1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
//! B+-tree nodes.
use super::{slice_insert, slice_shift, Forest, Node, SetValue, INNER_SIZE};
use core::borrow::{Borrow, BorrowMut};
use core::fmt;
/// B+-tree node.
///
/// A B+-tree has different node types for inner nodes and leaf nodes. Inner nodes contain M node
/// references and M-1 keys while leaf nodes contain N keys and values. Values for M and N are
/// chosen such that a node is exactly 64 bytes (a cache line) when keys and values are 32 bits
/// each.
///
/// An inner node contains at least M/2 node references unless it is the right-most node at its
/// level. A leaf node contains at least N/2 keys unless it is the right-most leaf.
#[allow(dead_code)] // workaround for https://github.com/rust-lang/rust/issues/64362
pub(super) enum NodeData<F: Forest> {
Inner {
/// The number of keys in this node.
/// The number of node references is always one more.
size: u8,
/// Keys discriminating sub-trees.
///
/// The key in `keys[i]` is greater than all keys in `tree[i]` and less than or equal to
/// all keys in `tree[i+1]`.
keys: [F::Key; INNER_SIZE - 1],
/// Sub-trees.
tree: [Node; INNER_SIZE],
},
Leaf {
/// Number of key-value pairs in this node.
size: u8,
// Key array.
keys: F::LeafKeys,
// Value array.
vals: F::LeafValues,
},
/// An unused node on the free list.
Free { next: Option<Node> },
}
// Implement `Clone` and `Copy` manually, because deriving them would also require `Forest` to
// implement `Clone`.
impl<F: Forest> Copy for NodeData<F> {}
impl<F: Forest> Clone for NodeData<F> {
fn clone(&self) -> Self {
*self
}
}
impl<F: Forest> NodeData<F> {
/// Is this a free/unused node?
pub fn is_free(&self) -> bool {
match *self {
Self::Free { .. } => true,
_ => false,
}
}
/// Get the number of entries in this node.
///
/// This is the number of outgoing edges in an inner node, or the number of key-value pairs in
/// a leaf node.
pub fn entries(&self) -> usize {
match *self {
Self::Inner { size, .. } => usize::from(size) + 1,
Self::Leaf { size, .. } => usize::from(size),
Self::Free { .. } => panic!("freed node"),
}
}
/// Create an inner node with a single key and two sub-trees.
pub fn inner(left: Node, key: F::Key, right: Node) -> Self {
// Splat the key and right node to the whole array.
// Saves us from inventing a default/reserved value.
let mut tree = [right; INNER_SIZE];
tree[0] = left;
Self::Inner {
size: 1,
keys: [key; INNER_SIZE - 1],
tree,
}
}
/// Create a leaf node with a single key-value pair.
pub fn leaf(key: F::Key, value: F::Value) -> Self {
Self::Leaf {
size: 1,
keys: F::splat_key(key),
vals: F::splat_value(value),
}
}
/// Unwrap an inner node into two slices (keys, trees).
pub fn unwrap_inner(&self) -> (&[F::Key], &[Node]) {
match *self {
Self::Inner {
size,
ref keys,
ref tree,
} => {
let size = usize::from(size);
// TODO: We could probably use `get_unchecked()` here since `size` is always in
// range.
(&keys[0..size], &tree[0..=size])
}
_ => panic!("Expected inner node"),
}
}
/// Unwrap a leaf node into two slices (keys, values) of the same length.
pub fn unwrap_leaf(&self) -> (&[F::Key], &[F::Value]) {
match *self {
Self::Leaf {
size,
ref keys,
ref vals,
} => {
let size = usize::from(size);
let keys = keys.borrow();
let vals = vals.borrow();
// TODO: We could probably use `get_unchecked()` here since `size` is always in
// range.
(&keys[0..size], &vals[0..size])
}
_ => panic!("Expected leaf node"),
}
}
/// Unwrap a mutable leaf node into two slices (keys, values) of the same length.
pub fn unwrap_leaf_mut(&mut self) -> (&mut [F::Key], &mut [F::Value]) {
match *self {
Self::Leaf {
size,
ref mut keys,
ref mut vals,
} => {
let size = usize::from(size);
let keys = keys.borrow_mut();
let vals = vals.borrow_mut();
// TODO: We could probably use `get_unchecked_mut()` here since `size` is always in
// range.
(&mut keys[0..size], &mut vals[0..size])
}
_ => panic!("Expected leaf node"),
}
}
/// Get the critical key for a leaf node.
