1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
/*!
Rust X.509 certificate generation utility

This crate provides a way to generate self signed X.509 certificates.

The most simple way of using this crate is by calling the
[`generate_simple_self_signed`] function.
For more customization abilities, we provide the lower level
[`Certificate::from_params`] function.

## Example

```
extern crate rcgen;
use rcgen::generate_simple_self_signed;
# fn main () {
// Generate a certificate that's valid for "localhost" and "hello.world.example"
let subject_alt_names = vec!["hello.world.example".to_string(),
	"localhost".to_string()];

let cert = generate_simple_self_signed(subject_alt_names).unwrap();
println!("{}", cert.serialize_pem().unwrap());
println!("{}", cert.serialize_private_key_pem());
# }
```
*/

#![forbid(unsafe_code)]
#![forbid(non_ascii_idents)]
#![deny(missing_docs)]
#![allow(clippy::complexity, clippy::style, clippy::pedantic)]

use yasna::Tag;
use yasna::models::ObjectIdentifier;
#[cfg(feature = "pem")]
use pem::Pem;
use std::convert::TryInto;
use ring::digest;
use ring::signature::{EcdsaKeyPair, Ed25519KeyPair, RsaKeyPair, RsaEncoding};
use ring::rand::SystemRandom;
use ring::signature::KeyPair as RingKeyPair;
use ring::signature::{self, EcdsaSigningAlgorithm, EdDSAParameters};
use yasna::DERWriter;
use yasna::models::{GeneralizedTime, UTCTime};
use yasna::tags::{TAG_BMPSTRING, TAG_TELETEXSTRING, TAG_UNIVERSALSTRING};
use time::{Date, Month, OffsetDateTime, PrimitiveDateTime, Time};
use std::collections::HashMap;
use std::fmt;
use std::convert::TryFrom;
use std::error::Error;
use std::net::IpAddr;
use std::str::FromStr;
use std::hash::{Hash, Hasher};

/// A self signed certificate together with signing keys
pub struct Certificate {
	params :CertificateParams,
	key_pair :KeyPair,
}


/**
KISS function to generate a self signed certificate

Given a set of domain names you want your certificate to be valid for,
this function fills in the other generation parameters with
reasonable defaults and generates a self signed certificate
as output.

## Example

```
extern crate rcgen;
use rcgen::generate_simple_self_signed;
# fn main () {
let subject_alt_names :&[_] = &["hello.world.example".to_string(),
	"localhost".to_string()];

let cert = generate_simple_self_signed(subject_alt_names).unwrap();
// The certificate is now valid for localhost and the domain "hello.world.example"
println!("{}", cert.serialize_pem().unwrap());
println!("{}", cert.serialize_private_key_pem());
# }
```
*/
pub fn generate_simple_self_signed(subject_alt_names :impl Into<Vec<String>>) -> Result<Certificate, RcgenError> {
	Certificate::from_params(CertificateParams::new(subject_alt_names))
}

// https://tools.ietf.org/html/rfc5280#section-4.1.1

// Example certs usable as reference:
// Uses ECDSA: https://crt.sh/?asn1=607203242

/// pkcs-9-at-extensionRequest in RFC 2985
const OID_PKCS_9_AT_EXTENSION_REQUEST :&[u64] = &[1, 2, 840, 113549, 1, 9, 14];

/// id-at-countryName in RFC 5280
const OID_COUNTRY_NAME :&[u64] = &[2, 5, 4, 6];
/// id-at-localityName in RFC 5280
const OID_LOCALITY_NAME :&[u64] = &[2, 5, 4, 7];
/// id-at-stateOrProvinceName in RFC 5280
const OID_STATE_OR_PROVINCE_NAME :&[u64] = &[2, 5, 4, 8];
/// id-at-organizationName in RFC 5280
const OID_ORG_NAME :&[u64] = &[2, 5, 4, 10];
/// id-at-organizationalUnitName in RFC 5280
const OID_ORG_UNIT_NAME :&[u64] = &[2, 5, 4, 11];
/// id-at-commonName in RFC 5280
const OID_COMMON_NAME :&[u64] = &[2, 5, 4, 3];

