1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
//! Implements thread wait and notify primitives with `std::sync` primitives.
//!
//! This is a simplified version of the `parking_lot_core` crate.
//!
//! There are two main operations that can be performed:
//!
//! - *Parking* refers to suspending the thread while simultaneously enqueuing it
//! on a queue keyed by some address.
//! - *Unparking* refers to dequeuing a thread from a queue keyed by some address
//! and resuming it.

#![deny(clippy::all)]
#![deny(clippy::pedantic)]
#![deny(missing_docs)]
#![deny(unsafe_code)]

use crate::WaitResult;
use std::collections::BTreeMap;
use std::sync::{Arc, Condvar, Mutex};
use std::time::Instant;

#[derive(Default, Debug)]
struct Spot {
    /// The number of threads parked on this spot.
    num_parked: u32,

    /// The number of threads that have been unparked but not yet woken up.
    /// This is used to avoid spurious wakeups.
    to_unpark: u32,

    /// The [`Condvar`] used to notify parked threads.
    cvar: Arc<Condvar>,
}

/// The thread global `ParkingSpot`.
#[derive(Default, Debug)]
pub struct ParkingSpot {
    inner: Mutex<BTreeMap<u64, Spot>>,
}

impl ParkingSpot {
    /// Park the current thread until it is unparked or a timeout is reached.
    ///
    /// The `key` is used to identify the parking spot. If another thread calls
    /// `unpark_all` or `unpark` with the same key, the current thread will be unparked.
    ///
    /// The `validate` callback is called before parking.
    /// If it returns `false`, the thread is not parked and `WaitResult::Mismatch` is returned.
    ///
    /// The `timeout` argument specifies the maximum amount of time the thread will be parked.
    pub fn park(
        &self,
        key: u64,
        validate: impl FnOnce() -> bool,
        timeout: impl Into<Option<Instant>>,
    ) -> WaitResult {
        self.park_inner(key, validate, timeout.into())
    }

    fn park_inner(
        &self,
        key: u64,
        validate: impl FnOnce() -> bool,
        timeout: Option<Instant>,
    ) -> WaitResult {
        let mut inner = self
            .inner
            .lock()
            .expect("failed to lock inner parking table");

        // check validation with lock held
        if !validate() {
            return WaitResult::Mismatch;
        }

        // clone the condvar, so we can move the lock
        let cvar = {
            let spot = inner.entry(key).or_insert_with(Spot::default);
            spot.num_parked = spot
                .num_parked
                .checked_add(1)
                .expect("parking spot number overflow");
            spot.cvar.clone()
        };

        loop {
            let timed_out = if let Some(timeout) = timeout {
                let now = Instant::now();
                if now >= timeout {
                    true
                } else {
                    let dur = timeout - now;
                    let (lock, result) = cvar
                        .wait_timeout(inner, dur)
                        .expect("failed to wait for condition");
                    inner = lock;
                    result.timed_out()
                }
            } else {
                inner = cvar.wait(inner).expect("failed to wait for condition");
                false
            };

            let spot = inner.get_mut(&key).expect("failed to get spot");

            if timed_out {
                // If waiting on the cvar timed out then due to how system cvars
                // are implemented we may need to continue to sleep longer. If
                // the deadline has not been reached then turn the crank again
                // and go back to sleep.
                if Instant::now() < timeout.unwrap() {
                    continue;
                }