/// This is simply the first key.
pub fn leaf_crit_key(&self) -> F::Key {
match *self {
Self::Leaf { size, ref keys, .. } => {
debug_assert!(size > 0, "Empty leaf node");
keys.borrow()[0]
}
_ => panic!("Expected leaf node"),
}
}
/// Try to insert `(key, node)` at key-position `index` in an inner node.
/// This means that `key` is inserted at `keys[i]` and `node` is inserted at `tree[i + 1]`.
/// If the node is full, this leaves the node unchanged and returns false.
pub fn try_inner_insert(&mut self, index: usize, key: F::Key, node: Node) -> bool {
match *self {
Self::Inner {
ref mut size,
ref mut keys,
ref mut tree,
} => {
let sz = usize::from(*size);
debug_assert!(sz <= keys.len());
debug_assert!(index <= sz, "Can't insert at {} with {} keys", index, sz);
if let Some(ks) = keys.get_mut(0..=sz) {
*size = (sz + 1) as u8;
slice_insert(ks, index, key);
slice_insert(&mut tree[1..=sz + 1], index, node);
true
} else {
false
}
}
_ => panic!("Expected inner node"),
}
}
/// Try to insert `key, value` at `index` in a leaf node, but fail and return false if the node
/// is full.
pub fn try_leaf_insert(&mut self, index: usize, key: F::Key, value: F::Value) -> bool {
match *self {
Self::Leaf {
ref mut size,
ref mut keys,
ref mut vals,
} => {
let sz = usize::from(*size);
let keys = keys.borrow_mut();
let vals = vals.borrow_mut();
debug_assert!(sz <= keys.len());
debug_assert!(index <= sz);
if let Some(ks) = keys.get_mut(0..=sz) {
*size = (sz + 1) as u8;
slice_insert(ks, index, key);
slice_insert(&mut vals[0..=sz], index, value);
true
} else {
false
}
}
_ => panic!("Expected leaf node"),
}
}
/// Split off the second half of this node.
/// It is assumed that this a completely full inner or leaf node.
///
/// The `insert_index` parameter is the position where an insertion was tried and failed. The
/// node will be split in half with a bias towards an even split after the insertion is retried.
pub fn split(&mut self, insert_index: usize) -> SplitOff<F> {
match *self {
Self::Inner {
ref mut size,
ref keys,
ref tree,
} => {
debug_assert_eq!(usize::from(*size), keys.len(), "Node not full");
// Number of tree entries in the lhs node.
let l_ents = split_pos(tree.len(), insert_index + 1);
let r_ents = tree.len() - l_ents;
// With INNER_SIZE=8, we get l_ents=4 and:
//
// self: [ n0 k0 n1 k1 n2 k2 n3 k3 n4 k4 n5 k5 n6 k6 n7 ]
// lhs: [ n0 k0 n1 k1 n2 k2 n3 ]
// crit_key = k3 (not present in either node)
// rhs: [ n4 k4 n5 k5 n6 k6 n7 ]
// 1. Truncate the LHS.
*size = (l_ents - 1) as u8;
// 2. Copy second half to `rhs_data`.
let mut r_keys = *keys;
r_keys[0..r_ents - 1].copy_from_slice(&keys[l_ents..]);
let mut r_tree = *tree;
r_tree[0..r_ents].copy_from_slice(&tree[l_ents..]);
SplitOff {
lhs_entries: l_ents,
rhs_entries: r_ents,
crit_key: keys[l_ents - 1],
rhs_data: Self::Inner {
size: (r_ents - 1) as u8,
keys: r_keys,
tree: r_tree,
},
}
}
Self::Leaf {
ref mut size,
ref keys,
ref vals,
} => {
let o_keys = keys.borrow();
let o_vals = vals.borrow();
debug_assert_eq!(usize::from(*size), o_keys.len(), "Node not full");
let l_size = split_pos(o_keys.len(), insert_index);
let r_size = o_keys.len() - l_size;
// 1. Truncate the LHS node at `l_size`.
*size = l_size as u8;
// 2. Copy second half to `rhs_data`.
let mut r_keys = *keys;
r_keys.borrow_mut()[0..r_size].copy_from_slice(&o_keys[l_size..]);
let mut r_vals = *vals;
r_vals.borrow_mut()[0..r_size].copy_from_slice(&o_vals[l_size..]);
SplitOff {
lhs_entries: l_size,
rhs_entries: r_size,
crit_key: o_keys[l_size],
rhs_data: Self::Leaf {
size: r_size as u8,
keys: r_keys,
vals: r_vals,
},
}
}
_ => panic!("Expected leaf node"),
}
}
/// Remove the sub-tree at `index` from this inner node.