// https://tools.ietf.org/html/rfc5480#section-2.1.1
const OID_EC_PUBLIC_KEY :&[u64] = &[1, 2, 840, 10045, 2, 1];
const OID_EC_SECP_256_R1 :&[u64] = &[1, 2, 840, 10045, 3, 1, 7];
const OID_EC_SECP_384_R1 :&[u64] = &[1, 3, 132, 0, 34];

// rsaEncryption in RFC 4055
const OID_RSA_ENCRYPTION :&[u64] = &[1, 2, 840, 113549, 1, 1, 1];

// id-RSASSA-PSS in RFC 4055
const OID_RSASSA_PSS :&[u64] = &[1, 2, 840, 113549, 1, 1, 10];

// https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.3
const OID_KEY_USAGE :&[u64] = &[2, 5, 29, 15];

// https://tools.ietf.org/html/rfc5280#appendix-A.2
// https://tools.ietf.org/html/rfc5280#section-4.2.1.6
const OID_SUBJECT_ALT_NAME :&[u64] = &[2, 5, 29, 17];

// https://tools.ietf.org/html/rfc5280#section-4.2.1.9
const OID_BASIC_CONSTRAINTS :&[u64] = &[2, 5, 29, 19];

// https://tools.ietf.org/html/rfc5280#section-4.2.1.2
const OID_SUBJECT_KEY_IDENTIFIER :&[u64] = &[2, 5, 29, 14];

// https://tools.ietf.org/html/rfc5280#section-4.2.1.1
const OID_AUTHORITY_KEY_IDENTIFIER :&[u64] = &[2, 5, 29, 35];

// id-ce-extKeyUsage in
// https://tools.ietf.org/html/rfc5280#section-4.2.1.12
const OID_EXT_KEY_USAGE :&[u64] = &[2, 5, 29, 37];

// id-ce-nameConstraints in
/// https://tools.ietf.org/html/rfc5280#section-4.2.1.10
const OID_NAME_CONSTRAINTS :&[u64] = &[2, 5, 29, 30];

// id-pe-acmeIdentifier in
// https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.1
const OID_PE_ACME :&[u64] = &[1, 3, 6, 1, 5, 5, 7, 1, 31];

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[allow(missing_docs)]
#[non_exhaustive]
/// The type of subject alt name
pub enum SanType {
	/// Also known as E-Mail address
	Rfc822Name(String),
	DnsName(String),
	URI(String),
	IpAddress(IpAddr),
}

impl SanType {
	#[cfg(feature = "x509-parser")]
	fn try_from_general(name :&x509_parser::extensions::GeneralName<'_>) -> Result<Self, RcgenError> {
		Ok(match name {
			x509_parser::extensions::GeneralName::RFC822Name(name) => {
				SanType::Rfc822Name((*name).into())
			}
			x509_parser::extensions::GeneralName::DNSName(name) => {
				SanType::DnsName((*name).into())
			}
			x509_parser::extensions::GeneralName::URI(name) => {
				SanType::URI((*name).into())
			}
			_ => return Err(RcgenError::InvalidNameType),
		})
	}

	fn tag(&self) -> u64 {
		// Defined in the GeneralName list in
		// https://tools.ietf.org/html/rfc5280#page-38
		const TAG_RFC822_NAME :u64 = 1;
		const TAG_DNS_NAME :u64 = 2;
		const TAG_URI :u64 = 6;
		const TAG_IP_ADDRESS :u64 = 7;

		match self {
			SanType::Rfc822Name(_name) => TAG_RFC822_NAME,
			SanType::DnsName(_name) => TAG_DNS_NAME,
			SanType::URI(_name) => TAG_URI,
			SanType::IpAddress(_addr) => TAG_IP_ADDRESS,
		}
	}
}

#[derive(Debug, PartialEq, Eq, Clone)]
#[allow(missing_docs)]
#[non_exhaustive]
/// General Subtree type.
///
/// This type has similarities to the [`SanType`] enum but is not equal.
/// For example, `GeneralSubtree` has CIDR subnets for ip addresses
/// while [`SanType`] has IP addresses.
pub enum GeneralSubtree {
	/// Also known as E-Mail address
	Rfc822Name(String),
	DnsName(String),
	DirectoryName(DistinguishedName),
	IpAddress(CidrSubnet),
}

