Struct linked_hash_set::LinkedHashSet

source ·
pub struct LinkedHashSet<T, S = RandomState> { /* private fields */ }
Expand description

A linked hash set implemented as a linked_hash_map::LinkedHashMap where the value is (), in a similar way std HashSet is implemented from HashMap.

General usage is very similar to a std HashSet. However, a LinkedHashSet maintains insertion order using a doubly-linked list running through its entries. As such methods front(), pop_front(), back() and pop_back() are provided.

§Examples

use linked_hash_set::LinkedHashSet;
// Type inference lets us omit an explicit type signature (which
// would be `LinkedHashSet<&str>` in this example).
let mut books = LinkedHashSet::new();

// Add some books.
books.insert("A Dance With Dragons");
books.insert("To Kill a Mockingbird");
books.insert("The Odyssey");
books.insert("The Great Gatsby");

// Check for a specific one.
if !books.contains("The Winds of Winter") {
    println!(
        "We have {} books, but The Winds of Winter ain't one.",
        books.len()
    );
}

// Remove a book.
books.remove("The Odyssey");

// Remove the first inserted book.
books.pop_front();

// Iterate over the remaining books in insertion order.
for book in &books {
    println!("{}", book);
}

assert_eq!(
    books.into_iter().collect::<Vec<_>>(),
    vec!["To Kill a Mockingbird", "The Great Gatsby"]
);

The easiest way to use LinkedHashSet with a custom type is to derive Eq and Hash. We must also derive PartialEq, this will in the future be implied by Eq.

use linked_hash_set::LinkedHashSet;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking<'a> {
    name: &'a str,
    power: usize,
}

let mut vikings = LinkedHashSet::new();

vikings.insert(Viking {
    name: "Einar",
    power: 9,
});
vikings.insert(Viking {
    name: "Einar",
    power: 9,
});
vikings.insert(Viking {
    name: "Olaf",
    power: 4,
});
vikings.insert(Viking {
    name: "Harald",
    power: 8,
});

// Use derived implementation to print the vikings.
for x in &vikings {
    println!("{:?}", x);
}

A LinkedHashSet with fixed list of elements can be initialized from an array:

use linked_hash_set::LinkedHashSet;

fn main() {
    let viking_names: LinkedHashSet<&str> =
        ["Einar", "Olaf", "Harald"].iter().cloned().collect();
    // use the values stored in the set
}

Implementations§

source§

impl<T: Hash + Eq> LinkedHashSet<T, RandomState>

source

pub fn new() -> LinkedHashSet<T, RandomState>

Creates an empty LinkedHashSet.

§Examples
use linked_hash_set::LinkedHashSet;
let set: LinkedHashSet<i32> = LinkedHashSet::new();
source

pub fn with_capacity(capacity: usize) -> LinkedHashSet<T, RandomState>

Creates an empty LinkedHashSet with the specified capacity.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

§Examples
use linked_hash_set::LinkedHashSet;
let set: LinkedHashSet<i32> = LinkedHashSet::with_capacity(10);
assert!(set.capacity() >= 10);
source§

impl<T, S> LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher,

source

pub fn with_hasher(hasher: S) -> LinkedHashSet<T, S>

Creates a new empty hash set which will use the given hasher to hash keys.

The hash set is also created with the default initial capacity.

Warning: hasher is normally randomly generated, and is designed to allow LinkedHashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

§Examples
use linked_hash_set::LinkedHashSet;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut set = LinkedHashSet::with_hasher(s);
set.insert(2);
source

pub fn with_capacity_and_hasher( capacity: usize, hasher: S, ) -> LinkedHashSet<T, S>

Creates an empty LinkedHashSet with with the specified capacity, using hasher to hash the keys.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

Warning: hasher is normally randomly generated, and is designed to allow LinkedHashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

§Examples
use linked_hash_set::LinkedHashSet;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut set = LinkedHashSet::with_capacity_and_hasher(10, s);
set.insert(1);
source

pub fn hasher(&self) -> &S

Returns a reference to the set’s BuildHasher.