///
/// Note that `index` refers to a sub-tree entry and not a key entry as it does for
/// `try_inner_insert()`. It is possible to remove the first sub-tree (which can't be inserted
/// by `try_inner_insert()`).
///
/// Return an indication of the node's health (i.e. below half capacity).
pub fn inner_remove(&mut self, index: usize) -> Removed {
match *self {
Self::Inner {
ref mut size,
ref mut keys,
ref mut tree,
} => {
let ents = usize::from(*size) + 1;
debug_assert!(ents <= tree.len());
debug_assert!(index < ents);
// Leave an invalid 0xff size when node becomes empty.
*size = ents.wrapping_sub(2) as u8;
if ents > 1 {
slice_shift(&mut keys[index.saturating_sub(1)..ents - 1], 1);
}
slice_shift(&mut tree[index..ents], 1);
Removed::new(index, ents - 1, tree.len())
}
_ => panic!("Expected inner node"),
}
}
/// Remove the key-value pair at `index` from this leaf node.
///
/// Return an indication of the node's health (i.e. below half capacity).
pub fn leaf_remove(&mut self, index: usize) -> Removed {
match *self {
Self::Leaf {
ref mut size,
ref mut keys,
ref mut vals,
} => {
let sz = usize::from(*size);
let keys = keys.borrow_mut();
let vals = vals.borrow_mut();
*size -= 1;
slice_shift(&mut keys[index..sz], 1);
slice_shift(&mut vals[index..sz], 1);
Removed::new(index, sz - 1, keys.len())
}
_ => panic!("Expected leaf node"),
}
}
/// Balance this node with its right sibling.
///
/// It is assumed that the current node has underflowed. Look at the right sibling node and do
/// one of two things:
///
/// 1. Move all entries to the right node, leaving this node empty, or
/// 2. Distribute entries evenly between the two nodes.
///
/// In the first case, `None` is returned. In the second case, the new critical key for the
/// right sibling node is returned.
pub fn balance(&mut self, crit_key: F::Key, rhs: &mut Self) -> Option<F::Key> {
match (self, rhs) {
(
&mut Self::Inner {
size: ref mut l_size,
keys: ref mut l_keys,
tree: ref mut l_tree,
},
&mut Self::Inner {
size: ref mut r_size,
keys: ref mut r_keys,
tree: ref mut r_tree,
},
) => {
let l_ents = usize::from(*l_size) + 1;
let r_ents = usize::from(*r_size) + 1;
let ents = l_ents + r_ents;
if ents <= r_tree.len() {
// All entries will fit in the RHS node.
// We'll leave the LHS node empty, but first use it as a scratch space.
*l_size = 0;
// Insert `crit_key` between the two nodes.
l_keys[l_ents - 1] = crit_key;
l_keys[l_ents..ents - 1].copy_from_slice(&r_keys[0..r_ents - 1]);
r_keys[0..ents - 1].copy_from_slice(&l_keys[0..ents - 1]);
l_tree[l_ents..ents].copy_from_slice(&r_tree[0..r_ents]);
r_tree[0..ents].copy_from_slice(&l_tree[0..ents]);
*r_size = (ents - 1) as u8;
None
} else {
// The entries don't all fit in one node. Distribute some from RHS -> LHS.
// Split evenly with a bias to putting one entry in LHS.
let r_goal = ents / 2;
let l_goal = ents - r_goal;
debug_assert!(l_goal > l_ents, "Node must be underflowed");
l_keys[l_ents - 1] = crit_key;
l_keys[l_ents..l_goal - 1].copy_from_slice(&r_keys[0..l_goal - 1 - l_ents]);
l_tree[l_ents..l_goal].copy_from_slice(&r_tree[0..l_goal - l_ents]);
*l_size = (l_goal - 1) as u8;
let new_crit = r_keys[r_ents - r_goal - 1];
slice_shift(&mut r_keys[0..r_ents - 1], r_ents - r_goal);
slice_shift(&mut r_tree[0..r_ents], r_ents - r_goal);
*r_size = (r_goal - 1) as u8;
Some(new_crit)
}
}
(
&mut Self::Leaf {
size: ref mut l_size,
keys: ref mut l_keys,
vals: ref mut l_vals,
},
&mut Self::Leaf {
size: ref mut r_size,
keys: ref mut r_keys,
vals: ref mut r_vals,
},
) => {
let l_ents = usize::from(*l_size);
let l_keys = l_keys.borrow_mut();
let l_vals = l_vals.borrow_mut();
let r_ents = usize::from(*r_size);
let r_keys = r_keys.borrow_mut();
let r_vals = r_vals.borrow_mut();
let ents = l_ents + r_ents;
if ents <= r_vals.len() {
// We can fit all entries in the RHS node.
