1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// Copyright 2015-2021 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use core::ops::Deref;
use pki_types::{
CertificateDer, ServerName, SignatureVerificationAlgorithm, TrustAnchor, UnixTime,
};
use crate::crl::RevocationOptions;
use crate::error::Error;
use crate::subject_name::{verify_dns_names, verify_ip_address_names, NameIterator};
use crate::verify_cert::{self, KeyUsage, VerifiedPath};
use crate::{cert, signed_data};
/// An end-entity certificate.
///
/// Server certificate processing in a TLS connection consists of several
/// steps. All of these steps are necessary:
///
/// * [`EndEntityCert::verify_for_usage()`]: Verify that the peer's certificate
/// is valid for the current usage scenario. For server authentication, use
/// [`KeyUsage::server_auth()`].
/// * [`EndEntityCert::verify_is_valid_for_subject_name()`]: Verify that the server's
/// certificate is valid for the host or IP address that is being connected to.
/// * [`EndEntityCert::verify_signature()`]: Verify that the signature of server's
/// `ServerKeyExchange` message is valid for the server's certificate.
///
/// Client certificate processing in a TLS connection consists of analogous
/// steps. All of these steps are necessary:
///
/// * [`EndEntityCert::verify_for_usage()`]: Verify that the peer's certificate
/// is valid for the current usage scenario. For client authentication, use
/// [`KeyUsage::client_auth()`].
/// * [`EndEntityCert::verify_signature()`]: Verify that the signature of client's
/// `CertificateVerify` message is valid using the public key from the
/// client's certificate.
///
/// Although it would be less error-prone to combine all these steps into a
/// single function call, some significant optimizations are possible if the
/// three steps are processed separately (in parallel). It does not matter much
/// which order the steps are done in, but **all of these steps must completed
/// before application data is sent and before received application data is
/// processed**. The [`TryFrom`] conversion from `&CertificateDer<'_>` is an
/// inexpensive operation and is deterministic, so if these tasks are done in
/// multiple threads, it is probably best to just create multiple [`EndEntityCert`]
/// instances for the same DER-encoded ASN.1 certificate bytes.
pub struct EndEntityCert<'a> {
inner: cert::Cert<'a>,
}
impl<'a> TryFrom<&'a CertificateDer<'a>> for EndEntityCert<'a> {
type Error = Error;
/// Parse the ASN.1 DER-encoded X.509 encoding of the certificate
/// `cert_der`.
fn try_from(cert: &'a CertificateDer<'a>) -> Result<Self, Self::Error> {
Ok(Self {
inner: cert::Cert::from_der(untrusted::Input::from(cert.as_ref()))?,
})
}
}
impl<'a> EndEntityCert<'a> {
/// Verifies that the end-entity certificate is valid for use against the
/// specified Extended Key Usage (EKU).
///
/// * `supported_sig_algs` is the list of signature algorithms that are
/// trusted for use in certificate signatures; the end-entity certificate's
/// public key is not validated against this list.
/// * `trust_anchors` is the list of root CAs to trust in the built path.
/// * `intermediate_certs` is the sequence of intermediate certificates that
/// a peer sent for the purpose of path building.
/// * `time` is the time for which the validation is effective (usually the
/// current time).
/// * `usage` is the intended usage of the certificate, indicating what kind
/// of usage we're verifying the certificate for.
/// * `crls` is the list of certificate revocation lists to check
/// the certificate against.
/// * `verify_path` is an optional verification function for path candidates.
///
/// If successful, yields a `VerifiedPath` type that can be used to inspect a verified chain
/// of certificates that leads from the `end_entity` to one of the `self.trust_anchors`.
///
/// `verify_path` will only be called for potentially verified paths, that is, paths that
/// have been verified up to the trust anchor. As such, `verify_path()` cannot be used to
/// verify a path that doesn't satisfy the constraints listed above; it can only be used to
/// reject a path that does satisfy the aforementioned constraints. If `verify_path` returns
/// an error, path building will continue in order to try other options.
