1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
//! This crate provides traits for working with finite fields.
// Catch documentation errors caused by code changes.
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![deny(rustdoc::broken_intra_doc_links)]
#![forbid(unsafe_code)]
#[cfg(feature = "alloc")]
extern crate alloc;
mod batch;
pub use batch::*;
pub mod helpers;
#[cfg(feature = "derive")]
#[cfg_attr(docsrs, doc(cfg(feature = "derive")))]
pub use ff_derive::PrimeField;
#[cfg(feature = "bits")]
#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
pub use bitvec::view::BitViewSized;
#[cfg(feature = "bits")]
use bitvec::{array::BitArray, order::Lsb0};
use core::fmt;
use core::iter::{Product, Sum};
use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use rand_core::RngCore;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
/// Bit representation of a field element.
#[cfg(feature = "bits")]
#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
pub type FieldBits<V> = BitArray<V, Lsb0>;
/// This trait represents an element of a field.
pub trait Field:
Sized
+ Eq
+ Copy
+ Clone
+ Default
+ Send
+ Sync
+ fmt::Debug
+ 'static
+ ConditionallySelectable
+ ConstantTimeEq
+ Neg<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Sum
+ Product
+ for<'a> Add<&'a Self, Output = Self>
+ for<'a> Sub<&'a Self, Output = Self>
+ for<'a> Mul<&'a Self, Output = Self>
+ for<'a> Sum<&'a Self>
+ for<'a> Product<&'a Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ for<'a> AddAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
+ for<'a> MulAssign<&'a Self>
{
/// The zero element of the field, the additive identity.
const ZERO: Self;
/// The one element of the field, the multiplicative identity.
const ONE: Self;
/// Returns an element chosen uniformly at random using a user-provided RNG.
fn random(rng: impl RngCore) -> Self;
/// Returns true iff this element is zero.
fn is_zero(&self) -> Choice {
self.ct_eq(&Self::ZERO)
}
/// Returns true iff this element is zero.
///
/// # Security
///
/// This method provides **no** constant-time guarantees. Implementors of the
/// `Field` trait **may** optimise this method using non-constant-time logic.
fn is_zero_vartime(&self) -> bool {
self.is_zero().into()
}
/// Squares this element.
#[must_use]
fn square(&self) -> Self;
/// Cubes this element.
#[must_use]
fn cube(&self) -> Self {
self.square() * self
}
/// Doubles this element.
#[must_use]
fn double(&self) -> Self;
/// Computes the multiplicative inverse of this element,
/// failing if the element is zero.
fn invert(&self) -> CtOption<Self>;
/// Computes:
///
/// - $(\textsf{true}, \sqrt{\textsf{num}/\textsf{div}})$, if $\textsf{num}$ and
/// $\textsf{div}$ are nonzero and $\textsf{num}/\textsf{div}$ is a square in the
/// field;
/// - $(\textsf{true}, 0)$, if $\textsf{num}$ is zero;
/// - $(\textsf{false}, 0)$, if $\textsf{num}$ is nonzero and $\textsf{div}$ is zero;
/// - $(\textsf{false}, \sqrt{G_S \cdot \textsf{num}/\textsf{div}})$, if
/// $\textsf{num}$ and $\textsf{div}$ are nonzero and $\textsf{num}/\textsf{div}$ is
/// a nonsquare in the field;
///
/// where $G_S$ is a non-square.
///
/// # Warnings
///
/// - The choice of root from `sqrt` is unspecified.
/// - The value of $G_S$ is unspecified, and cannot be assumed to have any specific
/// value in a generic context.
fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self);
/// Equivalent to `Self::sqrt_ratio(self, one())`.
///
/// The provided method is implemented in terms of [`Self::sqrt_ratio`].
fn sqrt_alt(&self) -> (Choice, Self) {
Self::sqrt_ratio(self, &Self::ONE)
}
/// Returns the square root of the field element, if it is
/// quadratic residue.
///
/// The provided method is implemented in terms of [`Self::sqrt_ratio`].
fn sqrt(&self) -> CtOption<Self> {
let (is_square, res) = Self::sqrt_ratio(self, &Self::ONE);
CtOption::new(res, is_square)
}
/// Exponentiates `self` by `exp`, where `exp` is a little-endian order integer
/// exponent.
