referrerpolicy=no-referrer-when-downgrade
pub struct PoolingAllocationConfig { /* private fields */ }
Expand description

Configuration options used with InstanceAllocationStrategy::Pooling to change the behavior of the pooling instance allocator.

This structure has a builder-style API in the same manner as Config and is configured with Config::allocation_strategy.

Implementations§

§

impl PoolingAllocationConfig

pub fn max_unused_warm_slots( &mut self, max: u32, ) -> &mut PoolingAllocationConfig

Configures the maximum number of “unused warm slots” to retain in the pooling allocator.

The pooling allocator operates over slots to allocate from, and each slot is considered “cold” if it’s never been used before or “warm” if it’s been used by some module in the past. Slots in the pooling allocator additionally track an “affinity” flag to a particular core wasm module. When a module is instantiated into a slot then the slot is considered affine to that module, even after the instance has been dealloocated.

When a new instance is created then a slot must be chosen, and the current algorithm for selecting a slot is:

  • If there are slots that are affine to the module being instantiated, then the most recently used slot is selected to be allocated from. This is done to improve reuse of resources such as memory mappings and additionally try to benefit from temporal locality for things like caches.

  • Otherwise if there are more than N affine slots to other modules, then one of those affine slots is chosen to be allocated. The slot chosen is picked on a least-recently-used basis.

  • Finally, if there are less than N affine slots to other modules, then the non-affine slots are allocated from.

This setting, max_unused_warm_slots, is the value for N in the above algorithm. The purpose of this setting is to have a knob over the RSS impact of “unused slots” for a long-running wasm server.

If this setting is set to 0, for example, then affine slots are aggressively resused on a least-recently-used basis. A “cold” slot is only used if there are no affine slots available to allocate from. This means that the set of slots used over the lifetime of a program is the same as the maximum concurrent number of wasm instances.

If this setting is set to infinity, however, then cold slots are prioritized to be allocated from. This means that the set of slots used over the lifetime of a program will approach PoolingAllocationConfig::instance_count, or the maximum number of slots in the pooling allocator.

Wasmtime does not aggressively decommit all resources associated with a slot when the slot is not in use. For example the PoolingAllocationConfig::linear_memory_keep_resident option can be used to keep memory associated with a slot, even when it’s not in use. This means that the total set of used slots in the pooling instance allocator can impact the overall RSS usage of a program.

The default value for this option is 100.

pub fn linear_memory_keep_resident( &mut self, size: usize, ) -> &mut PoolingAllocationConfig

How much memory, in bytes, to keep resident for each linear memory after deallocation.

This option is only applicable on Linux and has no effect on other platforms.

By default Wasmtime will use madvise to reset the entire contents of linear memory back to zero when a linear memory is deallocated. This option can be used to use memset instead to set memory back to zero which can, in some configurations, reduce the number of page faults taken when a slot is reused.

pub fn table_keep_resident( &mut self, size: usize, ) -> &mut PoolingAllocationConfig

How much memory, in bytes, to keep resident for each table after deallocation.

This option is only applicable on Linux and has no effect on other platforms.

This option is the same as PoolingAllocationConfig::linear_memory_keep_resident except that it is applicable to tables instead.

pub fn instance_count(&mut self, count: u32) -> &mut PoolingAllocationConfig

The maximum number of concurrent instances supported (default is 1000).

This value has a direct impact on the amount of memory allocated by the pooling instance allocator.

The pooling instance allocator allocates three memory pools with sizes depending on this value:

  • An instance pool, where each entry in the pool can store the runtime representation of an instance, including a maximal VMContext structure.

  • A memory pool, where each entry in the pool contains the reserved address space for each linear memory supported by an instance.

  • A table pool, where each entry in the pool contains the space needed for each WebAssembly table supported by an instance (see table_elements to control the size of each table).

Additionally, this value will also control the maximum number of execution stacks allowed for asynchronous execution (one per instance), when enabled.