// We'll leave the LHS node empty, but first use it as a scratch space.
*l_size = 0;
l_keys[l_ents..ents].copy_from_slice(&r_keys[0..r_ents]);
r_keys[0..ents].copy_from_slice(&l_keys[0..ents]);
l_vals[l_ents..ents].copy_from_slice(&r_vals[0..r_ents]);
r_vals[0..ents].copy_from_slice(&l_vals[0..ents]);
*r_size = ents as u8;
None
} else {
// The entries don't all fit in one node. Distribute some from RHS -> LHS.
// Split evenly with a bias to putting one entry in LHS.
let r_goal = ents / 2;
let l_goal = ents - r_goal;
debug_assert!(l_goal > l_ents, "Node must be underflowed");
l_keys[l_ents..l_goal].copy_from_slice(&r_keys[0..l_goal - l_ents]);
l_vals[l_ents..l_goal].copy_from_slice(&r_vals[0..l_goal - l_ents]);
*l_size = l_goal as u8;
slice_shift(&mut r_keys[0..r_ents], r_ents - r_goal);
slice_shift(&mut r_vals[0..r_ents], r_ents - r_goal);
*r_size = r_goal as u8;
Some(r_keys[0])
}
}
_ => panic!("Mismatched nodes"),
}
}
}
/// Find the right split position for halving a full node with `len` entries to recover from a
/// failed insertion at `ins`.
///
/// If `len` is even, we should split straight down the middle regardless of `len`.
///
/// If `len` is odd, we should split the node such that the two halves are the same size after the
/// insertion is retried.
fn split_pos(len: usize, ins: usize) -> usize {
// Anticipate `len` being a compile time constant, so this all folds away when `len` is even.
if ins <= len / 2 {
len / 2
} else {
(len + 1) / 2
}
}
/// The result of splitting off the second half of a node.
pub(super) struct SplitOff<F: Forest> {
/// The number of entries left in the original node which becomes the left-hand-side of the
/// pair. This is the number of outgoing node edges for an inner node, and the number of
/// key-value pairs for a leaf node.
pub lhs_entries: usize,
/// The number of entries in the new RHS node.
pub rhs_entries: usize,
/// The critical key separating the LHS and RHS nodes. All keys in the LHS sub-tree are less
/// than the critical key, and all entries in the RHS sub-tree are greater or equal to the
/// critical key.
pub crit_key: F::Key,
/// The RHS node data containing the elements that were removed from the original node (now the
/// LHS).
pub rhs_data: NodeData<F>,
}
/// The result of removing an entry from a node.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(super) enum Removed {
/// An entry was removed, and the node is still in good shape.
Healthy,
/// The node is in good shape after removing the rightmost element.
Rightmost,
/// The node has too few entries now, and it should be balanced with a sibling node.
Underflow,
/// The last entry was removed. For an inner node, this means that the `keys` array is empty
/// and there is just a single sub-tree left.
Empty,
}
impl Removed {
/// Create a `Removed` status from a size and capacity.
fn new(removed: usize, new_size: usize, capacity: usize) -> Self {
if 2 * new_size >= capacity {
if removed == new_size {
Self::Rightmost
} else {
Self::Healthy
}
} else if new_size > 0 {
Self::Underflow
} else {
Self::Empty
}
}
}
// Display ": value" or nothing at all for `()`.
pub(super) trait ValDisp {
fn valfmt(&self, f: &mut fmt::Formatter) -> fmt::Result;
}
impl ValDisp for SetValue {
fn valfmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
impl<T: fmt::Display> ValDisp for T {
fn valfmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, ":{}", self)
}
}
impl<F> fmt::Display for NodeData<F>
where
F: Forest,
F::Key: fmt::Display,
F::Value: ValDisp,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Self::Inner { size, keys, tree } => {
write!(f, "[ {}", tree[0])?;
for i in 0..usize::from(size) {
write!(f, " {} {}", keys[i], tree[i + 1])?;
}
write!(f, " ]")
}
Self::Leaf { size, keys, vals } => {
let keys = keys.borrow();
let vals = vals.borrow();
write!(f, "[")?;
for i in 0..usize::from(size) {
write!(f, " {}", keys[i])?;
vals[i].valfmt(f)?;
}
write!(f, " ]")
}
Self::Free { next: Some(n) } => write!(f, "[ free -> {} ]", n),
Self::Free { next: None } => write!(f, "[ free ]"),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::string::ToString;
use core::mem;
// Forest impl for a set implementation.