impl GeneralSubtree {
	fn tag(&self) -> u64 {
		// Defined in the GeneralName list in
		// https://tools.ietf.org/html/rfc5280#page-38
		const TAG_RFC822_NAME :u64 = 1;
		const TAG_DNS_NAME :u64 = 2;
		const TAG_DIRECTORY_NAME :u64 = 4;
		const TAG_IP_ADDRESS :u64 = 7;

		match self {
			GeneralSubtree::Rfc822Name(_name) => TAG_RFC822_NAME,
			GeneralSubtree::DnsName(_name) => TAG_DNS_NAME,
			GeneralSubtree::DirectoryName(_name) => TAG_DIRECTORY_NAME,
			GeneralSubtree::IpAddress(_addr) => TAG_IP_ADDRESS,
		}
	}
}

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[allow(missing_docs)]
/// CIDR subnet, as per [RFC 4632](https://tools.ietf.org/html/rfc4632)
///
/// You might know CIDR subnets better by their textual representation
/// where they consist of an ip address followed by a slash and a prefix
/// number, for example `192.168.99.0/24`.
///
/// The first field in the enum is the address, the second is the mask.
/// Both are specified in network byte order.
pub enum CidrSubnet {
	V4([u8; 4], [u8; 4]),
	V6([u8; 16], [u8; 16]),
}

macro_rules! mask {
	($t:ty, $d:expr) => {{
		let v = <$t>::max_value();
		let v = v.checked_shr($d as u32).unwrap_or(0);
		(!v).to_be_bytes()
	}};
}

impl CidrSubnet {
	/// Obtains the CidrSubnet from the well-known
	/// addr/prefix notation.
	/// ```
	/// # use std::str::FromStr;
	/// # use rcgen::CidrSubnet;
	/// // The "192.0.2.0/24" example from
	/// // https://tools.ietf.org/html/rfc5280#page-42
	/// let subnet = CidrSubnet::from_str("192.0.2.0/24").unwrap();
	/// assert_eq!(subnet, CidrSubnet::V4([0xC0, 0x00, 0x02, 0x00], [0xFF, 0xFF, 0xFF, 0x00]));
	/// ```
	pub fn from_str(s :&str) -> Result<Self, ()> {
		let mut iter = s.split('/');
		if let (Some(addr_s), Some(prefix_s)) = (iter.next(), iter.next()) {
			let addr = IpAddr::from_str(addr_s).map_err(|_| ())?;
			let prefix = u8::from_str(prefix_s).map_err(|_| ())?;
			Ok(Self::from_addr_prefix(addr, prefix))
		} else {
			Err(())
		}
	}
	/// Obtains the CidrSubnet from an ip address
	/// as well as the specified prefix number.
	///
	/// ```
	/// # use std::net::IpAddr;
	/// # use std::str::FromStr;
	/// # use rcgen::CidrSubnet;
	/// // The "192.0.2.0/24" example from
	/// // https://tools.ietf.org/html/rfc5280#page-42
	/// let addr = IpAddr::from_str("192.0.2.0").unwrap();
	/// let subnet = CidrSubnet::from_addr_prefix(addr, 24);
	/// assert_eq!(subnet, CidrSubnet::V4([0xC0, 0x00, 0x02, 0x00], [0xFF, 0xFF, 0xFF, 0x00]));
	/// ```
	pub fn from_addr_prefix(addr :IpAddr, prefix :u8) -> Self {
		match addr {
			IpAddr::V4(addr) => {
				Self::from_v4_prefix(addr.octets(), prefix)
			},
			IpAddr::V6(addr) => {
				Self::from_v6_prefix(addr.octets(), prefix)
			},
		}
	}
	/// Obtains the CidrSubnet from an IPv4 address in network byte order
	/// as well as the specified prefix.
	pub fn from_v4_prefix(addr :[u8; 4], prefix :u8) -> Self {
		CidrSubnet::V4(addr, mask!(u32, prefix))
	}
	/// Obtains the CidrSubnet from an IPv6 address in network byte order
	/// as well as the specified prefix.
	pub fn from_v6_prefix(addr :[u8; 16], prefix :u8) -> Self {
		CidrSubnet::V6(addr, mask!(u128, prefix))
	}
	fn to_bytes(&self) -> Vec<u8> {
		let mut res = Vec::new();
		match self {
			CidrSubnet::V4(addr, mask) => {
				res.extend_from_slice(addr);
				res.extend_from_slice(mask);
			},
			CidrSubnet::V6(addr, mask) => {
				res.extend_from_slice(addr);
				res.extend_from_slice(mask);
			},
		}
		res
	}
}

