1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
//! A path from the root of a B+-tree to a leaf node.
use super::node::Removed;
use super::{slice_insert, slice_shift, Comparator, Forest, Node, NodeData, NodePool, MAX_PATH};
use core::borrow::Borrow;
use core::marker::PhantomData;
#[cfg(test)]
use core::fmt;
pub(super) struct Path<F: Forest> {
/// Number of path entries including the root and leaf nodes.
size: usize,
/// Path of node references from the root to a leaf node.
node: [Node; MAX_PATH],
/// Entry number in each node.
entry: [u8; MAX_PATH],
unused: PhantomData<F>,
}
impl<F: Forest> Default for Path<F> {
fn default() -> Self {
Self {
size: 0,
node: [Node(0); MAX_PATH],
entry: [0; MAX_PATH],
unused: PhantomData,
}
}
}
impl<F: Forest> Path<F> {
/// Reset path by searching for `key` starting from `root`.
///
/// If `key` is in the tree, returns the corresponding value and leaved the path pointing at
/// the entry. Otherwise returns `None` and:
///
/// - A key smaller than all stored keys returns a path to the first entry of the first leaf.
/// - A key larger than all stored keys returns a path to one beyond the last element of the
/// last leaf.
/// - A key between the stored keys of adjacent leaf nodes returns a path to one beyond the
/// last entry of the first of the leaf nodes.
///
pub fn find(
&mut self,
key: F::Key,
root: Node,
pool: &NodePool<F>,
comp: &dyn Comparator<F::Key>,
) -> Option<F::Value> {
let mut node = root;
for level in 0.. {
self.size = level + 1;
self.node[level] = node;
match pool[node] {
NodeData::Inner { size, keys, tree } => {
// Invariant: `tree[i]` contains keys smaller than
// `keys[i]`, greater or equal to `keys[i-1]`.
let i = match comp.search(key, &keys[0..size.into()]) {
// We hit an existing key, so follow the >= branch.
Ok(i) => i + 1,
// Key is less than `keys[i]`, so follow the < branch.
Err(i) => i,
};
self.entry[level] = i as u8;
node = tree[i];
}
NodeData::Leaf { size, keys, vals } => {
// For a leaf we want either the found key or an insert position.
return match comp.search(key, &keys.borrow()[0..size.into()]) {
Ok(i) => {
self.entry[level] = i as u8;
Some(vals.borrow()[i])
}
Err(i) => {
self.entry[level] = i as u8;
None
}
};
}
NodeData::Free { .. } => panic!("Free {} reached from {}", node, root),
}
}
unreachable!();
}
/// Move path to the first entry of the tree starting at `root` and return it.
pub fn first(&mut self, root: Node, pool: &NodePool<F>) -> (F::Key, F::Value) {
let mut node = root;
for level in 0.. {
self.size = level + 1;
self.node[level] = node;
self.entry[level] = 0;
match pool[node] {
NodeData::Inner { tree, .. } => node = tree[0],
NodeData::Leaf { keys, vals, .. } => return (keys.borrow()[0], vals.borrow()[0]),
NodeData::Free { .. } => panic!("Free {} reached from {}", node, root),
}
}
unreachable!();
}
/// Move this path to the next key-value pair and return it.
pub fn next(&mut self, pool: &NodePool<F>) -> Option<(F::Key, F::Value)> {
match self.leaf_pos() {
None => return None,
Some((node, entry)) => {
let (keys, vals) = pool[node].unwrap_leaf();
if entry + 1 < keys.len() {
self.entry[self.size - 1] += 1;
return Some((keys[entry + 1], vals[entry + 1]));
}
}
}
// The current leaf node is exhausted. Move to the next one.
let leaf_level = self.size - 1;
self.next_node(leaf_level, pool).map(|node| {
let (keys, vals) = pool[node].unwrap_leaf();
(keys[0], vals[0])
})
}
/// Move this path to the previous key-value pair and return it.
///
/// If the path is at the off-the-end position, go to the last key-value pair.