                // Opportunistically consume `to_unpark` signals even on
                // timeout. From the perspective of `unpark` this "agent" raced
                // between its own timeout and receiving the unpark signal, but
                // from unpark's perspective it's definitely going to wake up N
                // agents as returned from the `unpark` return value.
                //
                // Note that this may actually prevent other threads from
                // getting unparked. For example:
                //
                // * Thread A parks with a timeout
                // * Thread B parks with no timeout
                // * Thread C decides to unpark 1 thread
                // * Thread A's cvar wakes up due to a timeout, blocks on the
                //   lock
                // * Thread C finishes unpark and signals the cvar once
                // * Thread B wakes up
                // * Thread A and B contend for the lock and A wins
                // * A consumes the "to_unpark" value
                // * B goes back to sleep since `to_unpark == 0`, thinking that
                //   a spurious wakeup happened.
                //
                // It's believed that this is ok, however, since from C's
                // perspective one agent was still woken up and is allowed to
                // continue, notably A in this case. C doesn't know that A raced
                // with B and "stole" its wakeup signal.
                if spot.to_unpark > 0 {
                    spot.to_unpark -= 1;
                }
            } else {
                if spot.to_unpark == 0 {
                    // If no timeout happen but nothing has unparked this spot (as
                    // signaled through `to_unpark`) then this is indicative of a
                    // spurious wakeup. In this situation turn the crank again and
                    // go back to sleep as this interface doesn't allow for spurious
                    // wakeups.
                    continue;
                }
                // No timeout happened, and some other thread registered to
                // unpark this thread, so consume one unpark notification.
                spot.to_unpark -= 1;
            }

            spot.num_parked = spot
                .num_parked
                .checked_sub(1)
                .expect("corrupted parking spot state");

            if spot.num_parked == 0 {
                assert_eq!(spot.to_unpark, 0);
                inner
                    .remove(&key)
                    .expect("failed to remove spot from inner parking table");
            }

            if timed_out {
                return WaitResult::TimedOut;
            }

            return WaitResult::Ok;
        }
    }

    /// Unpark at most `n` threads that are parked with the given key.
    ///
    /// Returns the number of threads that were actually unparked.
    pub fn unpark(&self, key: u64, n: u32) -> u32 {
        if n == 0 {
            return 0;
        }
        let mut num_unpark = 0;

        self.with_lot(key, |spot| {
            num_unpark = n.min(spot.num_parked - spot.to_unpark);
            spot.to_unpark += num_unpark;
            if n >= num_unpark {
                spot.cvar.notify_all();
            } else {
                for _ in 0..num_unpark {
                    spot.cvar.notify_one();
                }
            }
        });

        num_unpark
    }

    fn with_lot<F: FnMut(&mut Spot)>(&self, key: u64, mut f: F) {
        let mut inner = self
            .inner
            .lock()
            .expect("failed to lock inner parking table");
        if let Some(spot) = inner.get_mut(&key) {
            f(spot);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::ParkingSpot;
    use std::ptr::addr_of;
    use std::sync::atomic::{AtomicU64, Ordering};
    use std::thread;
    use std::time::{Duration, Instant};

    #[test]
    fn atomic_wait_notify() {
        let parking_spot = &ParkingSpot::default();
        let atomic = &AtomicU64::new(0);

        thread::scope(|s| {
            let atomic_key = addr_of!(atomic) as u64;
            let thread1 = s.spawn(move || {
                atomic.store(1, Ordering::SeqCst);
                parking_spot.unpark(atomic_key, u32::MAX);
                parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) == 1, None);
            });

            let thread2 = s.spawn(move || {
                while atomic.load(Ordering::SeqCst) != 1 {
                    parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) != 1, None);
                }
                atomic.store(2, Ordering::SeqCst);
                parking_spot.unpark(atomic_key, u32::MAX);
                parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) == 2, None);
            });

            let thread3 = s.spawn(move || {
                while atomic.load(Ordering::SeqCst) != 2 {
                    parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) != 2, None);
                }
                atomic.store(3, Ordering::SeqCst);
                parking_spot.unpark(atomic_key, u32::MAX);

                parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) == 3, None);
            });

            while atomic.load(Ordering::SeqCst) != 3 {
                parking_spot.park(atomic_key, || atomic.load(Ordering::SeqCst) != 3, None);
            }
            atomic.store(4, Ordering::SeqCst);
            parking_spot.unpark(atomic_key, u32::MAX);

            thread1.join().unwrap();
            thread2.join().unwrap();
            thread3.join().unwrap();
        });
    }

    mod parking_lot {
        // This is a modified version of the parking_lot_core tests,
        // which are licensed under the MIT and Apache 2.0 licenses.
        use super::*;
        use std::sync::atomic::{AtomicIsize, AtomicU32};
        use std::sync::Arc;
        use std::time::Duration;

