struct
/// so that the function to create a &mut dyn Store is a method on a member of
/// InstanceAllocationRequest, rather than on a &mut InstanceAllocationRequest
/// itself, because several use-sites require a split mut borrow on the
/// InstanceAllocationRequest.
pub struct StorePtr(Option<*mut dyn Store>);
impl StorePtr {
/// A pointer to no Store.
pub fn empty() -> Self {
Self(None)
}
/// A pointer to a Store.
pub fn new(ptr: *mut dyn Store) -> Self {
Self(Some(ptr))
}
/// The raw contents of this struct
pub fn as_raw(&self) -> Option<*mut dyn Store> {
self.0.clone()
}
/// Use the StorePtr as a mut ref to the Store.
/// Safety: must not be used outside the original lifetime of the borrow.
pub(crate) unsafe fn get(&mut self) -> Option<&mut dyn Store> {
match self.0 {
Some(ptr) => Some(&mut *ptr),
None => None,
}
}
}
/// Represents a runtime instance allocator.
///
/// # Safety
///
/// This trait is unsafe as it requires knowledge of Wasmtime's runtime internals to implement correctly.
pub unsafe trait InstanceAllocator {
/// Validates that a module is supported by the allocator.
fn validate(&self, module: &Module, offsets: &VMOffsets<HostPtr>) -> Result<()> {
drop((module, offsets));
Ok(())
}
/// Allocates a fresh `InstanceHandle` for the `req` given.
///
/// This will allocate memories and tables internally from this allocator
/// and weave that altogether into a final and complete `InstanceHandle`
/// ready to be registered with a store.
///
/// Note that the returned instance must still have `.initialize(..)` called
/// on it to complete the instantiation process.
fn allocate(&self, mut req: InstanceAllocationRequest) -> Result<InstanceHandle> {
let index = self.allocate_index(&req)?;
let module = req.runtime_info.module();
let mut memories =
PrimaryMap::with_capacity(module.memory_plans.len() - module.num_imported_memories);
let mut tables =
PrimaryMap::with_capacity(module.table_plans.len() - module.num_imported_tables);
let result = self
.allocate_memories(index, &mut req, &mut memories)
.and_then(|()| self.allocate_tables(index, &mut req, &mut tables));
if let Err(e) = result {
self.deallocate_memories(index, &mut memories);
self.deallocate_tables(index, &mut tables);
self.deallocate_index(index);
return Err(e);
}
unsafe { Ok(Instance::new(req, index, memories, tables)) }
}
/// Deallocates the provided instance.
///
/// This will null-out the pointer within `handle` and otherwise reclaim
/// resources such as tables, memories, and the instance memory itself.
fn deallocate(&self, handle: &mut InstanceHandle) {
let index = handle.instance().index;
self.deallocate_memories(index, &mut handle.instance_mut().memories);
self.deallocate_tables(index, &mut handle.instance_mut().tables);
unsafe {
let layout = Instance::alloc_layout(handle.instance().offsets());
ptr::drop_in_place(handle.instance);
alloc::dealloc(handle.instance.cast(), layout);
handle.instance = std::ptr::null_mut();
}
self.deallocate_index(index);
}
/// Optionally allocates an allocator-defined index for the `req` provided.
///
/// The return value here, if successful, is passed to the various methods
/// below for memory/table allocation/deallocation.
fn allocate_index(&self, req: &InstanceAllocationRequest) -> Result<usize>;
/// Deallocates indices allocated by `allocate_index`.
fn deallocate_index(&self, index: usize);
/// Attempts to allocate all defined linear memories for a module.
///
/// Pushes all memories for `req` onto the `mems` storage provided which is
/// already appropriately allocated to contain all memories.
///
/// Note that this is allowed to fail. Failure can additionally happen after
/// some memories have already been successfully allocated. All memories
/// pushed onto `mem` are guaranteed to one day make their way to
/// `deallocate_memories`.
fn allocate_memories(
&self,
index: usize,
req: &mut InstanceAllocationRequest,
mems: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
) -> Result<()>;
/// Deallocates all memories provided, optionally reclaiming resources for
/// the pooling allocator for example.
fn deallocate_memories(&self, index: usize, mems: &mut PrimaryMap<DefinedMemoryIndex, Memory>);
/// Same as `allocate_memories`, but for tables.
fn allocate_tables(
&self,
index: usize,
req: &mut InstanceAllocationRequest,
tables: &mut PrimaryMap<DefinedTableIndex, Table>,
) -> Result<()>;
/// Same as `deallocate_memories`, but for tables.
fn deallocate_tables(&self, index: usize, tables: &mut PrimaryMap<DefinedTableIndex, Table>);
/// Allocates a fiber stack for calling async functions on.
#[cfg(feature = "async")]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack>;
/// Deallocates a fiber stack that was previously allocated with `allocate_fiber_stack`.