The memory pool will reserve a large quantity of host process address space to elide the bounds checks required for correct WebAssembly memory semantics. Even for 64-bit address spaces, the address space is limited when dealing with a large number of supported instances.

For example, on Linux x86_64, the userland address space limit is 128 TiB. That might seem like a lot, but each linear memory will reserve 6 GiB of space by default. Multiply that by the number of linear memories each instance supports and then by the number of supported instances and it becomes apparent that address space can be exhausted depending on the number of supported instances.

pub fn instance_size(&mut self, size: usize) -> &mut PoolingAllocationConfig

The maximum size, in bytes, allocated for an instance and its VMContext.

This amount of space is pre-allocated for count number of instances and is used to store the runtime wasmtime_runtime::Instance structure along with its adjacent VMContext structure. The Instance type has a static size but VMContext is dynamically sized depending on the module being instantiated. This size limit loosely correlates to the size of the wasm module, taking into account factors such as:

  • number of functions
  • number of globals
  • number of memories
  • number of tables
  • number of function types

If the allocated size per instance is too small then instantiation of a module will fail at runtime with an error indicating how many bytes were needed. This amount of bytes are committed to memory per-instance when a pooling allocator is created.

The default value for this is 1MB.

pub fn instance_tables(&mut self, tables: u32) -> &mut PoolingAllocationConfig

The maximum number of defined tables for a module (default is 1).

This value controls the capacity of the VMTableDefinition table in each instance’s VMContext structure.

The allocated size of the table will be tables * sizeof(VMTableDefinition) for each instance regardless of how many tables are defined by an instance’s module.

pub fn instance_table_elements( &mut self, elements: u32, ) -> &mut PoolingAllocationConfig

The maximum table elements for any table defined in a module (default is 10000).

If a table’s minimum element limit is greater than this value, the module will fail to instantiate.

If a table’s maximum element limit is unbounded or greater than this value, the maximum will be table_elements for the purpose of any table.grow instruction.

This value is used to reserve the maximum space for each supported table; table elements are pointer-sized in the Wasmtime runtime. Therefore, the space reserved for each instance is tables * table_elements * sizeof::<*const ()>.

pub fn instance_memories( &mut self, memories: u32, ) -> &mut PoolingAllocationConfig

The maximum number of defined linear memories for a module (default is 1).

This value controls the capacity of the VMMemoryDefinition table in each instance’s VMContext structure.

The allocated size of the table will be memories * sizeof(VMMemoryDefinition) for each instance regardless of how many memories are defined by an instance’s module.

pub fn instance_memory_pages( &mut self, pages: u64, ) -> &mut PoolingAllocationConfig

The maximum number of pages for any linear memory defined in a module (default is 160).

The default of 160 means at most 10 MiB of host memory may be committed for each instance.

If a memory’s minimum page limit is greater than this value, the module will fail to instantiate.

If a memory’s maximum page limit is unbounded or greater than this value, the maximum will be memory_pages for the purpose of any memory.grow instruction.

This value is used to control the maximum accessible space for each linear memory of an instance.

The reservation size of each linear memory is controlled by the static_memory_maximum_size setting and this value cannot exceed the configured static memory maximum size.

Trait Implementations§

§

impl Clone for PoolingAllocationConfig

§

fn clone(&self) -> PoolingAllocationConfig

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for PoolingAllocationConfig

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Default for PoolingAllocationConfig

§

fn default() -> PoolingAllocationConfig

Returns the “default value” for a type. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> Any for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

§

fn type_name(&self) -> &'static str

§

impl<T> AnySync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CheckedConversion for T

source§

fn checked_from<T>(t: T) -> Option<Self>
where Self: TryFrom<T>,

Convert from a value of T into an equivalent instance of Option<Self>. Read more
source§

fn checked_into<T>(self) -> Option<T>
where Self: TryInto<T>,

Consume self to return Some equivalent value of Option<T>. Read more
source§

impl<T> CheckedConversion for T

source§

fn checked_from<T>(t: T) -> Option<Self>
where Self: TryFrom<T>,

Convert from a value of T into an equivalent instance of Option<Self>. Read more
source§

fn checked_into<T>(self) -> Option<T>
where Self: TryInto<T>,

Consume self to return Some equivalent value of Option<T>. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> DynClone for T
where T: Clone,

source§

fn __clone_box(&self, _: Private) -> *mut ()