struct TF();
impl Forest for TF {
type Key = char;
type Value = SetValue;
type LeafKeys = [char; 15];
type LeafValues = [SetValue; 15];
fn splat_key(key: Self::Key) -> Self::LeafKeys {
[key; 15]
}
fn splat_value(value: Self::Value) -> Self::LeafValues {
[value; 15]
}
}
#[test]
fn inner() {
let n1 = Node(1);
let n2 = Node(2);
let n3 = Node(3);
let n4 = Node(4);
let mut inner = NodeData::<TF>::inner(n1, 'c', n4);
assert_eq!(mem::size_of_val(&inner), 64);
assert_eq!(inner.to_string(), "[ node1 c node4 ]");
assert!(inner.try_inner_insert(0, 'a', n2));
assert_eq!(inner.to_string(), "[ node1 a node2 c node4 ]");
assert!(inner.try_inner_insert(1, 'b', n3));
assert_eq!(inner.to_string(), "[ node1 a node2 b node3 c node4 ]");
for i in 3..7 {
assert!(inner.try_inner_insert(
usize::from(i),
('a' as u8 + i) as char,
Node(i as u32 + 2),
));
}
assert_eq!(
inner.to_string(),
"[ node1 a node2 b node3 c node4 d node5 e node6 f node7 g node8 ]"
);
// Now the node is full and insertion should fail anywhere.
assert!(!inner.try_inner_insert(0, 'x', n3));
assert!(!inner.try_inner_insert(4, 'x', n3));
assert!(!inner.try_inner_insert(7, 'x', n3));
// Splitting should be independent of the hint because we have an even number of node
// references.
let saved = inner.clone();
let sp = inner.split(1);
assert_eq!(sp.lhs_entries, 4);
assert_eq!(sp.rhs_entries, 4);
assert_eq!(sp.crit_key, 'd');
// The critical key is not present in either of the resulting nodes.
assert_eq!(inner.to_string(), "[ node1 a node2 b node3 c node4 ]");
assert_eq!(sp.rhs_data.to_string(), "[ node5 e node6 f node7 g node8 ]");
assert_eq!(inner.inner_remove(0), Removed::Underflow);
assert_eq!(inner.to_string(), "[ node2 b node3 c node4 ]");
assert_eq!(inner.inner_remove(1), Removed::Underflow);
assert_eq!(inner.to_string(), "[ node2 c node4 ]");
assert_eq!(inner.inner_remove(1), Removed::Underflow);
assert_eq!(inner.to_string(), "[ node2 ]");
assert_eq!(inner.inner_remove(0), Removed::Empty);
inner = saved;
let sp = inner.split(6);
assert_eq!(sp.lhs_entries, 4);
assert_eq!(sp.rhs_entries, 4);
assert_eq!(sp.crit_key, 'd');
assert_eq!(inner.to_string(), "[ node1 a node2 b node3 c node4 ]");
assert_eq!(sp.rhs_data.to_string(), "[ node5 e node6 f node7 g node8 ]");
}
#[test]
fn leaf() {
let mut leaf = NodeData::<TF>::leaf('d', SetValue());
assert_eq!(leaf.to_string(), "[ d ]");
assert!(leaf.try_leaf_insert(0, 'a', SetValue()));
assert_eq!(leaf.to_string(), "[ a d ]");
assert!(leaf.try_leaf_insert(1, 'b', SetValue()));
assert!(leaf.try_leaf_insert(2, 'c', SetValue()));
assert_eq!(leaf.to_string(), "[ a b c d ]");
for i in 4..15 {
assert!(leaf.try_leaf_insert(usize::from(i), ('a' as u8 + i) as char, SetValue()));
}
assert_eq!(leaf.to_string(), "[ a b c d e f g h i j k l m n o ]");
// Now the node is full and insertion should fail anywhere.
assert!(!leaf.try_leaf_insert(0, 'x', SetValue()));
assert!(!leaf.try_leaf_insert(8, 'x', SetValue()));
assert!(!leaf.try_leaf_insert(15, 'x', SetValue()));
// The index given to `split` is not the split position, it's a hint for balancing the node.