///
/// If the path is already at the first key-value pair, leave it there and return `None`.
pub fn prev(&mut self, root: Node, pool: &NodePool<F>) -> Option<(F::Key, F::Value)> {
// We use `size == 0` as a generic off-the-end position.
if self.size == 0 {
self.goto_subtree_last(0, root, pool);
let (node, entry) = self.leaf_pos().unwrap();
let (keys, vals) = pool[node].unwrap_leaf();
return Some((keys[entry], vals[entry]));
}
match self.leaf_pos() {
None => return None,
Some((node, entry)) => {
if entry > 0 {
self.entry[self.size - 1] -= 1;
let (keys, vals) = pool[node].unwrap_leaf();
return Some((keys[entry - 1], vals[entry - 1]));
}
}
}
// The current leaf node is exhausted. Move to the previous one.
self.prev_leaf(pool).map(|node| {
let (keys, vals) = pool[node].unwrap_leaf();
let e = self.leaf_entry();
(keys[e], vals[e])
})
}
/// Move path to the first entry of the next node at level, if one exists.
///
/// Returns the new node if it exists.
///
/// Reset the path to `size = 0` and return `None` if there is no next node.
fn next_node(&mut self, level: usize, pool: &NodePool<F>) -> Option<Node> {
match self.right_sibling_branch_level(level, pool) {
None => {
self.size = 0;
None
}
Some(bl) => {
let (_, bnodes) = pool[self.node[bl]].unwrap_inner();
self.entry[bl] += 1;
let mut node = bnodes[usize::from(self.entry[bl])];
for l in bl + 1..level {
self.node[l] = node;
self.entry[l] = 0;
node = pool[node].unwrap_inner().1[0];
}
self.node[level] = node;
self.entry[level] = 0;
Some(node)
}
}
}
/// Move the path to the last entry of the previous leaf node, if one exists.
///
/// Returns the new leaf node if it exists.
///
/// Leave the path unchanged and returns `None` if we are already at the first leaf node.
fn prev_leaf(&mut self, pool: &NodePool<F>) -> Option<Node> {
self.left_sibling_branch_level(self.size - 1).map(|bl| {
let entry = self.entry[bl] - 1;
self.entry[bl] = entry;
let (_, bnodes) = pool[self.node[bl]].unwrap_inner();
self.goto_subtree_last(bl + 1, bnodes[usize::from(entry)], pool)
})
}
/// Move this path to the last position for the sub-tree at `level, root`.
fn goto_subtree_last(&mut self, level: usize, root: Node, pool: &NodePool<F>) -> Node {
let mut node = root;
for l in level.. {
self.node[l] = node;
match pool[node] {
NodeData::Inner { size, ref tree, .. } => {
self.entry[l] = size;
node = tree[usize::from(size)];
}
NodeData::Leaf { size, .. } => {
self.entry[l] = size - 1;
self.size = l + 1;
break;
}
NodeData::Free { .. } => panic!("Free {} reached from {}", node, root),
}
}
node
}
/// Set the root node and point the path at the first entry of the node.
pub fn set_root_node(&mut self, root: Node) {
self.size = 1;
self.node[0] = root;
self.entry[0] = 0;
}
/// Get the current leaf node and entry, if any.
pub fn leaf_pos(&self) -> Option<(Node, usize)> {
let i = self.size.wrapping_sub(1);
self.node.get(i).map(|&n| (n, self.entry[i].into()))
}
/// Get the current leaf node.
fn leaf_node(&self) -> Node {
self.node[self.size - 1]
}
/// Get the current entry in the leaf node.
fn leaf_entry(&self) -> usize {
self.entry[self.size - 1].into()
}
/// Is this path pointing to the first entry in the tree?
/// This corresponds to the smallest key.
fn at_first_entry(&self) -> bool {
self.entry[0..self.size].iter().all(|&i| i == 0)
}
/// Get a mutable reference to the current value.
/// This assumes that there is a current value.
pub fn value_mut<'a>(&self, pool: &'a mut NodePool<F>) -> &'a mut F::Value {
&mut pool[self.leaf_node()].unwrap_leaf_mut().1[self.leaf_entry()]
}
/// Insert the key-value pair at the current position.
/// The current position must be the correct insertion location for the key.
/// This function does not check for duplicate keys. Use `find` or similar for that.