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[non_exhaustive]
/// The attribute type of a distinguished name entry
pub enum DnType {
	/// X520countryName
	CountryName,
	/// X520LocalityName
	LocalityName,
	/// X520StateOrProvinceName
	StateOrProvinceName,
	/// X520OrganizationName
	OrganizationName,
	/// X520OrganizationalUnitName
	OrganizationalUnitName,
	/// X520CommonName
	CommonName,
	/// Custom distinguished name type
	CustomDnType(Vec<u64>),
}

impl DnType {
	fn to_oid(&self) -> ObjectIdentifier {
		let sl = match self {
			DnType::CountryName => OID_COUNTRY_NAME,
			DnType::LocalityName => OID_LOCALITY_NAME,
			DnType::StateOrProvinceName => OID_STATE_OR_PROVINCE_NAME,
			DnType::OrganizationName => OID_ORG_NAME,
			DnType::OrganizationalUnitName => OID_ORG_UNIT_NAME,
			DnType::CommonName => OID_COMMON_NAME,
			DnType::CustomDnType(ref oid) => oid.as_slice(),
		};
		ObjectIdentifier::from_slice(sl)
	}

	/// Generate a DnType for the provided OID
	pub fn from_oid(slice :&[u64]) -> Self {
		match slice {
			OID_COUNTRY_NAME => DnType::CountryName,
			OID_LOCALITY_NAME => DnType::LocalityName,
			OID_STATE_OR_PROVINCE_NAME => DnType::StateOrProvinceName,
			OID_ORG_NAME => DnType::OrganizationName,
			OID_ORG_UNIT_NAME => DnType::OrganizationalUnitName,
			OID_COMMON_NAME => DnType::CommonName,
			oid => DnType::CustomDnType(oid.into())
		}
	}
}

/// A distinguished name entry
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[non_exhaustive]
pub enum DnValue {
	/// A string of characters from the T.61 character set
	TeletexString(Vec<u8>),
	/// An ASCII string containing only A-Z, a-z, 0-9, '()+,-./:=? and <SPACE>
	PrintableString(String),
	/// A string encoded using UTF-32
	UniversalString(Vec<u8>),
	/// A string encoded using UTF-8
	Utf8String(String),
	/// A string encoded using UCS-2
	BmpString(Vec<u8>),
}

impl<T> From<T> for DnValue
where
	T :Into<String>
{
	fn from(t :T) -> Self {
		DnValue::Utf8String(t.into())
	}
}

#[derive(Debug, PartialEq, Eq, Clone)]
/**
Distinguished name used e.g. for the issuer and subject fields of a certificate

A distinguished name is a set of (attribute type, attribute value) tuples.

This datastructure keeps them ordered by insertion order.

See also the RFC 5280 sections on the [issuer](https://tools.ietf.org/html/rfc5280#section-4.1.2.4)
and [subject](https://tools.ietf.org/html/rfc5280#section-4.1.2.6) fields.
*/
pub struct DistinguishedName {
	entries :HashMap<DnType, DnValue>,
	order :Vec<DnType>,
}

impl DistinguishedName {
	/// Creates a new, empty distinguished name
	pub fn new() -> Self {
		Self {
			entries : HashMap::new(),
			order : Vec::new(),
		}
	}
	/// Obtains the attribute value for the given attribute type
	pub fn get(&self, ty :&DnType) -> Option<&DnValue> {
		self.entries.get(ty)
	}
	/// Removes the attribute with the specified DnType
	///
	/// Returns true when an actual removal happened, false
	/// when no attribute with the specified DnType was
	/// found.
	pub fn remove(&mut self, ty :DnType) -> bool {
		let removed = self.entries.remove(&ty).is_some();
		if removed {
			self.order.retain(|ty_o| &ty != ty_o);
		}
		removed
	}
	/// Inserts or updates an attribute that consists of type and name
	///
	/// ```
	/// # use rcgen::{DistinguishedName, DnType, DnValue};
	/// let mut dn = DistinguishedName::new();
	/// dn.push(DnType::OrganizationName, "Crab widgits SE");
	/// dn.push(DnType::CommonName, DnValue::PrintableString("Master Cert".to_string()));
	/// assert_eq!(dn.get(&DnType::OrganizationName), Some(&DnValue::Utf8String("Crab widgits SE".to_string())));
	/// assert_eq!(dn.get(&DnType::CommonName), Some(&DnValue::PrintableString("Master Cert".to_string())));
	/// ```
	pub fn push(&mut self, ty :DnType, s :impl Into<DnValue>) {
		if !self.entries.contains_key(&ty) {
			self.order.push(ty.clone());
		}
		self.entries.insert(ty, s.into());
	}
	/// Iterate over the entries
	pub fn iter(&self) -> DistinguishedNameIterator<'_> {
		DistinguishedNameIterator {
			distinguished_name :self,
			iter :self.order.iter()
		}
	}