        macro_rules! test {
            ( $( $name:ident(
                repeats: $repeats:expr,
                latches: $latches:expr,
                delay: $delay:expr,
                threads: $threads:expr,
                single_unparks: $single_unparks:expr);
            )* ) => {
                $(
                #[test]
                fn $name() {
                    if std::env::var("WASMTIME_TEST_NO_HOG_MEMORY").is_ok() {
                        return;
                    }
                    let delay = Duration::from_micros($delay);
                    for _ in 0..$repeats {
                        run_parking_test($latches, delay, $threads, $single_unparks);
                    }
                })*
            };
        }

        test! {
            unpark_all_one_fast(
                repeats: 10000, latches: 1, delay: 0, threads: 1, single_unparks: 0
            );
            unpark_all_hundred_fast(
                repeats: 100, latches: 1, delay: 0, threads: 100, single_unparks: 0
            );
            unpark_one_one_fast(
                repeats: 1000, latches: 1, delay: 0, threads: 1, single_unparks: 1
            );
            unpark_one_hundred_fast(
                repeats: 20, latches: 1, delay: 0, threads: 100, single_unparks: 100
            );
            unpark_one_fifty_then_fifty_all_fast(
                repeats: 50, latches: 1, delay: 0, threads: 100, single_unparks: 50
            );
            unpark_all_one(
                repeats: 100, latches: 1, delay: 10000, threads: 1, single_unparks: 0
            );
            unpark_all_hundred(
                repeats: 100, latches: 1, delay: 10000, threads: 100, single_unparks: 0
            );
            unpark_one_one(
                repeats: 10, latches: 1, delay: 10000, threads: 1, single_unparks: 1
            );
            unpark_one_fifty(
                repeats: 1, latches: 1, delay: 10000, threads: 50, single_unparks: 50
            );
            unpark_one_fifty_then_fifty_all(
                repeats: 2, latches: 1, delay: 10000, threads: 100, single_unparks: 50
            );
            hundred_unpark_all_one_fast(
                repeats: 100, latches: 100, delay: 0, threads: 1, single_unparks: 0
            );
            hundred_unpark_all_one(
                repeats: 1, latches: 100, delay: 10000, threads: 1, single_unparks: 0
            );
        }

        fn run_parking_test(
            num_latches: usize,
            delay: Duration,
            num_threads: u32,
            num_single_unparks: u32,
        ) {
            let spot = ParkingSpot::default();

            thread::scope(|s| {
                let mut tests = Vec::with_capacity(num_latches);

                for _ in 0..num_latches {
                    let test = Arc::new(SingleLatchTest::new(num_threads, &spot));
                    let mut threads = Vec::with_capacity(num_threads as _);
                    for _ in 0..num_threads {
                        let test = test.clone();
                        threads.push(s.spawn(move || test.run()));
                    }
                    tests.push((test, threads));
                }

                for unpark_index in 0..num_single_unparks {
                    thread::sleep(delay);
                    for (test, _) in &tests {
                        test.unpark_one(unpark_index);
                    }
                }

                for (test, threads) in tests {
                    test.finish(num_single_unparks);
                    for thread in threads {
                        thread.join().expect("Test thread panic");
                    }
                }
            });
        }

        struct SingleLatchTest<'a> {
            semaphore: AtomicIsize,
            num_awake: AtomicU32,
            /// Total number of threads participating in this test.
            num_threads: u32,
            spot: &'a ParkingSpot,
        }

        impl<'a> SingleLatchTest<'a> {
            pub fn new(num_threads: u32, spot: &'a ParkingSpot) -> Self {
                Self {
                    // This implements a fair (FIFO) semaphore, and it starts out unavailable.
                    semaphore: AtomicIsize::new(0),
                    num_awake: AtomicU32::new(0),
                    num_threads,
                    spot,
                }
            }

            pub fn run(&self) {
                // Get one slot from the semaphore
                self.down();

                self.num_awake.fetch_add(1, Ordering::SeqCst);
            }

            pub fn unpark_one(&self, _single_unpark_index: u32) {
                let num_awake_before_up = self.num_awake.load(Ordering::SeqCst);

                self.up();