/// Returns the new root node.
pub fn insert(&mut self, key: F::Key, value: F::Value, pool: &mut NodePool<F>) -> Node {
if !self.try_leaf_insert(key, value, pool) {
self.split_and_insert(key, value, pool);
}
self.node[0]
}
/// Try to insert `key, value` at the current position, but fail and return false if the leaf
/// node is full.
fn try_leaf_insert(&self, key: F::Key, value: F::Value, pool: &mut NodePool<F>) -> bool {
let index = self.leaf_entry();
// The case `index == 0` should only ever happen when there are no earlier leaf nodes,
// otherwise we should have appended to the previous leaf node instead. This invariant
// means that we don't need to update keys stored in inner nodes here.
debug_assert!(index > 0 || self.at_first_entry());
pool[self.leaf_node()].try_leaf_insert(index, key, value)
}
/// Split the current leaf node and then insert `key, value`.
/// This should only be used if `try_leaf_insert()` fails.
fn split_and_insert(&mut self, mut key: F::Key, value: F::Value, pool: &mut NodePool<F>) {
let orig_root = self.node[0];
// Loop invariant: We need to split the node at `level` and then retry a failed insertion.
// The items to insert are either `(key, ins_node)` or `(key, value)`.
let mut ins_node = None;
let mut split;
for level in (0..self.size).rev() {
// Split the current node.
let mut node = self.node[level];
let mut entry = self.entry[level].into();
split = pool[node].split(entry);
let rhs_node = pool.alloc_node(split.rhs_data);
// Should the path be moved to the new RHS node?
// Prefer the smaller node if we're right in the middle.
// Prefer to append to LHS all other things being equal.
//
// When inserting into an inner node (`ins_node.is_some()`), we must point to a valid
// entry in the current node since the new entry is inserted *after* the insert
// location.
if entry > split.lhs_entries
|| (entry == split.lhs_entries
&& (split.lhs_entries > split.rhs_entries || ins_node.is_some()))
{
node = rhs_node;
entry -= split.lhs_entries;
self.node[level] = node;
self.entry[level] = entry as u8;
}
// Now that we have a not-full node, it must be possible to insert.
match ins_node {
None => {
let inserted = pool[node].try_leaf_insert(entry, key, value);
debug_assert!(inserted);
// If we inserted at the front of the new rhs_node leaf, we need to propagate
// the inserted key as the critical key instead of the previous front key.
if entry == 0 && node == rhs_node {
split.crit_key = key;
}
}
Some(n) => {
let inserted = pool[node].try_inner_insert(entry, key, n);
debug_assert!(inserted);
// The lower level was moved to the new RHS node, so make sure that is
// reflected here.
if n == self.node[level + 1] {
self.entry[level] += 1;
}
}
}
// We are now done with the current level, but `rhs_node` must be inserted in the inner
// node above us. If we're already at level 0, the root node needs to be split.
key = split.crit_key;
ins_node = Some(rhs_node);
if level > 0 {
let pnode = &mut pool[self.node[level - 1]];
let pentry = self.entry[level - 1].into();
if pnode.try_inner_insert(pentry, key, rhs_node) {
// If this level level was moved to the new RHS node, update parent entry.
if node == rhs_node {
self.entry[level - 1] += 1;
}
return;
}
}
}
// If we get here we have split the original root node and need to add an extra level.
let rhs_node = ins_node.expect("empty path");
let root = pool.alloc_node(NodeData::inner(orig_root, key, rhs_node));
let entry = if self.node[0] == rhs_node { 1 } else { 0 };
self.size += 1;
slice_insert(&mut self.node[0..self.size], 0, root);
slice_insert(&mut self.entry[0..self.size], 0, entry);
}
/// Remove the key-value pair at the current position and advance the path to the next
/// key-value pair, leaving the path in a normalized state.
///
/// Return the new root node.
pub fn remove(&mut self, pool: &mut NodePool<F>) -> Option<Node> {
let e = self.leaf_entry();
match pool[self.leaf_node()].leaf_remove(e) {
Removed::Healthy => {
if e == 0 {
self.update_crit_key(pool)
}
Some(self.node[0])
}
status => self.balance_nodes(status, pool),
}
}
/// Get the critical key for the current node at `level`.
///
/// The critical key is less than or equal to all keys in the sub-tree at `level` and greater
/// than all keys to the left of the current node at `level`.