§Examples
use linked_hash_set::LinkedHashSet;
use std::collections::hash_map::RandomState;

let hasher = RandomState::new();
let set: LinkedHashSet<i32> = LinkedHashSet::with_hasher(hasher);
let hasher: &RandomState = set.hasher();
source

pub fn capacity(&self) -> usize

Returns the number of elements the set can hold without reallocating.

§Examples
use linked_hash_set::LinkedHashSet;
let set: LinkedHashSet<i32> = LinkedHashSet::with_capacity(100);
assert!(set.capacity() >= 100);
source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the LinkedHashSet. The collection may reserve more space to avoid frequent reallocations.

§Panics

Panics if the new allocation size overflows usize.

§Examples
use linked_hash_set::LinkedHashSet;
let mut set: LinkedHashSet<i32> = LinkedHashSet::new();
set.reserve(10);
assert!(set.capacity() >= 10);
source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

§Examples
use linked_hash_set::LinkedHashSet;

let mut set = LinkedHashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);
source

pub fn iter(&self) -> Iter<'_, T>

An iterator visiting all elements in insertion order. The iterator element type is &'a T.

§Examples
use linked_hash_set::LinkedHashSet;
let mut set = LinkedHashSet::new();
set.insert("a");
set.insert("b");

// Will print in an insertion order.
for x in set.iter() {
    println!("{}", x);
}
source

pub fn difference<'a>( &'a self, other: &'a LinkedHashSet<T, S>, ) -> Difference<'a, T, S>

Visits the values representing the difference, i.e. the values that are in self but not in other.

§Examples
use linked_hash_set::LinkedHashSet;
let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Can be seen as `a - b`.
for x in a.difference(&b) {
    println!("{}", x); // Print 1
}

let diff: LinkedHashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());

// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: LinkedHashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());
source

pub fn symmetric_difference<'a>( &'a self, other: &'a LinkedHashSet<T, S>, ) -> SymmetricDifference<'a, T, S>

Visits the values representing the symmetric difference, i.e. the values that are in self or in other but not in both.

§Examples
use linked_hash_set::LinkedHashSet;
let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 4 in insertion order.
for x in a.symmetric_difference(&b) {
    println!("{}", x);
}

let diff1: LinkedHashSet<_> = a.symmetric_difference(&b).collect();
let diff2: LinkedHashSet<_> = b.symmetric_difference(&a).collect();

assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());
source

pub fn intersection<'a>( &'a self, other: &'a LinkedHashSet<T, S>, ) -> Intersection<'a, T, S>

Visits the values representing the intersection, i.e. the values that are both in self and other.

§Examples
use linked_hash_set::LinkedHashSet;
let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 2, 3 in insertion order.
for x in a.intersection(&b) {
    println!("{}", x);
}

let intersection: LinkedHashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());
source

pub fn union<'a>(&'a self, other: &'a LinkedHashSet<T, S>) -> Union<'a, T, S>

Visits the values representing the union, i.e. all the values in self or other, without duplicates.

§Examples
use linked_hash_set::LinkedHashSet;
let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: LinkedHashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 2, 3, 4 in insertion order.
for x in a.union(&b) {
    println!("{}", x);
}

let union: LinkedHashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());
source

pub fn len(&self) -> usize

Returns the number of elements in the set.

§Examples
use linked_hash_set::LinkedHashSet;

let mut v = LinkedHashSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);
source

pub fn is_empty(&self) -> bool

Returns true if the set contains no elements.

§Examples
use linked_hash_set::LinkedHashSet;

let mut v = LinkedHashSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());
source

pub fn clear(&mut self)

Clears the set, removing all values.

§Examples
use linked_hash_set::LinkedHashSet;

let mut v = LinkedHashSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());
source

pub fn contains<Q>(&self, value: &Q) -> bool
where T: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns true if the set contains a value.