///
/// # Safety
///
/// The provided stack is required to have been allocated with `allocate_fiber_stack`.
#[cfg(feature = "async")]
unsafe fn deallocate_fiber_stack(&self, stack: &wasmtime_fiber::FiberStack);
/// Purges all lingering resources related to `module` from within this
/// allocator.
///
/// Primarily present for the pooling allocator to remove mappings of
/// this module from slots in linear memory.
fn purge_module(&self, module: CompiledModuleId);
}
fn get_table_init_start(init: &TableInitializer, instance: &mut Instance) -> Result<u32> {
match init.base {
Some(base) => {
let val = unsafe { *(*instance.defined_or_imported_global_ptr(base)).as_u32() };
init.offset
.checked_add(val)
.ok_or_else(|| anyhow!("element segment global base overflows"))
}
None => Ok(init.offset),
}
}
fn check_table_init_bounds(instance: &mut Instance, module: &Module) -> Result<()> {
match &module.table_initialization {
TableInitialization::FuncTable { segments, .. }
| TableInitialization::Segments { segments } => {
for segment in segments {
let table = unsafe { &*instance.get_table(segment.table_index) };
let start = get_table_init_start(segment, instance)?;
let start = usize::try_from(start).unwrap();
let end = start.checked_add(segment.elements.len());
match end {
Some(end) if end <= table.size() as usize => {
// Initializer is in bounds
}
_ => {
bail!("table out of bounds: elements segment does not fit")
}
}
}
}
}
Ok(())
}
fn initialize_tables(instance: &mut Instance, module: &Module) -> Result<()> {
// Note: if the module's table initializer state is in
// FuncTable mode, we will lazily initialize tables based on
// any statically-precomputed image of FuncIndexes, but there
// may still be "leftover segments" that could not be
// incorporated. So we have a unified handler here that
// iterates over all segments (Segments mode) or leftover
// segments (FuncTable mode) to initialize.
match &module.table_initialization {
TableInitialization::FuncTable { segments, .. }
| TableInitialization::Segments { segments } => {
for segment in segments {
let start = get_table_init_start(segment, instance)?;
instance.table_init_segment(
segment.table_index,
&segment.elements,
start,
0,
segment.elements.len() as u32,
)?;
}
}
}
Ok(())
}
fn get_memory_init_start(init: &MemoryInitializer, instance: &mut Instance) -> Result<u64> {
match init.base {
Some(base) => {
let mem64 = instance.module().memory_plans[init.memory_index]
.memory
.memory64;
let val = unsafe {
let global = instance.defined_or_imported_global_ptr(base);
if mem64 {
*(*global).as_u64()
} else {
u64::from(*(*global).as_u32())
}
};
init.offset
.checked_add(val)
.ok_or_else(|| anyhow!("data segment global base overflows"))
}
None => Ok(init.offset),
}
}
fn check_memory_init_bounds(
instance: &mut Instance,
initializers: &[MemoryInitializer],
) -> Result<()> {
for init in initializers {
let memory = instance.get_memory(init.memory_index);
let start = get_memory_init_start(init, instance)?;
let end = usize::try_from(start)
.ok()
.and_then(|start| start.checked_add(init.data.len()));
match end {
Some(end) if end <= memory.current_length() => {
// Initializer is in bounds
}
_ => {
bail!("memory out of bounds: data segment does not fit")
}
}
}
Ok(())
}
fn initialize_memories(instance: &mut Instance, module: &Module) -> Result<()> {
let memory_size_in_pages = &|instance: &mut Instance, memory| {
(instance.get_memory(memory).current_length() as u64) / u64::from(WASM_PAGE_SIZE)
};
// Loads the `global` value and returns it as a `u64`, but sign-extends
// 32-bit globals which can be used as the base for 32-bit memories.
let get_global_as_u64 = &mut |instance: &mut Instance, global| unsafe {
let def = instance.defined_or_imported_global_ptr(global);
if module.globals[global].wasm_ty == WasmType::I64 {
*(*def).as_u64()
} else {
u64::from(*(*def).as_u32())
}
};
// Delegates to the `init_memory` method which is sort of a duplicate of
// `instance.memory_init_segment` but is used at compile-time in other
// contexts so is shared here to have only one method of memory
// initialization.