///
/// The left-most node at any level does not have a critical key.
fn current_crit_key(&self, level: usize, pool: &NodePool<F>) -> Option<F::Key> {
// Find the level containing the critical key for the current node.
self.left_sibling_branch_level(level).map(|bl| {
let (keys, _) = pool[self.node[bl]].unwrap_inner();
keys[usize::from(self.entry[bl]) - 1]
})
}
/// Update the critical key after removing the front entry of the leaf node.
fn update_crit_key(&mut self, pool: &mut NodePool<F>) {
// Find the inner level containing the critical key for the current leaf node.
let crit_level = match self.left_sibling_branch_level(self.size - 1) {
None => return,
Some(l) => l,
};
let crit_kidx = self.entry[crit_level] - 1;
// Extract the new critical key from the leaf node.
let crit_key = pool[self.leaf_node()].leaf_crit_key();
let crit_node = self.node[crit_level];
match pool[crit_node] {
NodeData::Inner {
size, ref mut keys, ..
} => {
debug_assert!(crit_kidx < size);
keys[usize::from(crit_kidx)] = crit_key;
}
_ => panic!("Expected inner node"),
}
}
/// Given that the current leaf node is in an unhealthy (underflowed or even empty) status,
/// balance it with sibling nodes.
///
/// Return the new root node.
fn balance_nodes(&mut self, status: Removed, pool: &mut NodePool<F>) -> Option<Node> {
// The current leaf node is not in a healthy state, and its critical key may have changed
// too.
//
// Start by dealing with a changed critical key for the leaf level.
if status != Removed::Empty && self.leaf_entry() == 0 {
self.update_crit_key(pool);
}
let leaf_level = self.size - 1;
if self.heal_level(status, leaf_level, pool) {
// Tree has become empty.
self.size = 0;
return None;
}
// Discard the root node if it has shrunk to a single sub-tree.
let mut ns = 0;
while let NodeData::Inner {
size: 0, ref tree, ..
} = pool[self.node[ns]]
{
ns += 1;
self.node[ns] = tree[0];
}
if ns > 0 {
for l in 0..ns {
pool.free_node(self.node[l]);
}
// Shift the whole array instead of just 0..size because `self.size` may be cleared
// here if the path is pointing off-the-end.
slice_shift(&mut self.node, ns);
slice_shift(&mut self.entry, ns);
if self.size > 0 {
self.size -= ns;
}
}
// Return the root node, even when `size=0` indicating that we're at the off-the-end
// position.
Some(self.node[0])
}
/// After removing an entry from the node at `level`, check its health and rebalance as needed.
///
/// Leave the path up to and including `level` in a normalized state where all entries are in
/// bounds.
///
/// Returns true if the tree becomes empty.
fn heal_level(&mut self, status: Removed, level: usize, pool: &mut NodePool<F>) -> bool {
match status {
Removed::Healthy => {}
Removed::Rightmost => {
// The rightmost entry was removed from the current node, so move the path so it
// points at the first entry of the next node at this level.
debug_assert_eq!(
usize::from(self.entry[level]),
pool[self.node[level]].entries()
);
self.next_node(level, pool);
}
Removed::Underflow => self.underflowed_node(level, pool),
Removed::Empty => return self.empty_node(level, pool),
}
false
}
/// The current node at `level` has underflowed, meaning that it is below half capacity but
/// not completely empty.
///
/// Handle this by balancing entries with the right sibling node.
///
/// Leave the path up to and including `level` in a valid state that points to the same entry.
fn underflowed_node(&mut self, level: usize, pool: &mut NodePool<F>) {
// Look for a right sibling node at this level. If none exists, we allow the underflowed
// node to persist as the right-most node at its level.
if let Some((crit_key, rhs_node)) = self.right_sibling(level, pool) {
// New critical key for the updated right sibling node.
let new_ck: Option<F::Key>;
let empty;
// Make a COPY of the sibling node to avoid fighting the borrow checker.
let mut rhs = pool[rhs_node];
match pool[self.node[level]].balance(crit_key, &mut rhs) {
None => {
// Everything got moved to the RHS node.
new_ck = self.current_crit_key(level, pool);
empty = true;
}
Some(key) => {
// Entries moved from RHS node.
new_ck = Some(key);
empty = false;
}
}
// Put back the updated RHS node data.
pool[rhs_node] = rhs;
// Update the critical key for the RHS node unless it has become a left-most
// node.
if let Some(ck) = new_ck {
self.update_right_crit_key(level, ck, pool);
}
if empty {
let empty_tree = self.empty_node(level, pool);
debug_assert!(!empty_tree);
}
// Any Removed::Rightmost state must have been cleared above by merging nodes. If the
// current entry[level] was one off the end of the node, it will now point at a proper
// entry.
debug_assert!(usize::from(self.entry[level]) < pool[self.node[level]].entries());
} else if usize::from(self.entry[level]) >= pool[self.node[level]].entries() {
// There's no right sibling at this level, so the node can't be rebalanced.
