1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// SPDX-License-Identifier: CC0-1.0

//! Structs and functionality related to the ECDSA signature algorithm.
//!

#[cfg(feature = "recovery")]
mod recovery;
pub mod serialized_signature;

use core::{fmt, ptr, str};

#[cfg(feature = "recovery")]
pub use self::recovery::{RecoverableSignature, RecoveryId};
pub use self::serialized_signature::SerializedSignature;
use crate::ffi::CPtr;
#[cfg(feature = "global-context")]
use crate::SECP256K1;
use crate::{
    ffi, from_hex, Error, Message, PublicKey, Secp256k1, SecretKey, Signing, Verification,
};

/// An ECDSA signature
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct Signature(pub(crate) ffi::Signature);
impl_fast_comparisons!(Signature);

impl fmt::Debug for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self, f) }
}

impl fmt::Display for Signature {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let sig = self.serialize_der();
        sig.fmt(f)
    }
}

impl str::FromStr for Signature {
    type Err = Error;
    fn from_str(s: &str) -> Result<Signature, Error> {
        let mut res = [0u8; 72];
        match from_hex(s, &mut res) {
            Ok(x) => Signature::from_der(&res[0..x]),
            _ => Err(Error::InvalidSignature),
        }
    }
}

impl Signature {
    #[inline]
    /// Converts a DER-encoded byte slice to a signature
    pub fn from_der(data: &[u8]) -> Result<Signature, Error> {
        if data.is_empty() {
            return Err(Error::InvalidSignature);
        }

        unsafe {
            let mut ret = ffi::Signature::new();
            if ffi::secp256k1_ecdsa_signature_parse_der(
                ffi::secp256k1_context_no_precomp,
                &mut ret,
                data.as_c_ptr(),
                data.len(),
            ) == 1
            {
                Ok(Signature(ret))
            } else {
                Err(Error::InvalidSignature)
            }
        }
    }

    /// Converts a 64-byte compact-encoded byte slice to a signature
    pub fn from_compact(data: &[u8]) -> Result<Signature, Error> {
        if data.len() != 64 {
            return Err(Error::InvalidSignature);
        }

        unsafe {
            let mut ret = ffi::Signature::new();
            if ffi::secp256k1_ecdsa_signature_parse_compact(
                ffi::secp256k1_context_no_precomp,
                &mut ret,
                data.as_c_ptr(),
            ) == 1
            {
                Ok(Signature(ret))
            } else {
                Err(Error::InvalidSignature)
            }
        }
    }

    /// Converts a "lax DER"-encoded byte slice to a signature. This is basically
    /// only useful for validating signatures in the Bitcoin blockchain from before
    /// 2016. It should never be used in new applications. This library does not
    /// support serializing to this "format"
    pub fn from_der_lax(data: &[u8]) -> Result<Signature, Error> {
        if data.is_empty() {
            return Err(Error::InvalidSignature);
        }

        unsafe {
            let mut ret = ffi::Signature::new();
            if ffi::ecdsa_signature_parse_der_lax(
                ffi::secp256k1_context_no_precomp,
                &mut ret,
                data.as_c_ptr(),
                data.len(),
            ) == 1
            {
                Ok(Signature(ret))
            } else {
                Err(Error::InvalidSignature)
            }
        }
    }

    /// Normalizes a signature to a "low S" form. In ECDSA, signatures are
    /// of the form (r, s) where r and s are numbers lying in some finite
    /// field. The verification equation will pass for (r, s) iff it passes
    /// for (r, -s), so it is possible to ``modify'' signatures in transit
    /// by flipping the sign of s. This does not constitute a forgery since
    /// the signed message still cannot be changed, but for some applications,
    /// changing even the signature itself can be a problem. Such applications
    /// require a "strong signature". It is believed that ECDSA is a strong
    /// signature except for this ambiguity in the sign of s, so to accommodate
    /// these applications libsecp256k1 considers signatures for which s is in
    /// the upper half of the field range invalid. This eliminates the
    /// ambiguity.
    ///
    /// However, for some systems, signatures with high s-values are considered
    /// valid. (For example, parsing the historic Bitcoin blockchain requires
    /// this.) For these applications we provide this normalization function,
    /// which ensures that the s value lies in the lower half of its range.
    pub fn normalize_s(&mut self) {
        unsafe {
            // Ignore return value, which indicates whether the sig
            // was already normalized. We don't care.
            ffi::secp256k1_ecdsa_signature_normalize(
                ffi::secp256k1_context_no_precomp,
                self.as_mut_c_ptr(),
                self.as_c_ptr(),
            );
        }
    }

    /// Obtains a raw pointer suitable for use with FFI functions
    #[inline]
    #[deprecated(since = "0.25.0", note = "Use Self::as_c_ptr if you need to access the FFI layer")]
    pub fn as_ptr(&self) -> *const ffi::Signature { self.as_c_ptr() }

