[−][src]Struct script::Script
Serialized script, used inside transaction inputs and outputs.
Methods
impl Script[src]
impl Scriptpub fn new(data: Bytes) -> Self[src]
pub fn new(data: Bytes) -> SelfScript constructor.
ⓘImportant traits for Bytespub fn to_bytes(&self) -> Bytes[src]
pub fn to_bytes(&self) -> Bytespub fn is_empty(&self) -> bool[src]
pub fn is_empty(&self) -> boolIs empty script
pub fn is_pay_to_public_key_hash(&self) -> bool[src]
pub fn is_pay_to_public_key_hash(&self) -> boolExtra-fast test for pay-to-public-key-hash (P2PKH) scripts.
pub fn is_pay_to_public_key(&self) -> bool[src]
pub fn is_pay_to_public_key(&self) -> boolExtra-fast test for pay-to-public-key (P2PK) scripts.
pub fn is_pay_to_script_hash(&self) -> bool[src]
pub fn is_pay_to_script_hash(&self) -> boolExtra-fast test for pay-to-script-hash (P2SH) scripts.
pub fn is_pay_to_witness_key_hash(&self) -> bool[src]
pub fn is_pay_to_witness_key_hash(&self) -> boolExtra-fast test for pay-to-witness-key-hash scripts.
pub fn parse_witness_program(&self) -> Option<(u8, &[u8])>[src]
pub fn parse_witness_program(&self) -> Option<(u8, &[u8])>Parse witness program. Returns Some(witness program version, code) or None if not a witness program.
pub fn is_pay_to_witness_script_hash(&self) -> bool[src]
pub fn is_pay_to_witness_script_hash(&self) -> boolExtra-fast test for pay-to-witness-script-hash scripts.
pub fn is_multisig_script(&self) -> bool[src]
pub fn is_multisig_script(&self) -> boolExtra-fast test for multisig scripts.
pub fn is_null_data_script(&self) -> bool[src]
pub fn is_null_data_script(&self) -> boolpub fn subscript(&self, from: usize) -> Script[src]
pub fn subscript(&self, from: usize) -> Scriptpub fn find_and_delete(&self, data: &[u8]) -> Script[src]
pub fn find_and_delete(&self, data: &[u8]) -> Scriptpub fn get_opcode(&self, position: usize) -> Result<Opcode, Error>[src]
pub fn get_opcode(&self, position: usize) -> Result<Opcode, Error>pub fn get_instruction(&self, position: usize) -> Result<Instruction, Error>[src]
pub fn get_instruction(&self, position: usize) -> Result<Instruction, Error>pub fn take(&self, offset: usize, len: usize) -> Result<&[u8], Error>[src]
pub fn take(&self, offset: usize, len: usize) -> Result<&[u8], Error>pub fn without_separators(&self) -> Script[src]
pub fn without_separators(&self) -> ScriptReturns Script without OP_CODESEPARATOR opcodes
pub fn is_push_only(&self) -> bool[src]
pub fn is_push_only(&self) -> boolReturns true if script contains only push opcodes
pub fn script_type(&self) -> ScriptType[src]
pub fn script_type(&self) -> ScriptTypepub fn iter(&self) -> Instructions[src]
pub fn iter(&self) -> Instructionspub fn opcodes(&self) -> Opcodes[src]
pub fn opcodes(&self) -> Opcodespub fn sigops_count(
&self,
checkdatasig_active: bool,
serialized_script: bool
) -> usize[src]
pub fn sigops_count(
&self,
checkdatasig_active: bool,
serialized_script: bool
) -> usizepub fn num_signatures_required(&self) -> u8[src]
pub fn num_signatures_required(&self) -> u8pub fn extract_destinations(&self) -> Result<Vec<ScriptAddress>, Error>[src]
pub fn extract_destinations(&self) -> Result<Vec<ScriptAddress>, Error>pub fn pay_to_script_hash_sigops(
&self,
checkdatasig_active: bool,
prev_out: &Script
) -> usize[src]
pub fn pay_to_script_hash_sigops(
&self,
checkdatasig_active: bool,
prev_out: &Script
) -> usizeMethods from Deref<Target = [u8]>
pub const fn len(&self) -> usize1.0.0[src]
pub const fn len(&self) -> usizepub const fn is_empty(&self) -> bool1.0.0[src]
pub const fn is_empty(&self) -> boolpub fn first(&self) -> Option<&T>1.0.0[src]
pub fn first(&self) -> Option<&T>Returns the first element of the slice, or None if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
pub fn split_first(&self) -> Option<(&T, &[T])>1.5.0[src]
pub fn split_first(&self) -> Option<(&T, &[T])>Returns the first and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
pub fn split_last(&self) -> Option<(&T, &[T])>1.5.0[src]
pub fn split_last(&self) -> Option<(&T, &[T])>Returns the last and all the rest of the elements of the slice, or None if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
pub fn last(&self) -> Option<&T>1.0.0[src]
pub fn last(&self) -> Option<&T>Returns the last element of the slice, or None if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>, 1.0.0[src]
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>, Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
Noneif out of bounds. - If given a range, returns the subslice corresponding to that range,
or
Noneif out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>, 1.0.0[src]
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>, Returns a reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
pub const fn as_ptr(&self) -> *const T1.0.0[src]
pub const fn as_ptr(&self) -> *const TReturns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.add(i)); } }
ⓘImportant traits for Iter<'a, T>pub fn iter(&self) -> Iter<T>1.0.0[src]