let saved = leaf.clone();
let sp = leaf.split(12);
assert_eq!(sp.lhs_entries, 8);
assert_eq!(sp.rhs_entries, 7);
assert_eq!(sp.crit_key, 'i');
assert_eq!(leaf.to_string(), "[ a b c d e f g h ]");
assert_eq!(sp.rhs_data.to_string(), "[ i j k l m n o ]");
assert!(leaf.try_leaf_insert(8, 'i', SetValue()));
assert_eq!(leaf.leaf_remove(2), Removed::Healthy);
assert_eq!(leaf.to_string(), "[ a b d e f g h i ]");
assert_eq!(leaf.leaf_remove(7), Removed::Underflow);
assert_eq!(leaf.to_string(), "[ a b d e f g h ]");
leaf = saved;
let sp = leaf.split(7);
assert_eq!(sp.lhs_entries, 7);
assert_eq!(sp.rhs_entries, 8);
assert_eq!(sp.crit_key, 'h');
assert_eq!(leaf.to_string(), "[ a b c d e f g ]");
assert_eq!(sp.rhs_data.to_string(), "[ h i j k l m n o ]");
}
#[test]
fn optimal_split_pos() {
// An even split is easy.
assert_eq!(split_pos(8, 0), 4);
assert_eq!(split_pos(8, 8), 4);
// Easy cases for odd splits.
assert_eq!(split_pos(7, 0), 3);
assert_eq!(split_pos(7, 7), 4);
// If the insertion point is the same as the split position, we
// will append to the lhs node.
assert_eq!(split_pos(7, 3), 3);
assert_eq!(split_pos(7, 4), 4);
}
#[test]
fn inner_balance() {
let n1 = Node(1);
let n2 = Node(2);
let n3 = Node(3);
let mut lhs = NodeData::<TF>::inner(n1, 'a', n2);
assert!(lhs.try_inner_insert(1, 'b', n3));
assert_eq!(lhs.to_string(), "[ node1 a node2 b node3 ]");
let n11 = Node(11);
let n12 = Node(12);
let mut rhs = NodeData::<TF>::inner(n11, 'p', n12);
for i in 1..4 {
assert!(rhs.try_inner_insert(
usize::from(i),
('p' as u8 + i) as char,
Node(i as u32 + 12),
));
}
assert_eq!(
rhs.to_string(),
"[ node11 p node12 q node13 r node14 s node15 ]"
);
// 3+5 elements fit in RHS.
assert_eq!(lhs.balance('o', &mut rhs), None);
assert_eq!(
rhs.to_string(),
"[ node1 a node2 b node3 o node11 p node12 q node13 r node14 s node15 ]"
);
// 2+8 elements are redistributed.
lhs = NodeData::<TF>::inner(Node(20), 'x', Node(21));
assert_eq!(lhs.balance('y', &mut rhs), Some('o'));
assert_eq!(
lhs.to_string(),
"[ node20 x node21 y node1 a node2 b node3 ]"
);
assert_eq!(
rhs.to_string(),
"[ node11 p node12 q node13 r node14 s node15 ]"
);
}
#[test]
fn leaf_balance() {
let mut lhs = NodeData::<TF>::leaf('a', SetValue());
for i in 1..6 {
assert!(lhs.try_leaf_insert(usize::from(i), ('a' as u8 + i) as char, SetValue()));
}
assert_eq!(lhs.to_string(), "[ a b c d e f ]");
let mut rhs = NodeData::<TF>::leaf('0', SetValue());
for i in 1..8 {
assert!(rhs.try_leaf_insert(usize::from(i), ('0' as u8 + i) as char, SetValue()));
}
assert_eq!(rhs.to_string(), "[ 0 1 2 3 4 5 6 7 ]");
// 6+8 elements all fits in rhs.
assert_eq!(lhs.balance('0', &mut rhs), None);
assert_eq!(rhs.to_string(), "[ a b c d e f 0 1 2 3 4 5 6 7 ]");
assert!(lhs.try_leaf_insert(0, 'x', SetValue()));
assert!(lhs.try_leaf_insert(1, 'y', SetValue()));
assert!(lhs.try_leaf_insert(2, 'z', SetValue()));
assert_eq!(lhs.to_string(), "[ x y z ]");
// 3+14 elements need redistribution.
assert_eq!(lhs.balance('a', &mut rhs), Some('0'));
assert_eq!(lhs.to_string(), "[ x y z a b c d e f ]");
assert_eq!(rhs.to_string(), "[ 0 1 2 3 4 5 6 7 ]");
}
}