The value may be any borrowed form of the set’s value type, but Hash and Eq on the borrowed form must match those for the value type.

§Examples
use linked_hash_set::LinkedHashSet;

let set: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
source

pub fn refresh<Q>(&mut self, value: &Q) -> bool
where T: Borrow<Q>, Q: Hash + Eq + ?Sized,

If already present, moves a value to the end of the ordering.

If the set did have this value present, true is returned.

If the set did not have this value present, false is returned.

Similar to LinkedHashMap::get_refresh.

§Examples
use linked_hash_set::LinkedHashSet;

let mut set: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
let was_refreshed = set.refresh(&2);

assert_eq!(was_refreshed, true);
assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![1, 3, 2]);
source

pub fn is_disjoint(&self, other: &LinkedHashSet<T, S>) -> bool

Returns true if self has no elements in common with other. This is equivalent to checking for an empty intersection.

§Examples
use linked_hash_set::LinkedHashSet;

let a: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
let mut b = LinkedHashSet::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
source

pub fn is_subset(&self, other: &LinkedHashSet<T, S>) -> bool

Returns true if the set is a subset of another, i.e. other contains at least all the values in self.

§Examples
use linked_hash_set::LinkedHashSet;

let sup: LinkedHashSet<_> = [1, 2, 3].iter().cloned().collect();
let mut set = LinkedHashSet::new();

assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);
source

pub fn is_superset(&self, other: &LinkedHashSet<T, S>) -> bool

Returns true if the set is a superset of another, i.e. self contains at least all the values in other.

§Examples
use linked_hash_set::LinkedHashSet;

let sub: LinkedHashSet<_> = [1, 2].iter().cloned().collect();
let mut set = LinkedHashSet::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);
source

pub fn insert(&mut self, value: T) -> bool

Adds a value to the set.

If the set did not have this value present, true is returned.

If the set did have this value present, false is returned.

Note that performing this action will always place the value at the end of the ordering whether the set already contained the value or not. Also see insert_if_absent.

§Examples
use linked_hash_set::LinkedHashSet;

let mut set = LinkedHashSet::new();

assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);
source

pub fn insert_if_absent(&mut self, value: T) -> bool

Adds a value to the set, if not already present. The distinction with insert is that order of elements is unaffected when calling this method for a value already contained.

If the set did not have this value present, true is returned.

If the set did have this value present, false is returned.

§Examples
use linked_hash_set::LinkedHashSet;

let mut set = LinkedHashSet::new();

assert_eq!(set.insert_if_absent(2), true);
assert_eq!(set.insert_if_absent(2), false);
assert_eq!(set.len(), 1);
source

pub fn remove<Q>(&mut self, value: &Q) -> bool
where T: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a value from the set. Returns true if the value was present in the set.

The value may be any borrowed form of the set’s value type, but Hash and Eq on the borrowed form must match those for the value type.

This operation will not affect the ordering of the other elements.

§Examples
use linked_hash_set::LinkedHashSet;

let mut set = LinkedHashSet::new();

set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);
source

pub fn front(&self) -> Option<&T>

Gets the first entry.

source

pub fn pop_front(&mut self) -> Option<T>

Removes the first entry.

source

pub fn back(&mut self) -> Option<&T>

Gets the last entry.

source

pub fn pop_back(&mut self) -> Option<T>

Removes the last entry.

Trait Implementations§

source§

impl<'a, 'b, T, S> BitAnd<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S>
where T: Eq + Hash + Clone, S: BuildHasher + Default,

source§

fn bitand(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>

Returns the intersection of self and rhs as a new LinkedHashSet<T, S>.

§Examples
use linked_hash_set::LinkedHashSet;

let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinkedHashSet<_> = vec![2, 3, 4].into_iter().collect();

let set = &a & &b;

let mut i = 0;
let expected = [2, 3];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
§

type Output = LinkedHashSet<T, S>

The resulting type after applying the & operator.
source§

impl<'a, 'b, T, S> BitOr<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S>
where T: Eq + Hash + Clone, S: BuildHasher + Default,

source§

fn bitor(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>

Returns the union of self and rhs as a new LinkedHashSet<T, S>.

