1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use crate::crypto::noise::x25519_spec;
use rand::SeedableRng;
use zeroize::Zeroize;
/// DH keypair.
#[derive(Clone)]
pub struct Keypair<T: Zeroize> {
pub secret: SecretKey<T>,
pub public: PublicKey<T>,
}
/// DH secret key.
#[derive(Clone)]
pub struct SecretKey<T: Zeroize>(pub T);
impl<T: Zeroize> Drop for SecretKey<T> {
fn drop(&mut self) {
self.0.zeroize()
}
}
impl<T: AsRef<[u8]> + Zeroize> AsRef<[u8]> for SecretKey<T> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
/// DH public key.
#[derive(Clone)]
pub struct PublicKey<T>(pub T);
impl<T: AsRef<[u8]>> PartialEq for PublicKey<T> {
fn eq(&self, other: &PublicKey<T>) -> bool {
self.as_ref() == other.as_ref()
}
}
impl<T: AsRef<[u8]>> Eq for PublicKey<T> {}
impl<T: AsRef<[u8]>> AsRef<[u8]> for PublicKey<T> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
/// Custom `snow::CryptoResolver` which delegates to either the
/// `RingResolver` on native or the `DefaultResolver` on wasm
/// for hash functions and symmetric ciphers, while using x25519-dalek
/// for Curve25519 DH.
pub struct Resolver;
impl snow::resolvers::CryptoResolver for Resolver {
fn resolve_rng(&self) -> Option<Box<dyn snow::types::Random>> {
Some(Box::new(Rng(rand::rngs::StdRng::from_entropy())))
}
fn resolve_dh(&self, choice: &snow::params::DHChoice) -> Option<Box<dyn snow::types::Dh>> {
if let snow::params::DHChoice::Curve25519 = choice {
Some(Box::new(Keypair::<x25519_spec::X25519Spec>::default()))
} else {
None
}
}
fn resolve_hash(
&self,
choice: &snow::params::HashChoice,
) -> Option<Box<dyn snow::types::Hash>> {
snow::resolvers::RingResolver.resolve_hash(choice)
}
fn resolve_cipher(
&self,
choice: &snow::params::CipherChoice,
) -> Option<Box<dyn snow::types::Cipher>> {
snow::resolvers::RingResolver.resolve_cipher(choice)
}
}
/// Wrapper around a CSPRNG to implement `snow::Random` trait for.
struct Rng(rand::rngs::StdRng);
impl rand::RngCore for Rng {
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
self.0.try_fill_bytes(dest)
}
}
impl rand::CryptoRng for Rng {}
impl snow::types::Random for Rng {}