1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
use crate::*;
use alloc::format;
use core::convert::TryFrom;

mod f32;
mod f64;

/// ASN.1 `REAL` type
///
/// # Limitations
///
/// When encoding binary values, only base 2 is supported
#[derive(Debug, PartialEq)]
pub enum Real {
    /// Non-special values
    Binary {
        mantissa: f64,
        base: u32,
        exponent: i32,
        enc_base: u8,
    },
    /// Infinity (∞).
    Infinity,
    /// Negative infinity (−∞).
    NegInfinity,
    /// Zero
    Zero,
}

impl Real {
    /// Create a new `REAL` from the `f64` value.
    pub fn new(f: f64) -> Self {
        if f.is_infinite() {
            if f.is_sign_positive() {
                Self::Infinity
            } else {
                Self::NegInfinity
            }
        } else if f.abs() == 0.0 {
            Self::Zero
        } else {
            let mut e = 0;
            let mut f = f;
            while f.fract() != 0.0 {
                f *= 10.0_f64;
                e -= 1;
            }
            Real::Binary {
                mantissa: f,
                base: 10,
                exponent: e,
                enc_base: 10,
            }
            .normalize_base10()
        }
    }

    pub const fn with_enc_base(self, enc_base: u8) -> Self {
        match self {
            Real::Binary {
                mantissa,
                base,
                exponent,
                ..
            } => Real::Binary {
                mantissa,
                base,
                exponent,
                enc_base,
            },
            e => e,
        }
    }

    fn normalize_base10(self) -> Self {
        match self {
            Real::Binary {
                mantissa,
                base: 10,
                exponent,
                enc_base: _enc_base,
            } => {
                let mut m = mantissa;
                let mut e = exponent;
                while m.abs() > f64::EPSILON && m.rem_euclid(10.0).abs() < f64::EPSILON {
                    m /= 10.0;
                    e += 1;
                }
                Real::Binary {
                    mantissa: m,
                    base: 10,
                    exponent: e,
                    enc_base: _enc_base,
                }
            }
            _ => self,
        }
    }

    /// Create a new binary `REAL`
    #[inline]
    pub const fn binary(mantissa: f64, base: u32, exponent: i32) -> Self {
        Self::Binary {
            mantissa,
            base,
            exponent,
            enc_base: 2,
        }
    }

    /// Returns `true` if this value is positive infinity or negative infinity, and
    /// `false` otherwise.
    #[inline]
    pub fn is_infinite(&self) -> bool {
        matches!(self, Real::Infinity | Real::NegInfinity)
    }

    /// Returns `true` if this number is not infinite.
    #[inline]
    pub fn is_finite(&self) -> bool {
        matches!(self, Real::Zero | Real::Binary { .. })
    }

    /// Returns the 'f64' value of this `REAL`.
    ///
    /// Returned value is a float, and may be infinite.
    pub fn f64(&self) -> f64 {
        match self {
            Real::Binary {
                mantissa,
                base,
                exponent,
                ..
            } => {
                let f = mantissa;
                let exp = (*base as f64).powi(*exponent);
                f * exp
            }
            Real::Zero => 0.0_f64,
            Real::Infinity => f64::INFINITY,
            Real::NegInfinity => f64::NEG_INFINITY,
        }
    }

    /// Returns the 'f32' value of this `REAL`.
    ///
    /// This functions casts the result of [`Real::f64`] to a `f32`, and loses precision.
    pub fn f32(&self) -> f32 {
        self.f64() as f32
    }
}

impl<'a> TryFrom<Any<'a>> for Real {
    type Error = Error;

    fn try_from(any: Any<'a>) -> Result<Self> {
        TryFrom::try_from(&any)
    }
}

impl<'a, 'b> TryFrom<&'b Any<'a>> for Real {
    type Error = Error;