	#[cfg(feature = "x509-parser")]
	fn from_name(name :&x509_parser::x509::X509Name) -> Result<Self, RcgenError> {
		use x509_parser::der_parser::asn1_rs::Tag;

		let mut dn = DistinguishedName::new();
		for rdn in name.iter() {
			let mut rdn_iter = rdn.iter();
			let dn_opt = rdn_iter.next();
			let attr = if let Some(dn) = dn_opt {
				if rdn_iter.next().is_some() {
					// no support for distinguished names with more than one attribute
					return Err(RcgenError::CouldNotParseCertificate);
				} else {
					dn
				}
			} else {
				panic!("x509-parser distinguished name set is empty");
			};

			let attr_type_oid = attr.attr_type().iter()
				.ok_or(RcgenError::CouldNotParseCertificate)?;
			let dn_type = DnType::from_oid(&attr_type_oid.collect::<Vec<_>>());
			let data = attr.attr_value().data;
			let dn_value = match attr.attr_value().header.tag() {
				Tag::T61String => DnValue::TeletexString(data.into()),
				Tag::PrintableString => {
					let data = std::str::from_utf8(data)
						.map_err(|_| RcgenError::CouldNotParseCertificate)?;
					DnValue::PrintableString(data.to_owned())
				},
				Tag::UniversalString => DnValue::UniversalString(data.into()),
				Tag::Utf8String => {
					let data = std::str::from_utf8(data)
						.map_err(|_| RcgenError::CouldNotParseCertificate)?;
					DnValue::Utf8String(data.to_owned())
				},
				Tag::BmpString => DnValue::BmpString(data.into()),
				_ => return Err(RcgenError::CouldNotParseCertificate),
			};

			dn.push(dn_type, dn_value);
		}
		Ok(dn)
	}
}

/**
Iterator over [`DistinguishedName`] entries
*/
pub struct DistinguishedNameIterator<'a> {
	distinguished_name :&'a DistinguishedName,
	iter :std::slice::Iter<'a, DnType>,
}

impl <'a> Iterator for DistinguishedNameIterator<'a> {
	type Item = (&'a DnType, &'a DnValue);

	fn next(&mut self) -> Option<Self::Item> {
		self.iter.next()
			.and_then(|ty| {
				self.distinguished_name.entries.get(ty).map(|v| (ty, v))
			})
	}
}


/// A public key, extracted from a CSR
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct PublicKey {
	raw: Vec<u8>,
	alg: &'static SignatureAlgorithm,
}

impl PublicKeyData for PublicKey {
	fn alg(&self) -> &SignatureAlgorithm {
		self.alg
	}

	fn raw_bytes(&self) -> &[u8] {
		&self.raw
	}
}

/// Data for a certificate signing request
#[allow(missing_docs)]
pub struct CertificateSigningRequest {
	pub params :CertificateParams,
	pub public_key :PublicKey,
}

impl CertificateSigningRequest {
	/// Parse a certificate signing request from the ASCII PEM format
	///
	/// See [`from_der`](Self::from_der) for more details.
	#[cfg(all(feature = "pem", feature = "x509-parser"))]
	pub fn from_pem(pem_str :&str) -> Result<Self, RcgenError> {
		let csr = pem::parse(pem_str)
			.or(Err(RcgenError::CouldNotParseCertificationRequest))?;
		Self::from_der(&csr.contents)
	}