pub fn iter(&self) -> Iter<T>Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
ⓘImportant traits for Windows<'a, T>pub fn windows(&self, size: usize) -> Windows<T>1.0.0[src]
pub fn windows(&self, size: usize) -> Windows<T>Returns an iterator over all contiguous windows of length
size. The windows overlap. If the slice is shorter than
size, the iterator returns no values.
Panics
Panics if size is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
ⓘImportant traits for Chunks<'a, T>pub fn chunks(&self, chunk_size: usize) -> Chunks<T>1.0.0[src]
pub fn chunks(&self, chunk_size: usize) -> Chunks<T>Returns an iterator over chunk_size elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size does
not divide the length of the slice, then the last chunk will
not have length chunk_size.
See exact_chunks for a variant of this iterator that returns chunks
of always exactly chunk_size elements.
Panics
Panics if chunk_size is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
ⓘImportant traits for ExactChunks<'a, T>pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>[src]
pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>exact_chunks)Returns an iterator over chunk_size elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size does
not divide the length of the slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler
can often optimize the resulting code better than in the case of
chunks.
Panics
Panics if chunk_size is 0.
Examples
#![feature(exact_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.exact_chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none());
pub fn split_at(&self, mid: usize) -> (&[T], &[T])1.0.0[src]
pub fn split_at(&self, mid: usize) -> (&[T], &[T])Divides one slice into two at an index.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
Panics
Panics if mid > len.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
ⓘImportant traits for Split<'a, T, P>pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool, 1.0.0[src]
pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
ⓘImportant traits for RSplit<'a, T, P>pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool, 1.27.0[src]
pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split(), if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
ⓘImportant traits for SplitN<'a, T, P>pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool, 1.0.0[src]
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred, limited to returning at most n items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40],
[20, 60, 50]):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
ⓘImportant traits for RSplitN<'a, T, P>pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool, 1.0.0[src]
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool, Returns an iterator over subslices separated by elements that match
pred limited to returning at most n items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50], [10, 40, 30, 20]):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>, 1.0.0[src]
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>, Returns true if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, 1.0.0[src]
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, Returns true if needle is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true if needle is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, 1.0.0[src]
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>, Returns true if needle is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true if needle is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord, 1.0.0[src]
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord, Binary searches this sorted slice for a given element.
If the value is found then Ok is returned, containing the
index of the matching element; if the value is not found then
Err is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering, 1.0.0[src]
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering, Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less,
Equal or Greater the desired target.
If a matching value is found then returns Ok, containing
the index for the matched element; if no match is found then
Err is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1..=4) => true, _ => false, });
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B, 1.10.0[src]
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B, Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key using the same key extraction function.
If a matching value is found then returns Ok, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4].
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1..=4) => true, _ => false, });
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])1.30.0[src]
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method does a best effort to make the middle slice the greatest length possible for a given type and input slice, but only your algorithm's performance should depend on that, not its correctness.