///
/// # Guarantees
///
/// This operation is constant time with respect to `self`, for all exponents with the
/// same number of digits (`exp.as_ref().len()`). It is variable time with respect to
/// the number of digits in the exponent.
fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
let mut res = Self::ONE;
for e in exp.as_ref().iter().rev() {
for i in (0..64).rev() {
res = res.square();
let mut tmp = res;
tmp *= self;
res.conditional_assign(&tmp, (((*e >> i) & 1) as u8).into());
}
}
res
}
/// Exponentiates `self` by `exp`, where `exp` is a little-endian order integer
/// exponent.
///
/// # Guarantees
///
/// **This operation is variable time with respect to `self`, for all exponent.** If
/// the exponent is fixed, this operation is effectively constant time. However, for
/// stronger constant-time guarantees, [`Field::pow`] should be used.
fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
let mut res = Self::ONE;
for e in exp.as_ref().iter().rev() {
for i in (0..64).rev() {
res = res.square();
if ((*e >> i) & 1) == 1 {
res.mul_assign(self);
}
}
}
res
}
}
/// This represents an element of a non-binary prime field.
pub trait PrimeField: Field + From<u64> {
/// The prime field can be converted back and forth into this binary
/// representation.
type Repr: Copy + Default + Send + Sync + 'static + AsRef<[u8]> + AsMut<[u8]>;
/// Interpret a string of numbers as a (congruent) prime field element.
/// Does not accept unnecessary leading zeroes or a blank string.
///
/// # Security
///
/// This method provides **no** constant-time guarantees.
fn from_str_vartime(s: &str) -> Option<Self> {
if s.is_empty() {
return None;
}
if s == "0" {
return Some(Self::ZERO);
}
let mut res = Self::ZERO;
let ten = Self::from(10);
let mut first_digit = true;
for c in s.chars() {
match c.to_digit(10) {
Some(c) => {
if first_digit {
if c == 0 {
return None;
}
first_digit = false;
}
res.mul_assign(&ten);
res.add_assign(&Self::from(u64::from(c)));
}
None => {
return None;
}
}
}
Some(res)
}
/// Obtains a field element congruent to the integer `v`.
///
/// For fields where `Self::CAPACITY >= 128`, this is injective and will produce a
/// unique field element.
///
/// For fields where `Self::CAPACITY < 128`, this is surjective; some field elements
/// will be produced by multiple values of `v`.
///
/// If you want to deterministically sample a field element representing a value, use
/// [`FromUniformBytes`] instead.
fn from_u128(v: u128) -> Self {
let lower = v as u64;
let upper = (v >> 64) as u64;
let mut tmp = Self::from(upper);
for _ in 0..64 {
tmp = tmp.double();
}
tmp + Self::from(lower)
}
/// Attempts to convert a byte representation of a field element into an element of
/// this prime field, failing if the input is not canonical (is not smaller than the
/// field's modulus).
///
/// The byte representation is interpreted with the same endianness as elements
/// returned by [`PrimeField::to_repr`].
fn from_repr(repr: Self::Repr) -> CtOption<Self>;
/// Attempts to convert a byte representation of a field element into an element of
/// this prime field, failing if the input is not canonical (is not smaller than the
/// field's modulus).
///
/// The byte representation is interpreted with the same endianness as elements
/// returned by [`PrimeField::to_repr`].
///
/// # Security
///
/// This method provides **no** constant-time guarantees. Implementors of the
/// `PrimeField` trait **may** optimise this method using non-constant-time logic.
fn from_repr_vartime(repr: Self::Repr) -> Option<Self> {
Self::from_repr(repr).into()
}
/// Converts an element of the prime field into the standard byte representation for
/// this field.
///
/// The endianness of the byte representation is implementation-specific. Generic
/// encodings of field elements should be treated as opaque.
fn to_repr(&self) -> Self::Repr;
/// Returns true iff this element is odd.
fn is_odd(&self) -> Choice;
/// Returns true iff this element is even.