                // Wait for a parked thread to wake up and update num_awake + last_awoken.
                while self.num_awake.load(Ordering::SeqCst) != num_awake_before_up + 1 {
                    thread::yield_now();
                }
            }

            pub fn finish(&self, num_single_unparks: u32) {
                // The amount of threads not unparked via unpark_one
                let mut num_threads_left =
                    self.num_threads.checked_sub(num_single_unparks).unwrap();

                // Wake remaining threads up with unpark_all. Has to be in a loop, because there might
                // still be threads that has not yet parked.
                while num_threads_left > 0 {
                    let mut num_waiting_on_address = 0;
                    self.spot.with_lot(self.semaphore_addr(), |thread_data| {
                        num_waiting_on_address = thread_data.num_parked;
                    });
                    assert!(num_waiting_on_address <= num_threads_left);

                    let num_awake_before_unpark = self.num_awake.load(Ordering::SeqCst);

                    let num_unparked = self.spot.unpark(self.semaphore_addr(), u32::MAX);
                    assert!(num_unparked >= num_waiting_on_address);
                    assert!(num_unparked <= num_threads_left);

                    // Wait for all unparked threads to wake up and update num_awake + last_awoken.
                    while self.num_awake.load(Ordering::SeqCst)
                        != num_awake_before_unpark + num_unparked
                    {
                        thread::yield_now();
                    }

                    num_threads_left = num_threads_left.checked_sub(num_unparked).unwrap();
                }
                // By now, all threads should have been woken up
                assert_eq!(self.num_awake.load(Ordering::SeqCst), self.num_threads);

                // Make sure no thread is parked on our semaphore address
                let mut num_waiting_on_address = 0;
                self.spot.with_lot(self.semaphore_addr(), |thread_data| {
                    num_waiting_on_address = thread_data.num_parked;
                });
                assert_eq!(num_waiting_on_address, 0);
            }

            pub fn down(&self) {
                let old_semaphore_value = self.semaphore.fetch_sub(1, Ordering::SeqCst);

                if old_semaphore_value > 0 {
                    // We acquired the semaphore. Done.
                    return;
                }

                // We need to wait.
                let validate = || true;
                self.spot.park(self.semaphore_addr(), validate, None);
            }

            pub fn up(&self) {
                let old_semaphore_value = self.semaphore.fetch_add(1, Ordering::SeqCst);

                // Check if anyone was waiting on the semaphore. If they were, then pass ownership to them.
                if old_semaphore_value < 0 {
                    // We need to continue until we have actually unparked someone. It might be that
                    // the thread we want to pass ownership to has decremented the semaphore counter,
                    // but not yet parked.
                    loop {
                        match self.spot.unpark(self.semaphore_addr(), 1) {
                            1 => break,
                            0 => (),
                            i => panic!("Should not wake up {i} threads"),
                        }
                    }
                }
            }

            fn semaphore_addr(&self) -> u64 {
                addr_of!(self.semaphore) as _
            }
        }
    }

    #[test]
    fn wait_with_timeout() {
        let parking_spot = &ParkingSpot::default();
        let atomic = &AtomicU64::new(0);

        thread::scope(|s| {
            let atomic_key = addr_of!(atomic) as u64;

            const N: u64 = 5;
            const M: u64 = 1000;

            let thread = s.spawn(move || {
                while atomic.load(Ordering::SeqCst) != N * M {
                    let timeout = Instant::now() + Duration::from_millis(1);
                    parking_spot.park(
                        atomic_key,
                        || atomic.load(Ordering::SeqCst) != N * M,
                        Some(timeout),
                    );
                }
            });

            let mut threads = vec![thread];
            for _ in 0..N {
                threads.push(s.spawn(move || {
                    for _ in 0..M {
                        atomic.fetch_add(1, Ordering::SeqCst);
                        parking_spot.unpark(atomic_key, 1);
                    }
                }));
            }

            for thread in threads {
                thread.join().unwrap();
            }
        });
    }
}