1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// Copyright 2021 Parity Technologies (UK) Ltd.
// This file is part of Cumulus.

// Cumulus is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Cumulus.  If not, see <http://www.gnu.org/licenses/>.

use crate::{ParachainInherentData, INHERENT_IDENTIFIER};
use codec::Decode;
use cumulus_primitives_core::{
	relay_chain, InboundDownwardMessage, InboundHrmpMessage, ParaId, PersistedValidationData,
};
use sc_client_api::{Backend, StorageProvider};
use sp_core::twox_128;
use sp_inherents::{InherentData, InherentDataProvider};
use sp_runtime::traits::Block;
use std::collections::BTreeMap;

use cumulus_test_relay_sproof_builder::RelayStateSproofBuilder;

/// Inherent data provider that supplies mocked validation data.
///
/// This is useful when running a node that is not actually backed by any relay chain.
/// For example when running a local node, or running integration tests.
///
/// We mock a relay chain block number as follows:
/// relay_block_number = offset + relay_blocks_per_para_block * current_para_block
/// To simulate a parachain that starts in relay block 1000 and gets a block in every other relay
/// block, use 1000 and 2
///
/// Optionally, mock XCM messages can be injected into the runtime. When mocking XCM,
/// in addition to the messages themselves, you must provide some information about
/// your parachain's configuration in order to mock the MQC heads properly.
/// See [`MockXcmConfig`] for more information
pub struct MockValidationDataInherentDataProvider<R = ()> {
	/// The current block number of the local block chain (the parachain)
	pub current_para_block: u32,
	/// The relay block in which this parachain appeared to start. This will be the relay block
	/// number in para block #P1
	pub relay_offset: u32,
	/// The number of relay blocks that elapses between each parablock. Probably set this to 1 or 2
	/// to simulate optimistic or realistic relay chain behavior.
	pub relay_blocks_per_para_block: u32,
	/// Number of parachain blocks per relay chain epoch
	/// Mock epoch is computed by dividing `current_para_block` by this value.
	pub para_blocks_per_relay_epoch: u32,
	/// Function to mock BABE one epoch ago randomness
	pub relay_randomness_config: R,
	/// XCM messages and associated configuration information.
	pub xcm_config: MockXcmConfig,
	/// Inbound downward XCM messages to be injected into the block.
	pub raw_downward_messages: Vec<Vec<u8>>,
	// Inbound Horizontal messages sorted by channel
	pub raw_horizontal_messages: Vec<(ParaId, Vec<u8>)>,
}

pub trait GenerateRandomness<I> {
	fn generate_randomness(&self, input: I) -> relay_chain::Hash;
}

impl GenerateRandomness<u64> for () {
	/// Default implementation uses relay epoch as randomness value
	/// A more seemingly random implementation may hash the relay epoch instead
	fn generate_randomness(&self, input: u64) -> relay_chain::Hash {
		let mut mock_randomness: [u8; 32] = [0u8; 32];
		mock_randomness[..8].copy_from_slice(&input.to_be_bytes());
		mock_randomness.into()
	}
}

/// Parameters for how the Mock inherent data provider should inject XCM messages.
/// In addition to the messages themselves, some information about the parachain's
/// configuration is also required so that the MQC heads can be read out of the
/// parachain's storage, and the corresponding relay data mocked.
#[derive(Default)]
pub struct MockXcmConfig {
	/// The parachain id of the parachain being mocked.
	pub para_id: ParaId,
	/// The starting state of the dmq_mqc_head.
	pub starting_dmq_mqc_head: relay_chain::Hash,
	/// The starting state of each parachain's mqc head
	pub starting_hrmp_mqc_heads: BTreeMap<ParaId, relay_chain::Hash>,
}

/// The name of the parachain system in the runtime.
///
/// This name is used by frame to prefix storage items and will be required to read data from the
/// storage.
///
/// The `Default` implementation sets the name to `ParachainSystem`.
pub struct ParachainSystemName(pub Vec<u8>);

impl Default for ParachainSystemName {
	fn default() -> Self {
		Self(b"ParachainSystem".to_vec())
	}
}