    /// Obtains a raw mutable pointer suitable for use with FFI functions
    #[inline]
    #[deprecated(
        since = "0.25.0",
        note = "Use Self::as_mut_c_ptr if you need to access the FFI layer"
    )]
    pub fn as_mut_ptr(&mut self) -> *mut ffi::Signature { self.as_mut_c_ptr() }

    #[inline]
    /// Serializes the signature in DER format
    pub fn serialize_der(&self) -> SerializedSignature {
        let mut data = [0u8; serialized_signature::MAX_LEN];
        let mut len: usize = serialized_signature::MAX_LEN;
        unsafe {
            let err = ffi::secp256k1_ecdsa_signature_serialize_der(
                ffi::secp256k1_context_no_precomp,
                data.as_mut_ptr(),
                &mut len,
                self.as_c_ptr(),
            );
            debug_assert!(err == 1);
            SerializedSignature::from_raw_parts(data, len)
        }
    }

    #[inline]
    /// Serializes the signature in compact format
    pub fn serialize_compact(&self) -> [u8; 64] {
        let mut ret = [0u8; 64];
        unsafe {
            let err = ffi::secp256k1_ecdsa_signature_serialize_compact(
                ffi::secp256k1_context_no_precomp,
                ret.as_mut_c_ptr(),
                self.as_c_ptr(),
            );
            debug_assert!(err == 1);
        }
        ret
    }

    /// Verifies an ECDSA signature for `msg` using `pk` and the global [`SECP256K1`] context.
    /// The signature must be normalized or verification will fail (see [`Signature::normalize_s`]).
    #[inline]
    #[cfg(feature = "global-context")]
    pub fn verify(&self, msg: &Message, pk: &PublicKey) -> Result<(), Error> {
        SECP256K1.verify_ecdsa(msg, self, pk)
    }
}

impl CPtr for Signature {
    type Target = ffi::Signature;

    fn as_c_ptr(&self) -> *const Self::Target { &self.0 }

    fn as_mut_c_ptr(&mut self) -> *mut Self::Target { &mut self.0 }
}

/// Creates a new signature from a FFI signature
impl From<ffi::Signature> for Signature {
    #[inline]
    fn from(sig: ffi::Signature) -> Signature { Signature(sig) }
}

#[cfg(feature = "serde")]
impl serde::Serialize for Signature {
    fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        if s.is_human_readable() {
            s.collect_str(self)
        } else {
            s.serialize_bytes(&self.serialize_der())
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Signature {
    fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
        if d.is_human_readable() {
            d.deserialize_str(crate::serde_util::FromStrVisitor::new(
                "a hex string representing a DER encoded Signature",
            ))
        } else {
            d.deserialize_bytes(crate::serde_util::BytesVisitor::new(
                "raw byte stream, that represents a DER encoded Signature",
                Signature::from_der,
            ))
        }
    }
}

impl<C: Signing> Secp256k1<C> {
    fn sign_ecdsa_with_noncedata_pointer(
        &self,
        msg: &Message,
        sk: &SecretKey,
        noncedata: Option<&[u8; 32]>,
    ) -> Signature {
        unsafe {
            let mut ret = ffi::Signature::new();
            let noncedata_ptr = match noncedata {
                Some(arr) => arr.as_c_ptr() as *const _,
                None => ptr::null(),
            };
            // We can assume the return value because it's not possible to construct
            // an invalid signature from a valid `Message` and `SecretKey`
            assert_eq!(
                ffi::secp256k1_ecdsa_sign(
                    self.ctx.as_ptr(),
                    &mut ret,
                    msg.as_c_ptr(),
                    sk.as_c_ptr(),
                    ffi::secp256k1_nonce_function_rfc6979,
                    noncedata_ptr
                ),
                1
            );
            Signature::from(ret)
        }
    }

    /// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
    /// Requires a signing-capable context.
    pub fn sign_ecdsa(&self, msg: &Message, sk: &SecretKey) -> Signature {
        self.sign_ecdsa_with_noncedata_pointer(msg, sk, None)
    }