This method has no purpose when either input element T or output element U are
zero-sized and will return the original slice without splitting anything.
Unsafety
This method is essentially a transmute with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.
Examples
Basic usage:
unsafe { let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }
pub fn is_ascii(&self) -> bool1.23.0[src]
pub fn is_ascii(&self) -> boolChecks if all bytes in this slice are within the ASCII range.
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool1.23.0[src]
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> boolChecks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
pub fn to_vec(&self) -> Vec<T> where
T: Clone, 1.0.0[src]
pub fn to_vec(&self) -> Vec<T> where
T: Clone, Copies self into a new Vec.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
pub fn repeat(&self, n: usize) -> Vec<T> where
T: Copy, [src]
pub fn repeat(&self, n: usize) -> Vec<T> where
T: Copy, 🔬 This is a nightly-only experimental API. (repeat_generic_slice)
it's on str, why not on slice?
Creates a vector by repeating a slice n times.
Panics
This function will panic if the capacity would overflow.
Examples
Basic usage:
#![feature(repeat_generic_slice)] fn main() { assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); }
A panic upon overflow:
#![feature(repeat_generic_slice)] fn main() { // this will panic at runtime b"0123456789abcdef".repeat(usize::max_value()); }
pub fn to_ascii_uppercase(&self) -> Vec<u8>1.23.0[src]
pub fn to_ascii_uppercase(&self) -> Vec<u8>Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase.
pub fn to_ascii_lowercase(&self) -> Vec<u8>1.23.0[src]
pub fn to_ascii_lowercase(&self) -> Vec<u8>Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase.
Trait Implementations
impl PartialEq for Script[src]
impl PartialEq for Scriptfn eq(&self, other: &Script) -> bool[src]
fn eq(&self, other: &Script) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Script) -> bool[src]
fn ne(&self, other: &Script) -> boolThis method tests for !=.
impl Debug for Script[src]
impl Debug for Scriptfn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl From<&'static str> for Script[src]
impl From<&'static str> for Scriptimpl From<Bytes> for Script[src]
impl From<Bytes> for Scriptimpl From<Vec<u8>> for Script[src]
impl From<Vec<u8>> for Scriptimpl From<Script> for Bytes[src]
impl From<Script> for Bytesimpl Deref for Script[src]
impl Deref for Scripttype Target = [u8]
The resulting type after dereferencing.
fn deref(&self) -> &Self::Target[src]
fn deref(&self) -> &Self::TargetDereferences the value.
impl Display for Script[src]
impl Display for ScriptAuto Trait Implementations
Blanket Implementations
impl<T> From for T[src]
impl<T> From for Timpl<T> ToString for T where
T: Display + ?Sized, [src]
impl<T> ToString for T where
T: Display + ?Sized, impl<T, U> Into for T where
U: From<T>, [src]
impl<T, U> Into for T where
U: From<T>, impl<T, U> TryFrom for T where
T: From<U>, [src]
impl<T, U> TryFrom for T where
T: From<U>, type Error = !
try_from)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>try_from)Performs the conversion.
impl<T> Borrow for T where
T: ?Sized, [src]
impl<T> Borrow for T where
T: ?Sized, ⓘImportant traits for &'a mut Rfn borrow(&self) -> &T[src]
fn borrow(&self) -> &TImmutably borrows from an owned value. Read more
impl<T, U> TryInto for T where
U: TryFrom<T>, [src]
impl<T, U> TryInto for T where
U: TryFrom<T>, type Error = <U as TryFrom<T>>::Error
try_from)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>try_from)Performs the conversion.
impl<T> BorrowMut for T where
T: ?Sized, [src]
impl<T> BorrowMut for T where
T: ?Sized, ⓘImportant traits for &'a mut Rfn borrow_mut(&mut self) -> &mut T[src]
fn borrow_mut(&mut self) -> &mut TMutably borrows from an owned value. Read more
impl<T> Any for T where
T: 'static + ?Sized, [src]
impl<T> Any for T where
T: 'static + ?Sized, fn get_type_id(&self) -> TypeId[src]
fn get_type_id(&self) -> TypeId🔬 This is a nightly-only experimental API. (get_type_id)
this method will likely be replaced by an associated static
Gets the TypeId of self. Read more