// Check if we are in an off-the-end position.
self.size = 0;
}
}
/// The current node at `level` has become empty.
///
/// Remove the node from its parent node and leave the path in a normalized state. This means
/// that the path at this level will go through the right sibling of this node.
///
/// If the current node has no right sibling, set `self.size = 0`.
///
/// Returns true if the tree becomes empty.
fn empty_node(&mut self, level: usize, pool: &mut NodePool<F>) -> bool {
pool.free_node(self.node[level]);
if level == 0 {
// We just deleted the root node, so the tree is now empty.
return true;
}
// Get the right sibling node before recursively removing nodes.
let rhs_node = self.right_sibling(level, pool).map(|(_, n)| n);
// Remove the current sub-tree from the parent node.
let pl = level - 1;
let pe = self.entry[pl].into();
let status = pool[self.node[pl]].inner_remove(pe);
self.heal_level(status, pl, pool);
// Finally update the path at this level.
match rhs_node {
// We'll leave `self.entry[level]` unchanged. It can be non-zero after moving node
// entries to the right sibling node.
Some(rhs) => self.node[level] = rhs,
// We have no right sibling, so we must have deleted the right-most
// entry. The path should be moved to the "off-the-end" position.
None => self.size = 0,
}
false
}
/// Find the level where the right sibling to the current node at `level` branches off.
///
/// This will be an inner node with two adjacent sub-trees: In one the current node at level is
/// a right-most node, in the other, the right sibling is a left-most node.
///
/// Returns `None` if the current node is a right-most node so no right sibling exists.
fn right_sibling_branch_level(&self, level: usize, pool: &NodePool<F>) -> Option<usize> {
(0..level).rposition(|l| match pool[self.node[l]] {
NodeData::Inner { size, .. } => self.entry[l] < size,
_ => panic!("Expected inner node"),
})
}
/// Find the level where the left sibling to the current node at `level` branches off.
fn left_sibling_branch_level(&self, level: usize) -> Option<usize> {
self.entry[0..level].iter().rposition(|&e| e != 0)
}
/// Get the right sibling node to the current node at `level`.
/// Also return the critical key between the current node and the right sibling.
fn right_sibling(&self, level: usize, pool: &NodePool<F>) -> Option<(F::Key, Node)> {
// Find the critical level: The deepest level where two sibling subtrees contain the
// current node and its right sibling.
self.right_sibling_branch_level(level, pool).map(|bl| {
// Extract the critical key and the `bl+1` node.
let be = usize::from(self.entry[bl]);
let crit_key;
let mut node;
{
let (keys, tree) = pool[self.node[bl]].unwrap_inner();
crit_key = keys[be];
node = tree[be + 1];
}
// Follow left-most links back down to `level`.
for _ in bl + 1..level {
node = pool[node].unwrap_inner().1[0];
}
(crit_key, node)
})
}
/// Update the critical key for the right sibling node at `level`.
fn update_right_crit_key(&self, level: usize, crit_key: F::Key, pool: &mut NodePool<F>) {
let bl = self
.right_sibling_branch_level(level, pool)
.expect("No right sibling exists");
match pool[self.node[bl]] {
NodeData::Inner { ref mut keys, .. } => {
keys[usize::from(self.entry[bl])] = crit_key;
}
_ => panic!("Expected inner node"),
}
}
/// Normalize the path position such that it is either pointing at a real entry or `size=0`
/// indicating "off-the-end".
pub fn normalize(&mut self, pool: &mut NodePool<F>) {
if let Some((leaf, entry)) = self.leaf_pos() {
if entry >= pool[leaf].entries() {
let leaf_level = self.size - 1;
self.next_node(leaf_level, pool);
}
}
}
}
#[cfg(test)]
impl<F: Forest> Path<F> {
/// Check the internal consistency of this path.