//
// This call to `init_memory` notably implements all the bells and whistles
// so errors only happen if an out-of-bounds segment is found, in which case
// a trap is returned.
let ok = module.memory_initialization.init_memory(
instance,
InitMemory::Runtime {
memory_size_in_pages,
get_global_as_u64,
},
|instance, memory_index, init| {
// If this initializer applies to a defined memory but that memory
// doesn't need initialization, due to something like copy-on-write
// pre-initializing it via mmap magic, then this initializer can be
// skipped entirely.
if let Some(memory_index) = module.defined_memory_index(memory_index) {
if !instance.memories[memory_index].needs_init() {
return true;
}
}
let memory = instance.get_memory(memory_index);
unsafe {
let src = instance.wasm_data(init.data.clone());
let dst = memory.base.add(usize::try_from(init.offset).unwrap());
// FIXME audit whether this is safe in the presence of shared
// memory
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
ptr::copy_nonoverlapping(src.as_ptr(), dst, src.len())
}
true
},
);
if !ok {
return Err(Trap::MemoryOutOfBounds.into());
}
Ok(())
}
fn check_init_bounds(instance: &mut Instance, module: &Module) -> Result<()> {
check_table_init_bounds(instance, module)?;
match &module.memory_initialization {
MemoryInitialization::Segmented(initializers) => {
check_memory_init_bounds(instance, initializers)?;
}
// Statically validated already to have everything in-bounds.
MemoryInitialization::Static { .. } => {}
}
Ok(())
}
pub(super) fn initialize_instance(
instance: &mut Instance,
module: &Module,
is_bulk_memory: bool,
) -> Result<()> {
// If bulk memory is not enabled, bounds check the data and element segments before
// making any changes. With bulk memory enabled, initializers are processed
// in-order and side effects are observed up to the point of an out-of-bounds
// initializer, so the early checking is not desired.
if !is_bulk_memory {
check_init_bounds(instance, module)?;
}
// Initialize the tables
initialize_tables(instance, module)?;
// Initialize the memories
initialize_memories(instance, &module)?;
Ok(())
}
/// Represents the on-demand instance allocator.
#[derive(Clone)]
pub struct OnDemandInstanceAllocator {
mem_creator: Option<Arc<dyn RuntimeMemoryCreator>>,
#[cfg(feature = "async")]
stack_size: usize,
}
impl OnDemandInstanceAllocator {
/// Creates a new on-demand instance allocator.
pub fn new(mem_creator: Option<Arc<dyn RuntimeMemoryCreator>>, stack_size: usize) -> Self {
drop(stack_size); // suppress unused warnings w/o async feature
Self {
mem_creator,
#[cfg(feature = "async")]
stack_size,
}
}
}
impl Default for OnDemandInstanceAllocator {
fn default() -> Self {
Self {
mem_creator: None,
#[cfg(feature = "async")]
stack_size: 0,
}
}
}
unsafe impl InstanceAllocator for OnDemandInstanceAllocator {
fn allocate_index(&self, _req: &InstanceAllocationRequest) -> Result<usize> {
Ok(0)
}
fn deallocate_index(&self, index: usize) {
assert_eq!(index, 0);
}
fn allocate_memories(
&self,
_index: usize,
req: &mut InstanceAllocationRequest,
memories: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
) -> Result<()> {
let module = req.runtime_info.module();
let creator = self
.mem_creator
.as_deref()
.unwrap_or_else(|| &DefaultMemoryCreator);
let num_imports = module.num_imported_memories;
for (memory_idx, plan) in module.memory_plans.iter().skip(num_imports) {
let defined_memory_idx = module
.defined_memory_index(memory_idx)
.expect("Skipped imports, should never be None");
let image = req.runtime_info.memory_image(defined_memory_idx)?;
memories.push(Memory::new_dynamic(
plan,
creator,
unsafe {
req.store
.get()
.expect("if module has memory plans, store is not empty")
},
image,
)?);
}
Ok(())
}
fn deallocate_memories(
&self,
_index: usize,
_mems: &mut PrimaryMap<DefinedMemoryIndex, Memory>,
) {
// normal destructors do cleanup here
}
fn allocate_tables(
&self,
_index: usize,
req: &mut InstanceAllocationRequest,
tables: &mut PrimaryMap<DefinedTableIndex, Table>,
) -> Result<()> {
let module = req.runtime_info.module();
let num_imports = module.num_imported_tables;
for (_, table) in module.table_plans.iter().skip(num_imports) {
tables.push(Table::new_dynamic(table, unsafe {
req.store
.get()
.expect("if module has table plans, store is not empty")
})?);
}
Ok(())
}
fn deallocate_tables(&self, _index: usize, _tables: &mut PrimaryMap<DefinedTableIndex, Table>) {
// normal destructors do cleanup here
}
#[cfg(feature = "async")]
fn allocate_fiber_stack(&self) -> Result<wasmtime_fiber::FiberStack> {
if self.stack_size == 0 {
bail!("fiber stacks are not supported by the allocator")
}
let stack = wasmtime_fiber::FiberStack::new(self.stack_size)?;
Ok(stack)
}
#[cfg(feature = "async")]
unsafe fn deallocate_fiber_stack(&self, _stack: &wasmtime_fiber::FiberStack) {
// The on-demand allocator has no further bookkeeping for fiber stacks
}
fn purge_module(&self, _: CompiledModuleId) {}
}