#[inline(always)]
fn is_even(&self) -> Choice {
!self.is_odd()
}
/// Modulus of the field written as a string for debugging purposes.
///
/// The encoding of the modulus is implementation-specific. Generic users of the
/// `PrimeField` trait should treat this string as opaque.
const MODULUS: &'static str;
/// How many bits are needed to represent an element of this field.
const NUM_BITS: u32;
/// How many bits of information can be reliably stored in the field element.
///
/// This is usually `Self::NUM_BITS - 1`.
const CAPACITY: u32;
/// Inverse of $2$ in the field.
const TWO_INV: Self;
/// A fixed multiplicative generator of `modulus - 1` order. This element must also be
/// a quadratic nonresidue.
///
/// It can be calculated using [SageMath] as `GF(modulus).primitive_element()`.
///
/// Implementations of this trait MUST ensure that this is the generator used to
/// derive `Self::ROOT_OF_UNITY`.
///
/// [SageMath]: https://www.sagemath.org/
const MULTIPLICATIVE_GENERATOR: Self;
/// An integer `s` satisfying the equation `2^s * t = modulus - 1` with `t` odd.
///
/// This is the number of leading zero bits in the little-endian bit representation of
/// `modulus - 1`.
const S: u32;
/// The `2^s` root of unity.
///
/// It can be calculated by exponentiating `Self::MULTIPLICATIVE_GENERATOR` by `t`,
/// where `t = (modulus - 1) >> Self::S`.
const ROOT_OF_UNITY: Self;
/// Inverse of [`Self::ROOT_OF_UNITY`].
const ROOT_OF_UNITY_INV: Self;
/// Generator of the `t-order` multiplicative subgroup.
///
/// It can be calculated by exponentiating [`Self::MULTIPLICATIVE_GENERATOR`] by `2^s`,
/// where `s` is [`Self::S`].
const DELTA: Self;
}
/// The subset of prime-order fields such that `(modulus - 1)` is divisible by `N`.
///
/// If `N` is prime, there will be `N - 1` valid choices of [`Self::ZETA`]. Similarly to
/// [`PrimeField::MULTIPLICATIVE_GENERATOR`], the specific choice does not matter, as long
/// as the choice is consistent across all uses of the field.
pub trait WithSmallOrderMulGroup<const N: u8>: PrimeField {
/// A field element of small multiplicative order $N$.
///
/// The presense of this element allows you to perform (certain types of)
/// endomorphisms on some elliptic curves.
///
/// It can be calculated using [SageMath] as
/// `GF(modulus).primitive_element() ^ ((modulus - 1) // N)`.
/// Choosing the element of order $N$ that is smallest, when considered
/// as an integer, may help to ensure consistency.
///
/// [SageMath]: https://www.sagemath.org/
const ZETA: Self;
}
/// Trait for constructing a [`PrimeField`] element from a fixed-length uniform byte
/// array.
///
/// "Uniform" means that the byte array's contents must be indistinguishable from the
/// [discrete uniform distribution]. Suitable byte arrays can be obtained:
/// - from a cryptographically-secure randomness source (which makes this constructor
/// equivalent to [`Field::random`]).
/// - from a cryptographic hash function output, which enables a "random" field element to
/// be selected deterministically. This is the primary use case for `FromUniformBytes`.
///
/// The length `N` of the byte array is chosen by the trait implementer such that the loss
/// of uniformity in the mapping from byte arrays to field elements is cryptographically
/// negligible.
///
/// [discrete uniform distribution]: https://en.wikipedia.org/wiki/Discrete_uniform_distribution
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "derive")] {
/// # // Fake this so we don't actually need a dev-dependency on bls12_381.
