1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use crate::record_priv;
use libp2p_core::multihash::Multihash;
use libp2p_identity::PeerId;
use sha2::digest::generic_array::{typenum::U32, GenericArray};
use sha2::{Digest, Sha256};
use std::borrow::Borrow;
use std::hash::{Hash, Hasher};
use uint::*;
construct_uint! {
/// 256-bit unsigned integer.
pub(super) struct U256(4);
}
/// A `Key` in the DHT keyspace with preserved preimage.
///
/// Keys in the DHT keyspace identify both the participating nodes, as well as
/// the records stored in the DHT.
///
/// `Key`s have an XOR metric as defined in the Kademlia paper, i.e. the bitwise XOR of
/// the hash digests, interpreted as an integer. See [`Key::distance`].
#[derive(Clone, Debug)]
pub struct Key<T> {
preimage: T,
bytes: KeyBytes,
}
impl<T> Key<T> {
/// Constructs a new `Key` by running the given value through a random
/// oracle.
///
/// The preimage of type `T` is preserved. See [`Key::preimage`] and
/// [`Key::into_preimage`].
pub fn new(preimage: T) -> Key<T>
where
T: Borrow<[u8]>,
{
let bytes = KeyBytes::new(preimage.borrow());
Key { preimage, bytes }
}
/// Borrows the preimage of the key.
pub fn preimage(&self) -> &T {
&self.preimage
}
/// Converts the key into its preimage.
pub fn into_preimage(self) -> T {
self.preimage
}
/// Computes the distance of the keys according to the XOR metric.
pub fn distance<U>(&self, other: &U) -> Distance
where
U: AsRef<KeyBytes>,
{
self.bytes.distance(other)
}
/// Returns the uniquely determined key with the given distance to `self`.
///
/// This implements the following equivalence:
///
/// `self xor other = distance <==> other = self xor distance`
pub fn for_distance(&self, d: Distance) -> KeyBytes {
self.bytes.for_distance(d)
}
}
impl<T> From<Key<T>> for KeyBytes {
fn from(key: Key<T>) -> KeyBytes {
key.bytes
}
}
impl<const S: usize> From<Multihash<S>> for Key<Multihash<S>> {
fn from(m: Multihash<S>) -> Self {
let bytes = KeyBytes(Sha256::digest(m.to_bytes()));
Key { preimage: m, bytes }
}
}
impl From<PeerId> for Key<PeerId> {
fn from(p: PeerId) -> Self {
let bytes = KeyBytes(Sha256::digest(p.to_bytes()));
Key { preimage: p, bytes }
}
}
impl From<Vec<u8>> for Key<Vec<u8>> {
fn from(b: Vec<u8>) -> Self {
Key::new(b)
}
}
impl From<record_priv::Key> for Key<record_priv::Key> {
fn from(k: record_priv::Key) -> Self {
Key::new(k)
}
}
impl<T> AsRef<KeyBytes> for Key<T> {
fn as_ref(&self) -> &KeyBytes {
&self.bytes
}
}
impl<T, U> PartialEq<Key<U>> for Key<T> {
fn eq(&self, other: &Key<U>) -> bool {
self.bytes == other.bytes
}
}
impl<T> Eq for Key<T> {}
impl<T> Hash for Key<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.bytes.0.hash(state);
}
}
/// The raw bytes of a key in the DHT keyspace.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct KeyBytes(GenericArray<u8, U32>);
impl KeyBytes {
/// Creates a new key in the DHT keyspace by running the given
/// value through a random oracle.
pub fn new<T>(value: T) -> Self
where
T: Borrow<[u8]>,
{
KeyBytes(Sha256::digest(value.borrow()))
}
/// Computes the distance of the keys according to the XOR metric.
pub fn distance<U>(&self, other: &U) -> Distance
where
U: AsRef<KeyBytes>,
{
let a = U256::from(self.0.as_slice());
let b = U256::from(other.as_ref().0.as_slice());
Distance(a ^ b)
}
/// Returns the uniquely determined key with the given distance to `self`.
///
/// This implements the following equivalence:
///
/// `self xor other = distance <==> other = self xor distance`
pub fn for_distance(&self, d: Distance) -> KeyBytes {
let key_int = U256::from(self.0.as_slice()) ^ d.0;
KeyBytes(GenericArray::from(<[u8; 32]>::from(key_int)))
}
}
impl AsRef<KeyBytes> for KeyBytes {
fn as_ref(&self) -> &KeyBytes {
self
}
}
/// A distance between two keys in the DHT keyspace.
#[derive(Copy, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Debug)]
pub struct Distance(pub(super) U256);
impl Distance {
/// Returns the integer part of the base 2 logarithm of the [`Distance`].
///
/// Returns `None` if the distance is zero.
pub fn ilog2(&self) -> Option<u32> {
(256 - self.0.leading_zeros()).checked_sub(1)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::SHA_256_MH;
use quickcheck::*;
impl Arbitrary for Key<PeerId> {
fn arbitrary(_: &mut Gen) -> Key<PeerId> {
Key::from(PeerId::random())
}
}
impl Arbitrary for Key<Multihash<64>> {
fn arbitrary(g: &mut Gen) -> Key<Multihash<64>> {
let hash: [u8; 32] = core::array::from_fn(|_| u8::arbitrary(g));
Key::from(Multihash::wrap(SHA_256_MH, &hash).unwrap())
}
}
#[test]
fn identity() {
fn prop(a: Key<PeerId>) -> bool {
a.distance(&a) == Distance::default()
}
quickcheck(prop as fn(_) -> _)
}
#[test]
fn symmetry() {
fn prop(a: Key<PeerId>, b: Key<PeerId>) -> bool {
a.distance(&b) == b.distance(&a)
}
quickcheck(prop as fn(_, _) -> _)
}
#[test]
fn triangle_inequality() {
fn prop(a: Key<PeerId>, b: Key<PeerId>, c: Key<PeerId>) -> TestResult {
let ab = a.distance(&b);
let bc = b.distance(&c);
let (ab_plus_bc, overflow) = ab.0.overflowing_add(bc.0);
if overflow {
TestResult::discard()
} else {
TestResult::from_bool(a.distance(&c) <= Distance(ab_plus_bc))
}
}
quickcheck(prop as fn(_, _, _) -> _)
}
#[test]
fn unidirectionality() {
fn prop(a: Key<PeerId>, b: Key<PeerId>) -> bool {
let d = a.distance(&b);
(0..100).all(|_| {
let c = Key::from(PeerId::random());
a.distance(&c) != d || b == c
})
}
quickcheck(prop as fn(_, _) -> _)
}
}