    fn try_from(any: &'b Any<'a>) -> Result<Self> {
        any.tag().assert_eq(Self::TAG)?;
        any.header.assert_primitive()?;
        let data = &any.data;
        if data.is_empty() {
            return Ok(Real::Zero);
        }
        // code inspired from pyasn1
        let first = data[0];
        let rem = &data[1..];
        if first & 0x80 != 0 {
            // binary encoding (X.690 section 8.5.6)
            // format of exponent
            let (n, rem) = match first & 0x03 {
                4 => {
                    let (b, rem) = rem
                        .split_first()
                        .ok_or_else(|| Error::Incomplete(Needed::new(1)))?;
                    (*b as usize, rem)
                }
                b => (b as usize + 1, rem),
            };
            if n >= rem.len() {
                return Err(any.tag().invalid_value("Invalid float value(exponent)"));
            }
            // n cannot be 0 (see the +1 above)
            let (eo, rem) = rem.split_at(n);
            // so 'eo' cannot be empty
            let mut e = if eo[0] & 0x80 != 0 { -1 } else { 0 };
            // safety check: 'eo' length must be <= container type for 'e'
            if eo.len() > 4 {
                return Err(any.tag().invalid_value("Exponent too large (REAL)"));
            }
            for b in eo {
                e = (e << 8) | (*b as i32);
            }
            // base bits
            let b = (first >> 4) & 0x03;
            let _enc_base = match b {
                0 => 2,
                1 => 8,
                2 => 16,
                _ => return Err(any.tag().invalid_value("Illegal REAL encoding base")),
            };
            let e = match b {
                // base 2
                0 => e,
                // base 8
                1 => e * 3,
                // base 16
                2 => e * 4,
                _ => return Err(any.tag().invalid_value("Illegal REAL base")),
            };
            if rem.len() > 8 {
                return Err(any.tag().invalid_value("Mantissa too large (REAL)"));
            }
            let mut p = 0;
            for b in rem {
                p = (p << 8) | (*b as i64);
            }
            // sign bit
            let p = if first & 0x40 != 0 { -p } else { p };
            // scale bits
            let sf = (first >> 2) & 0x03;
            let p = match sf {
                0 => p as f64,
                sf => {
                    // 2^sf: cannot overflow, sf is between 0 and 3
                    let scale = 2_f64.powi(sf as _);
                    (p as f64) * scale
                }
            };
            Ok(Real::Binary {
                mantissa: p,
                base: 2,
                exponent: e,
                enc_base: _enc_base,
            })
        } else if first & 0x40 != 0 {
            // special real value (X.690 section 8.5.8)
            // there shall be only one contents octet,
            if any.header.length != Length::Definite(1) {
                return Err(Error::InvalidLength);
            }
            // with values as follows
            match first {
                0x40 => Ok(Real::Infinity),
                0x41 => Ok(Real::NegInfinity),
                _ => Err(any.tag().invalid_value("Invalid float special value")),
            }
        } else {
            // decimal encoding (X.690 section 8.5.7)
            let s = alloc::str::from_utf8(rem)?;
            match first & 0x03 {
                0x1 => {
                    // NR1
                    match s.parse::<u32>() {
                        Err(_) => Err(any.tag().invalid_value("Invalid float string encoding")),
                        Ok(v) => Ok(Real::new(v.into())),
                    }
                }
                0x2 /* NR2 */ | 0x3 /* NR3 */=> {
                    match s.parse::<f64>() {
                        Err(_) => Err(any.tag().invalid_value("Invalid float string encoding")),
                        Ok(v) => Ok(Real::new(v)),
                    }
                        }
                c => {
                    Err(any.tag().invalid_value(&format!("Invalid NR ({})", c)))
                }
            }
        }
    }
}

impl CheckDerConstraints for Real {
    fn check_constraints(any: &Any) -> Result<()> {
        any.header.assert_primitive()?;
        any.header.length.assert_definite()?;
        // XXX more checks
        Ok(())
    }
}

impl DerAutoDerive for Real {}

impl Tagged for Real {
    const TAG: Tag = Tag::RealType;
}

#[cfg(feature = "std")]
impl ToDer for Real {
    fn to_der_len(&self) -> Result<usize> {
        match self {
            Real::Zero => Ok(0),
            Real::Infinity | Real::NegInfinity => Ok(1),
            Real::Binary { .. } => {
                let mut sink = std::io::sink();
                let n = self
                    .write_der_content(&mut sink)
                    .map_err(|_| Self::TAG.invalid_value("Serialization of REAL failed"))?;
                Ok(n)
            }
        }
    }

    fn write_der_header(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
        let header = Header::new(
            Class::Universal,
            false,
            Self::TAG,
            Length::Definite(self.to_der_len()?),
        );
        header.write_der_header(writer).map_err(Into::into)
    }