/// # mod bls12_381 {
/// # use ff::{Field, PrimeField};
/// #
/// # #[derive(PrimeField)]
/// # #[PrimeFieldModulus = "52435875175126190479447740508185965837690552500527637822603658699938581184513"]
/// # #[PrimeFieldGenerator = "7"]
/// # #[PrimeFieldReprEndianness = "little"]
/// # pub struct Scalar([u64; 4]);
/// #
/// # impl ff::FromUniformBytes<64> for Scalar {
/// # fn from_uniform_bytes(_bytes: &[u8; 64]) -> Self {
/// # // Fake impl for doctest
/// # Scalar::ONE
/// # }
/// # }
/// # }
/// #
/// use blake2b_simd::blake2b;
/// use bls12_381::Scalar;
/// use ff::FromUniformBytes;
///
/// // `bls12_381::Scalar` implements `FromUniformBytes<64>`, and BLAKE2b (by default)
/// // produces a 64-byte hash.
/// let hash = blake2b(b"Some message");
/// let val = Scalar::from_uniform_bytes(hash.as_array());
/// # }
/// ```
///
/// # Implementing `FromUniformBytes`
///
/// [`Self::from_uniform_bytes`] should always be implemented by interpreting the provided
/// byte array as the little endian unsigned encoding of an integer, and then reducing that
/// integer modulo the field modulus.
///
/// For security, `N` must be chosen so that `N * 8 >= Self::NUM_BITS + 128`. A larger
/// value of `N` may be chosen for convenience; for example, for a field with a 255-bit
/// modulus, `N = 64` is convenient as it matches the output length of several common
/// cryptographic hash functions (such as SHA-512 and BLAKE2b).
///
/// ## Trait design
///
/// This trait exists because `PrimeField::from_uniform_bytes([u8; N])` cannot currently
/// exist (trait methods cannot use associated constants in the const positions of their
/// type signature, and we do not want `PrimeField` to require a generic const parameter).
/// However, this has the side-effect that `FromUniformBytes` can be implemented multiple
/// times for different values of `N`. Most implementations of [`PrimeField`] should only
/// need to implement `FromUniformBytes` trait for one value of `N` (chosen following the
/// above considerations); if you find yourself needing to implement it multiple times,
/// please [let us know about your use case](https://github.com/zkcrypto/ff/issues/new) so
/// we can take it into consideration for future evolutions of the `ff` traits.
pub trait FromUniformBytes<const N: usize>: PrimeField {
/// Returns a field element that is congruent to the provided little endian unsigned
/// byte representation of an integer.
fn from_uniform_bytes(bytes: &[u8; N]) -> Self;
}
/// This represents the bits of an element of a prime field.
#[cfg(feature = "bits")]
#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
pub trait PrimeFieldBits: PrimeField {
/// The backing store for a bit representation of a prime field element.
type ReprBits: BitViewSized + Send + Sync;
/// Converts an element of the prime field into a little-endian sequence of bits.
fn to_le_bits(&self) -> FieldBits<Self::ReprBits>;
/// Returns the bits of the field characteristic (the modulus) in little-endian order.
fn char_le_bits() -> FieldBits<Self::ReprBits>;
}
/// Functions and re-exported crates used by the [`PrimeField`] derive macro.
#[cfg(feature = "derive")]
#[cfg_attr(docsrs, doc(cfg(feature = "derive")))]
pub mod derive {
pub use crate::arith_impl::*;
pub use {byteorder, rand_core, subtle};
#[cfg(feature = "bits")]
pub use bitvec;
}
#[cfg(feature = "derive")]
mod arith_impl {
/// Computes `a - (b + borrow)`, returning the result and the new borrow.
#[inline(always)]
pub const fn sbb(a: u64, b: u64, borrow: u64) -> (u64, u64) {
let ret = (a as u128).wrapping_sub((b as u128) + ((borrow >> 63) as u128));
(ret as u64, (ret >> 64) as u64)
}
/// Computes `a + b + carry`, returning the result and the new carry over.
#[inline(always)]
pub const fn adc(a: u64, b: u64, carry: u64) -> (u64, u64) {
let ret = (a as u128) + (b as u128) + (carry as u128);
(ret as u64, (ret >> 64) as u64)
}
/// Computes `a + (b * c) + carry`, returning the result and the new carry over.
#[inline(always)]
pub const fn mac(a: u64, b: u64, c: u64, carry: u64) -> (u64, u64) {
let ret = (a as u128) + ((b as u128) * (c as u128)) + (carry as u128);
(ret as u64, (ret >> 64) as u64)
}
}