impl MockXcmConfig {
	/// Create a MockXcmConfig by reading the mqc_heads directly
	/// from the storage of a previous block.
	pub fn new<B: Block, BE: Backend<B>, C: StorageProvider<B, BE>>(
		client: &C,
		parent_block: B::Hash,
		para_id: ParaId,
		parachain_system_name: ParachainSystemName,
	) -> Self {
		let starting_dmq_mqc_head = client
			.storage(
				parent_block,
				&sp_storage::StorageKey(
					[twox_128(&parachain_system_name.0), twox_128(b"LastDmqMqcHead")]
						.concat()
						.to_vec(),
				),
			)
			.expect("We should be able to read storage from the parent block.")
			.map(|ref mut raw_data| {
				Decode::decode(&mut &raw_data.0[..]).expect("Stored data should decode correctly")
			})
			.unwrap_or_default();

		let starting_hrmp_mqc_heads = client
			.storage(
				parent_block,
				&sp_storage::StorageKey(
					[twox_128(&parachain_system_name.0), twox_128(b"LastHrmpMqcHeads")]
						.concat()
						.to_vec(),
				),
			)
			.expect("We should be able to read storage from the parent block.")
			.map(|ref mut raw_data| {
				Decode::decode(&mut &raw_data.0[..]).expect("Stored data should decode correctly")
			})
			.unwrap_or_default();

		Self { para_id, starting_dmq_mqc_head, starting_hrmp_mqc_heads }
	}
}

#[async_trait::async_trait]
impl<R: Send + Sync + GenerateRandomness<u64>> InherentDataProvider
	for MockValidationDataInherentDataProvider<R>
{
	async fn provide_inherent_data(
		&self,
		inherent_data: &mut InherentData,
	) -> Result<(), sp_inherents::Error> {
		// Calculate the mocked relay block based on the current para block
		let relay_parent_number =
			self.relay_offset + self.relay_blocks_per_para_block * self.current_para_block;

		// Use the "sproof" (spoof proof) builder to build valid mock state root and proof.
		let mut sproof_builder =
			RelayStateSproofBuilder { para_id: self.xcm_config.para_id, ..Default::default() };

		// Process the downward messages and set up the correct head
		let mut downward_messages = Vec::new();
		let mut dmq_mqc = crate::MessageQueueChain(self.xcm_config.starting_dmq_mqc_head);
		for msg in &self.raw_downward_messages {
			let wrapped = InboundDownwardMessage { sent_at: relay_parent_number, msg: msg.clone() };

			dmq_mqc.extend_downward(&wrapped);
			downward_messages.push(wrapped);
		}
		sproof_builder.dmq_mqc_head = Some(dmq_mqc.head());

		// Process the hrmp messages and set up the correct heads
		// Begin by collecting them into a Map
		let mut horizontal_messages = BTreeMap::<ParaId, Vec<InboundHrmpMessage>>::new();
		for (para_id, msg) in &self.raw_horizontal_messages {
			let wrapped = InboundHrmpMessage { sent_at: relay_parent_number, data: msg.clone() };

			horizontal_messages.entry(*para_id).or_default().push(wrapped);
		}

		// Now iterate again, updating the heads as we go
		for (para_id, messages) in &horizontal_messages {
			let mut channel_mqc = crate::MessageQueueChain(
				*self
					.xcm_config
					.starting_hrmp_mqc_heads
					.get(para_id)
					.unwrap_or(&relay_chain::Hash::default()),
			);
			for message in messages {
				channel_mqc.extend_hrmp(message);
			}
			sproof_builder.upsert_inbound_channel(*para_id).mqc_head = Some(channel_mqc.head());
		}

		// Epoch is set equal to current para block / blocks per epoch
		sproof_builder.current_epoch = if self.para_blocks_per_relay_epoch == 0 {
			// do not divide by 0 => set epoch to para block number
			self.current_para_block.into()
		} else {
			(self.current_para_block / self.para_blocks_per_relay_epoch).into()
		};
		// Randomness is set by randomness generator
		sproof_builder.randomness =
			self.relay_randomness_config.generate_randomness(self.current_para_block.into());

		let (relay_parent_storage_root, proof) = sproof_builder.into_state_root_and_proof();

		inherent_data.put_data(
			INHERENT_IDENTIFIER,
			&ParachainInherentData {
				validation_data: PersistedValidationData {
					parent_head: Default::default(),
					relay_parent_storage_root,
					relay_parent_number,
					max_pov_size: Default::default(),
				},
				downward_messages,
				horizontal_messages,
				relay_chain_state: proof,
			},
		)
	}

	// Copied from the real implementation
	async fn try_handle_error(
		&self,
		_: &sp_inherents::InherentIdentifier,
		_: &[u8],
	) -> Option<Result<(), sp_inherents::Error>> {
		None
	}
}