§Examples
use linked_hash_set::LinkedHashSet;

let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinkedHashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a | &b;

let mut i = 0;
let expected = [1, 2, 3, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
§

type Output = LinkedHashSet<T, S>

The resulting type after applying the | operator.
source§

impl<'a, 'b, T, S> BitXor<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S>
where T: Eq + Hash + Clone, S: BuildHasher + Default,

source§

fn bitxor(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>

Returns the symmetric difference of self and rhs as a new LinkedHashSet<T, S>.

§Examples
use linked_hash_set::LinkedHashSet;

let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinkedHashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a ^ &b;

let mut i = 0;
let expected = [1, 2, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
§

type Output = LinkedHashSet<T, S>

The resulting type after applying the ^ operator.
source§

impl<T: Hash + Eq + Clone, S: BuildHasher + Clone> Clone for LinkedHashSet<T, S>

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T, S> Debug for LinkedHashSet<T, S>
where T: Eq + Hash + Debug, S: BuildHasher,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T, S> Default for LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher + Default,

source§

fn default() -> LinkedHashSet<T, S>

Creates an empty LinkedHashSet<T, S> with the Default value for the hasher.

source§

impl<'a, T, S> Extend<&'a T> for LinkedHashSet<T, S>
where T: 'a + Eq + Hash + Copy, S: BuildHasher,

source§

fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<T, S> Extend<T> for LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher,

source§

fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<T, S> FromIterator<T> for LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher + Default,

source§

fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> LinkedHashSet<T, S>

Creates a value from an iterator. Read more
source§

impl<T, S> Hash for LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher,

source§

fn hash<H: Hasher>(&self, state: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<'a, T, S> IntoIterator for &'a LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher,

§

type Item = &'a T

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Iter<'a, T>

Creates an iterator from a value. Read more
source§

impl<T, S> IntoIterator for LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher,

source§

fn into_iter(self) -> IntoIter<T>

Creates a consuming iterator, that is, one that moves each value out of the set in insertion order. The set cannot be used after calling this.

§Examples
use linked_hash_set::LinkedHashSet;
let mut set = LinkedHashSet::new();
set.insert("a".to_string());
set.insert("b".to_string());

// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().collect();

// Will print in an insertion order.
for x in &v {
    println!("{}", x);
}
§

type Item = T

The type of the elements being iterated over.
§

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?
source§

impl<T, S> PartialEq for LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher,

source§

fn eq(&self, other: &LinkedHashSet<T, S>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a, 'b, T, S> Sub<&'b LinkedHashSet<T, S>> for &'a LinkedHashSet<T, S>
where T: Eq + Hash + Clone, S: BuildHasher + Default,

source§

fn sub(self, rhs: &LinkedHashSet<T, S>) -> LinkedHashSet<T, S>

Returns the difference of self and rhs as a new LinkedHashSet<T, S>.

§Examples
use linked_hash_set::LinkedHashSet;

let a: LinkedHashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: LinkedHashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());
§

type Output = LinkedHashSet<T, S>

The resulting type after applying the - operator.
source§

impl<T, S> Eq for LinkedHashSet<T, S>
where T: Eq + Hash, S: BuildHasher,

Auto Trait Implementations§

§

impl<T, S> Freeze for LinkedHashSet<T, S>
where S: Freeze,

§

impl<T, S> RefUnwindSafe for LinkedHashSet<T, S>

§

impl<T, S> Send for LinkedHashSet<T, S>
where T: Send, S: Send,

§

impl<T, S> Sync for LinkedHashSet<T, S>
where T: Sync, S: Sync,

§

impl<T, S> Unpin for LinkedHashSet<T, S>
where S: Unpin,

§

impl<T, S> UnwindSafe for LinkedHashSet<T, S>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.