§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<T, U> IntoKey<U> for T
where U: FromKey<T>,

source§

fn into_key(self) -> U

§

impl<Src, Dest> IntoTuple<Dest> for Src
where Dest: FromTuple<Src>,

§

fn into_tuple(self) -> Dest

source§

impl<T> IsType<T> for T

source§

fn from_ref(t: &T) -> &T

Cast reference.
source§

fn into_ref(&self) -> &T

Cast reference.
source§

fn from_mut(t: &mut T) -> &mut T

Cast mutable reference.
source§

fn into_mut(&mut self) -> &mut T

Cast mutable reference.
source§

impl<T, Outer> IsWrappedBy<Outer> for T
where Outer: AsRef<T> + AsMut<T> + From<T>, T: From<Outer>,

source§

fn from_ref(outer: &Outer) -> &T

Get a reference to the inner from the outer.

source§

fn from_mut(outer: &mut Outer) -> &mut T

Get a mutable reference to the inner from the outer.

source§

impl<T, Outer> IsWrappedBy<Outer> for T
where Outer: AsRef<T> + AsMut<T> + From<T>, T: From<Outer>,

source§

fn from_ref(outer: &Outer) -> &T

Get a reference to the inner from the outer.

source§

fn from_mut(outer: &mut Outer) -> &mut T

Get a mutable reference to the inner from the outer.

§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> SaturatedConversion for T

source§

fn saturated_from<T>(t: T) -> Self
where Self: UniqueSaturatedFrom<T>,

Convert from a value of T into an equivalent instance of Self. Read more
source§

fn saturated_into<T>(self) -> T
where Self: UniqueSaturatedInto<T>,

Consume self to return an equivalent value of T. Read more
source§

impl<T> SaturatedConversion for T

source§

fn saturated_from<T>(t: T) -> Self
where Self: UniqueSaturatedFrom<T>,

Convert from a value of T into an equivalent instance of Self. Read more
source§

fn saturated_into<T>(self) -> T
where Self: UniqueSaturatedInto<T>,

Consume self to return an equivalent value of T. Read more
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T, U> TryIntoKey<U> for T
where U: TryFromKey<T>,

§

type Error = <U as TryFromKey<T>>::Error

source§

fn try_into_key(self) -> Result<U, <U as TryFromKey<T>>::Error>

source§

impl<S, T> UncheckedInto<T> for S
where T: UncheckedFrom<S>,

source§

fn unchecked_into(self) -> T

The counterpart to unchecked_from.
source§

impl<S, T> UncheckedInto<T> for S
where T: UncheckedFrom<S>,

source§

fn unchecked_into(self) -> T

The counterpart to unchecked_from.
source§

impl<T, S> UniqueSaturatedInto<T> for S
where T: Bounded, S: TryInto<T>,

source§

fn unique_saturated_into(self) -> T

Consume self to return an equivalent value of T.
source§

impl<T, S> UniqueSaturatedInto<T> for S
where T: Bounded, S: TryInto<T>,

source§

fn unique_saturated_into(self) -> T

Consume self to return an equivalent value of T.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> JsonSchemaMaybe for T

§

impl<T> MaybeDebug for T
where T: Debug,

source§

impl<T> MaybeRefUnwindSafe for T
where T: RefUnwindSafe,

source§

impl<T> MaybeRefUnwindSafe for T
where T: RefUnwindSafe,

source§

impl<T> MaybeRefUnwindSafe for T
where T: RefUnwindSafe,

§

impl<T> MaybeSend for T
where T: Send,

§

impl<T> TypeId for T
where T: Clone + Debug + Default,