    fn write_der_content(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
        match self {
            Real::Zero => Ok(0),
            Real::Infinity => writer.write(&[0x40]).map_err(Into::into),
            Real::NegInfinity => writer.write(&[0x41]).map_err(Into::into),
            Real::Binary {
                mantissa,
                base,
                exponent,
                enc_base: _enc_base,
            } => {
                if *base == 10 {
                    // using character form
                    let sign = if *exponent == 0 { "+" } else { "" };
                    let s = format!("\x03{}E{}{}", mantissa, sign, exponent);
                    return writer.write(s.as_bytes()).map_err(Into::into);
                }
                if *base != 2 {
                    return Err(Self::TAG.invalid_value("Invalid base for REAL").into());
                }
                let mut first: u8 = 0x80;
                // choose encoding base
                let enc_base = *_enc_base;
                let (ms, mut m, enc_base, mut e) =
                    drop_floating_point(*mantissa, enc_base, *exponent);
                assert!(m != 0);
                if ms < 0 {
                    first |= 0x40
                };
                // exponent & mantissa normalization
                match enc_base {
                    2 => {
                        while m & 0x1 == 0 {
                            m >>= 1;
                            e += 1;
                        }
                    }
                    8 => {
                        while m & 0x7 == 0 {
                            m >>= 3;
                            e += 1;
                        }
                        first |= 0x10;
                    }
                    _ /* 16 */ => {
                        while m & 0xf == 0 {
                            m >>= 4;
                            e += 1;
                        }
                        first |= 0x20;
                    }
                }
                // scale factor
                // XXX in DER, sf is always 0 (11.3.1)
                let mut sf = 0;
                while m & 0x1 == 0 && sf < 4 {
                    m >>= 1;
                    sf += 1;
                }
                first |= sf << 2;
                // exponent length and bytes
                let len_e = match e.abs() {
                    0..=0xff => 1,
                    0x100..=0xffff => 2,
                    0x1_0000..=0xff_ffff => 3,
                    // e is an `i32` so it can't be longer than 4 bytes
                    // use 4, so `first` is ORed with 3
                    _ => 4,
                };
                first |= (len_e - 1) & 0x3;
                // write first byte
                let mut n = writer.write(&[first])?;
                // write exponent
                // special case: number of bytes from exponent is > 3 and cannot fit in 2 bits
                #[allow(clippy::identity_op)]
                if len_e == 4 {
                    let b = len_e & 0xff;
                    n += writer.write(&[b])?;
                }
                // we only need to write e.len() bytes
                let bytes = e.to_be_bytes();
                n += writer.write(&bytes[(4 - len_e) as usize..])?;
                // write mantissa
                let bytes = m.to_be_bytes();
                let mut idx = 0;
                for &b in bytes.iter() {
                    if b != 0 {
                        break;
                    }
                    idx += 1;
                }
                n += writer.write(&bytes[idx..])?;
                Ok(n)
            }
        }
    }
}

impl From<f32> for Real {
    fn from(f: f32) -> Self {
        Real::new(f.into())
    }
}

impl From<f64> for Real {
    fn from(f: f64) -> Self {
        Real::new(f)
    }
}

impl From<Real> for f32 {
    fn from(r: Real) -> Self {
        r.f32()
    }
}

impl From<Real> for f64 {
    fn from(r: Real) -> Self {
        r.f64()
    }
}

#[cfg(feature = "std")]
fn drop_floating_point(m: f64, b: u8, e: i32) -> (i8, u64, u8, i32) {
    let ms = if m.is_sign_positive() { 1 } else { -1 };
    let es = if e.is_positive() { 1 } else { -1 };
    let mut m = m.abs();
    let mut e = e;
    //
    if b == 8 {
        m *= 2_f64.powi((e.abs() / 3) * es);
        e = (e.abs() / 3) * es;
    } else if b == 16 {
        m *= 2_f64.powi((e.abs() / 4) * es);
        e = (e.abs() / 4) * es;
    }
    //
    while m.abs() > f64::EPSILON {
        if m.fract() != 0.0 {
            m *= b as f64;
            e -= 1;
        } else {
            break;
        }
    }
    (ms, m as u64, b, e)
}