    /// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
    /// and includes 32 bytes of noncedata in the nonce generation via inclusion in
    /// one of the hash operations during nonce generation. This is useful when multiple
    /// signatures are needed for the same Message and SecretKey while still using RFC6979.
    /// Requires a signing-capable context.
    pub fn sign_ecdsa_with_noncedata(
        &self,
        msg: &Message,
        sk: &SecretKey,
        noncedata: &[u8; 32],
    ) -> Signature {
        self.sign_ecdsa_with_noncedata_pointer(msg, sk, Some(noncedata))
    }

    fn sign_grind_with_check(
        &self,
        msg: &Message,
        sk: &SecretKey,
        check: impl Fn(&ffi::Signature) -> bool,
    ) -> Signature {
        let mut entropy_p: *const ffi::types::c_void = ptr::null();
        let mut counter: u32 = 0;
        let mut extra_entropy = [0u8; 32];
        loop {
            unsafe {
                let mut ret = ffi::Signature::new();
                // We can assume the return value because it's not possible to construct
                // an invalid signature from a valid `Message` and `SecretKey`
                assert_eq!(
                    ffi::secp256k1_ecdsa_sign(
                        self.ctx.as_ptr(),
                        &mut ret,
                        msg.as_c_ptr(),
                        sk.as_c_ptr(),
                        ffi::secp256k1_nonce_function_rfc6979,
                        entropy_p
                    ),
                    1
                );
                if check(&ret) {
                    return Signature::from(ret);
                }

                counter += 1;
                extra_entropy[..4].copy_from_slice(&counter.to_le_bytes());
                entropy_p = extra_entropy.as_c_ptr().cast::<ffi::types::c_void>();

                // When fuzzing, these checks will usually spinloop forever, so just short-circuit them.
                #[cfg(secp256k1_fuzz)]
                return Signature::from(ret);
            }
        }
    }

    /// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce
    /// and "grinds" the nonce by passing extra entropy if necessary to produce
    /// a signature that is less than 71 - `bytes_to_grind` bytes. The number
    /// of signing operation performed by this function is exponential in the
    /// number of bytes grinded.
    /// Requires a signing capable context.
    pub fn sign_ecdsa_grind_r(
        &self,
        msg: &Message,
        sk: &SecretKey,
        bytes_to_grind: usize,
    ) -> Signature {
        let len_check = |s: &ffi::Signature| der_length_check(s, 71 - bytes_to_grind);
        self.sign_grind_with_check(msg, sk, len_check)
    }

    /// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce
    /// and "grinds" the nonce by passing extra entropy if necessary to produce
    /// a signature that is less than 71 bytes and compatible with the low r
    /// signature implementation of bitcoin core. In average, this function
    /// will perform two signing operations.
    /// Requires a signing capable context.
    pub fn sign_ecdsa_low_r(&self, msg: &Message, sk: &SecretKey) -> Signature {
        self.sign_grind_with_check(msg, sk, compact_sig_has_zero_first_bit)
    }
}

impl<C: Verification> Secp256k1<C> {
    /// Checks that `sig` is a valid ECDSA signature for `msg` using the public
    /// key `pubkey`. Returns `Ok(())` on success. Note that this function cannot
    /// be used for Bitcoin consensus checking since there may exist signatures
    /// which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a
    /// verify-capable context.
    ///
    /// ```rust
    /// # #[cfg(feature = "rand-std")] {
    /// # use secp256k1::{rand, Secp256k1, Message, Error};
    /// #
    /// # let secp = Secp256k1::new();
    /// # let (secret_key, public_key) = secp.generate_keypair(&mut rand::thread_rng());
    /// #
    /// let message = Message::from_digest_slice(&[0xab; 32]).expect("32 bytes");
    /// let sig = secp.sign_ecdsa(&message, &secret_key);
    /// assert_eq!(secp.verify_ecdsa(&message, &sig, &public_key), Ok(()));
    ///
    /// let message = Message::from_digest_slice(&[0xcd; 32]).expect("32 bytes");
    /// assert_eq!(secp.verify_ecdsa(&message, &sig, &public_key), Err(Error::IncorrectSignature));
    /// # }
    /// ```
    #[inline]
    pub fn verify_ecdsa(
        &self,
        msg: &Message,
        sig: &Signature,
        pk: &PublicKey,
    ) -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ecdsa_verify(
                self.ctx.as_ptr(),
                sig.as_c_ptr(),
                msg.as_c_ptr(),
                pk.as_c_ptr(),
            ) == 0
            {
                Err(Error::IncorrectSignature)
            } else {
                Ok(())
            }
        }
    }
}

pub(crate) fn compact_sig_has_zero_first_bit(sig: &ffi::Signature) -> bool {
    let mut compact = [0u8; 64];
    unsafe {
        let err = ffi::secp256k1_ecdsa_signature_serialize_compact(
            ffi::secp256k1_context_no_precomp,
            compact.as_mut_c_ptr(),
            sig,
        );
        debug_assert!(err == 1);
    }
    compact[0] < 0x80
}

pub(crate) fn der_length_check(sig: &ffi::Signature, max_len: usize) -> bool {
    let mut ser_ret = [0u8; 72];
    let mut len: usize = ser_ret.len();
    unsafe {
        let err = ffi::secp256k1_ecdsa_signature_serialize_der(
            ffi::secp256k1_context_no_precomp,
            ser_ret.as_mut_c_ptr(),
            &mut len,
            sig,
        );
        debug_assert!(err == 1);
    }
    len <= max_len
}