pub fn verify(&self, pool: &NodePool<F>) {
for level in 0..self.size {
match pool[self.node[level]] {
NodeData::Inner { size, tree, .. } => {
assert!(
level < self.size - 1,
"Expected leaf node at level {}",
level
);
assert!(
self.entry[level] <= size,
"OOB inner entry {}/{} at level {}",
self.entry[level],
size,
level
);
assert_eq!(
self.node[level + 1],
tree[usize::from(self.entry[level])],
"Node mismatch at level {}",
level
);
}
NodeData::Leaf { size, .. } => {
assert_eq!(level, self.size - 1, "Expected inner node");
assert!(
self.entry[level] <= size,
"OOB leaf entry {}/{}",
self.entry[level],
size,
);
}
NodeData::Free { .. } => {
panic!("Free {} in path", self.node[level]);
}
}
}
}
}
#[cfg(test)]
impl<F: Forest> fmt::Display for Path<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.size == 0 {
write!(f, "<empty path>")
} else {
write!(f, "{}[{}]", self.node[0], self.entry[0])?;
for i in 1..self.size {
write!(f, "--{}[{}]", self.node[i], self.entry[i])?;
}
Ok(())
}
}
}
#[cfg(test)]
mod tests {
use super::super::{Forest, NodeData, NodePool};
use super::*;
use core::cmp::Ordering;
struct TC();
impl Comparator<i32> for TC {
fn cmp(&self, a: i32, b: i32) -> Ordering {
a.cmp(&b)
}
}
struct TF();
impl Forest for TF {
type Key = i32;
type Value = char;
type LeafKeys = [i32; 7];
type LeafValues = [char; 7];
fn splat_key(key: Self::Key) -> Self::LeafKeys {
[key; 7]
}
fn splat_value(value: Self::Value) -> Self::LeafValues {
[value; 7]
}
}
#[test]
fn search_single_leaf() {
// Testing Path::new() for trees with a single leaf node.
let mut pool = NodePool::<TF>::new();
let root = pool.alloc_node(NodeData::leaf(10, 'a'));
let mut p = Path::default();
let comp = TC();
// Search for key less than stored key.
assert_eq!(p.find(5, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
// Search for stored key.
assert_eq!(p.find(10, root, &pool, &comp), Some('a'));
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
// Search for key greater than stored key.
assert_eq!(p.find(15, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
// Modify leaf node to contain two values.
match pool[root] {
NodeData::Leaf {
ref mut size,
ref mut keys,
ref mut vals,
} => {
*size = 2;
keys[1] = 20;
vals[1] = 'b';
}
_ => unreachable!(),
}
// Search for key between stored keys.
assert_eq!(p.find(15, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
// Search for key greater than stored keys.
assert_eq!(p.find(25, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 2);
}
#[test]
fn search_single_inner() {
// Testing Path::new() for trees with a single inner node and two leaves.
let mut pool = NodePool::<TF>::new();
let leaf1 = pool.alloc_node(NodeData::leaf(10, 'a'));
let leaf2 = pool.alloc_node(NodeData::leaf(20, 'b'));
let root = pool.alloc_node(NodeData::inner(leaf1, 20, leaf2));
let mut p = Path::default();
let comp = TC();
// Search for key less than stored keys.
assert_eq!(p.find(5, root, &pool, &comp), None);
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
assert_eq!(p.node[1], leaf1);
assert_eq!(p.entry[1], 0);
assert_eq!(p.find(10, root, &pool, &comp), Some('a'));
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
assert_eq!(p.node[1], leaf1);
assert_eq!(p.entry[1], 0);
// Midway between the two leaf nodes.
assert_eq!(p.find(15, root, &pool, &comp), None);
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
assert_eq!(p.node[1], leaf1);
assert_eq!(p.entry[1], 1);
assert_eq!(p.find(20, root, &pool, &comp), Some('b'));
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
assert_eq!(p.node[1], leaf2);
assert_eq!(p.entry[1], 0);
assert_eq!(p.find(25, root, &pool, &comp), None);
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
assert_eq!(p.node[1], leaf2);
assert_eq!(p.entry[1], 1);
}
}