	/// Parse a certificate signing request from DER-encoded bytes
	///
	/// Currently, this only supports the `Subject Alternative Name` extension.
	/// On encountering other extensions, this function will return an error.
	#[cfg(feature = "x509-parser")]
	pub fn from_der(csr :&[u8]) -> Result<Self, RcgenError> {
		use x509_parser::prelude::FromDer;
		let csr = x509_parser::certification_request::X509CertificationRequest::from_der(csr)
			.map_err(|_| RcgenError::CouldNotParseCertificationRequest)?.1;
		csr.verify_signature().map_err(|_| RcgenError::RingUnspecified)?;
		let alg_oid = csr.signature_algorithm.algorithm.iter()
			.ok_or(RcgenError::CouldNotParseCertificationRequest)?
			.collect::<Vec<_>>();
		let alg = SignatureAlgorithm::from_oid(&alg_oid)?;

		let info = &csr.certification_request_info;
		let mut params = CertificateParams::default();
		params.alg = alg;
		params.distinguished_name = DistinguishedName::from_name(&info.subject)?;
		let raw = info.subject_pki.subject_public_key.data.to_vec();

		if let Some(extensions) = csr.requested_extensions() {
			for ext in extensions {
				match ext {
					x509_parser::extensions::ParsedExtension::SubjectAlternativeName(san) => {
						for name in &san.general_names {
							params.subject_alt_names.push(SanType::try_from_general(name)?);
						}
					}
					_ => return Err(RcgenError::UnsupportedExtension),
				}
			}
		}

		// Not yet handled:
		// * is_ca
		// * extended_key_usages
		// * name_constraints
		// and any other extensions.

		Ok(Self {
			params,
			public_key: PublicKey { alg, raw },
		})
	}
	/// Serializes the requested certificate, signed with another certificate's key, in binary DER format
	pub fn serialize_der_with_signer(&self, ca :&Certificate) -> Result<Vec<u8>, RcgenError> {
		self.params.serialize_der_with_signer(&self.public_key, ca)
	}
	/// Serializes the requested certificate, signed with another certificate's key, to the ASCII PEM format
	///
	/// *This function is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn serialize_pem_with_signer(&self, ca :&Certificate) -> Result<String, RcgenError> {
		let p = Pem {
			tag : "CERTIFICATE".to_string(),
			contents : self.params.serialize_der_with_signer(&self.public_key, ca)?,
		};
		Ok(pem::encode(&p))
	}
}

/// Parameters used for certificate generation
#[allow(missing_docs)]
#[non_exhaustive]
pub struct CertificateParams {
	pub alg :&'static SignatureAlgorithm,
	pub not_before :OffsetDateTime,
	pub not_after :OffsetDateTime,
	pub serial_number :Option<u64>,
	pub subject_alt_names :Vec<SanType>,
	pub distinguished_name :DistinguishedName,
	pub is_ca :IsCa,
	pub key_usages :Vec<KeyUsagePurpose>,
	pub extended_key_usages :Vec<ExtendedKeyUsagePurpose>,
	pub name_constraints :Option<NameConstraints>,
	pub custom_extensions :Vec<CustomExtension>,
	/// The certificate's key pair, a new random key pair will be generated if this is `None`
	pub key_pair :Option<KeyPair>,
	/// If `true` (and not self-signed), the 'Authority Key Identifier' extension will be added to the generated cert
	pub use_authority_key_identifier_extension :bool,
	/// Method to generate key identifiers from public keys
	///
	/// Defaults to SHA-256.
	pub key_identifier_method :KeyIdMethod,
}

impl Default for CertificateParams {
	fn default() -> Self {
		// not_before and not_after set to reasonably long dates
		let not_before = date_time_ymd(1975, 01, 01);
		let not_after = date_time_ymd(4096, 01, 01);
		let mut distinguished_name = DistinguishedName::new();
		distinguished_name.push(DnType::CommonName, "rcgen self signed cert");
		CertificateParams {
			alg : &PKCS_ECDSA_P256_SHA256,
			not_before,
			not_after,
			serial_number : None,
			subject_alt_names : Vec::new(),
			distinguished_name,
			is_ca : IsCa::NoCa,
			key_usages : Vec::new(),
			extended_key_usages : Vec::new(),
			name_constraints : None,
			custom_extensions : Vec::new(),
			key_pair : None,
			use_authority_key_identifier_extension : false,
			key_identifier_method : KeyIdMethod::Sha256,
		}
	}
}