#[allow(clippy::too_many_arguments)]
pub fn verify_for_usage<'p>(
&'p self,
supported_sig_algs: &[&dyn SignatureVerificationAlgorithm],
trust_anchors: &'p [TrustAnchor<'_>],
intermediate_certs: &'p [CertificateDer<'p>],
time: UnixTime,
usage: KeyUsage,
revocation: Option<RevocationOptions<'_>>,
verify_path: Option<&dyn Fn(&VerifiedPath<'_>) -> Result<(), Error>>,
) -> Result<VerifiedPath<'p>, Error> {
verify_cert::ChainOptions {
eku: usage,
supported_sig_algs,
trust_anchors,
intermediate_certs,
revocation,
}
.build_chain(self, time, verify_path)
}
/// Verifies that the certificate is valid for the given Subject Name.
pub fn verify_is_valid_for_subject_name(
&self,
server_name: &ServerName<'_>,
) -> Result<(), Error> {
match server_name {
ServerName::DnsName(dns_name) => verify_dns_names(
dns_name,
NameIterator::new(Some(self.inner.subject), self.inner.subject_alt_name),
),
// IP addresses are not compared against the subject field;
// only against Subject Alternative Names.
ServerName::IpAddress(ip_address) => verify_ip_address_names(
ip_address,
NameIterator::new(None, self.inner.subject_alt_name),
),
_ => Err(Error::UnsupportedNameType),
}
}
/// Verifies the signature `signature` of message `msg` using the
/// certificate's public key.
///
/// `signature_alg` is the algorithm to use to
/// verify the signature; the certificate's public key is verified to be
/// compatible with this algorithm.
///
/// For TLS 1.2, `signature` corresponds to TLS's
/// `DigitallySigned.signature` and `signature_alg` corresponds to TLS's
/// `DigitallySigned.algorithm` of TLS type `SignatureAndHashAlgorithm`. In
/// TLS 1.2 a single `SignatureAndHashAlgorithm` may map to multiple
/// `SignatureVerificationAlgorithm`s. For example, a TLS 1.2
/// `SignatureAndHashAlgorithm` of (ECDSA, SHA-256) may map to any or all
/// of {`ECDSA_P256_SHA256`, `ECDSA_P384_SHA256`}, depending on how the TLS
/// implementation is configured.
///
/// For current TLS 1.3 drafts, `signature_alg` corresponds to TLS's
/// `algorithm` fields of type `SignatureScheme`. There is (currently) a
/// one-to-one correspondence between TLS 1.3's `SignatureScheme` and
/// `SignatureVerificationAlgorithm`.
pub fn verify_signature(
&self,
signature_alg: &dyn SignatureVerificationAlgorithm,
msg: &[u8],
signature: &[u8],
) -> Result<(), Error> {
signed_data::verify_signature(
signature_alg,
self.inner.spki,
untrusted::Input::from(msg),
untrusted::Input::from(signature),
)
}
}
impl<'a> Deref for EndEntityCert<'a> {
type Target = cert::Cert<'a>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
#[cfg(feature = "alloc")]
#[cfg(test)]
mod tests {
use super::*;
use crate::test_utils;
use crate::test_utils::RCGEN_SIGNATURE_ALG;
use std::prelude::v1::*;
// This test reproduces https://github.com/rustls/webpki/issues/167 --- an
// end-entity cert where the common name is a `PrintableString` rather than
// a `UTF8String` cannot iterate over its subject alternative names.
#[test]
fn printable_string_common_name() {
const DNS_NAME: &str = "test.example.com";
let issuer = test_utils::make_issuer("Test");
let ee_cert = {
let mut params = test_utils::end_entity_params(vec![DNS_NAME.to_string()]);
// construct a certificate that uses `PrintableString` as the
// common name value, rather than `UTF8String`.
params.distinguished_name.push(
rcgen::DnType::CommonName,
rcgen::DnValue::PrintableString(
rcgen::PrintableString::try_from("example.com").unwrap(),
),
);
params
.signed_by(
&rcgen::KeyPair::generate_for(RCGEN_SIGNATURE_ALG).unwrap(),
&issuer.cert,
&issuer.key_pair,
)
.expect("failed to make ee cert (this is a test bug)")
};
expect_dns_name(ee_cert.der(), DNS_NAME);
}
// This test reproduces https://github.com/rustls/webpki/issues/167 --- an
// end-entity cert where the common name is an empty SEQUENCE.
#[test]
fn empty_sequence_common_name() {
let ee_cert_der = {
// handcrafted cert DER produced using `ascii2der`, since `rcgen` is
// unwilling to generate this particular weird cert.
let bytes = include_bytes!("../tests/misc/empty_sequence_common_name.der");
CertificateDer::from(&bytes[..])
};
expect_dns_name(&ee_cert_der, "example.com");
}
fn expect_dns_name(der: &CertificateDer<'_>, name: &str) {
let cert =
EndEntityCert::try_from(der).expect("should parse end entity certificate correctly");
let mut names = cert.valid_dns_names();
assert_eq!(names.next(), Some(name));
assert_eq!(names.next(), None);
}
}