impl CertificateParams {
	/// Parses a ca certificate from the ASCII PEM format for signing
	///
	/// See [`from_ca_cert_der`](Self::from_ca_cert_der) for more details.
	///
	/// *This constructor is only available if rcgen is built with the "pem" and "x509-parser" features*
	#[cfg(all(feature = "pem", feature = "x509-parser"))]
	pub fn from_ca_cert_pem(pem_str :&str, key_pair :KeyPair) -> Result<Self, RcgenError> {
		let certificate = pem::parse(pem_str)
			.or(Err(RcgenError::CouldNotParseCertificate))?;
		Self::from_ca_cert_der(&certificate.contents, key_pair)
	}

	/// Parses a ca certificate from the DER format for signing
	///
	/// This function is only of use if you have an existing ca certificate with
	/// which you want to sign a certificate newly generated by `rcgen` using the
	/// [`serialize_der_with_signer`](Certificate::serialize_der_with_signer) or
	/// [`serialize_pem_with_signer`](Certificate::serialize_pem_with_signer)
	/// functions.
	///
	/// This function only extracts from the given ca cert the informations
	/// needed for signing. Any information beyond that is not extracted
	/// and left to defaults.
	///
	/// Will not check if certificate is a ca certificate!
	///
	/// *This constructor is only available if rcgen is built with the "x509-parser" feature*
	#[cfg(feature = "x509-parser")]
	pub fn from_ca_cert_der(ca_cert :&[u8], key_pair :KeyPair) -> Result<Self, RcgenError> {
		let (_remainder, x509) = x509_parser::parse_x509_certificate(ca_cert)
			.or(Err(RcgenError::CouldNotParseCertificate))?;

		let alg_oid = x509.signature_algorithm.algorithm.iter()
			.ok_or(RcgenError::CouldNotParseCertificate)?;
		let alg = SignatureAlgorithm::from_oid(&alg_oid.collect::<Vec<_>>())?;

		let dn = DistinguishedName::from_name(&x509.tbs_certificate.subject)?;
		Ok(
			CertificateParams {
				alg,
				distinguished_name : dn,
				key_pair : Some(key_pair),
				.. Default::default()
			}
		)
	}
	fn write_subject_alt_names(&self, writer :DERWriter) {
		Self::write_extension(writer, OID_SUBJECT_ALT_NAME, false, |writer| {
			writer.write_sequence(|writer| {
				for san in self.subject_alt_names.iter() {
					writer.next().write_tagged_implicit(Tag::context(san.tag()), |writer| {
						match san {
							SanType::Rfc822Name(name) |
							SanType::DnsName(name) |
							SanType::URI(name) => writer.write_ia5_string(name),
							SanType::IpAddress(IpAddr::V4(addr)) => writer.write_bytes(&addr.octets()),
							SanType::IpAddress(IpAddr::V6(addr)) => writer.write_bytes(&addr.octets()),
						}
					});
				}
			});
		});
	}
	fn write_request<K: PublicKeyData>(&self, pub_key: &K, writer :DERWriter) {
		writer.write_sequence(|writer| {
			// Write version
			writer.next().write_u8(0);
			// Write issuer
			writer.next().write_sequence(|writer| {
				for (ty, content) in self.distinguished_name.iter() {
					writer.next().write_set(|writer| {
						writer.next().write_sequence(|writer| {
							writer.next().write_oid(&ty.to_oid());
							match content {
								DnValue::TeletexString(s) => writer.next().write_tagged_implicit(TAG_TELETEXSTRING, |writer| {
									writer.write_bytes(s)
								}),
								DnValue::PrintableString(s) => writer.next().write_printable_string(s),
								DnValue::UniversalString(s) => writer.next().write_tagged_implicit(TAG_UNIVERSALSTRING, |writer| {
									writer.write_bytes(s)
								}),
								DnValue::Utf8String(s) => writer.next().write_utf8_string(s),
								DnValue::BmpString(s) => writer.next().write_tagged_implicit(TAG_BMPSTRING, |writer| {
									writer.write_bytes(s)
								}),
							}
						});
					});
				}
			});
			// Write subjectPublicKeyInfo
			pub_key.serialize_public_key_der(writer.next());
			// Write extensions
			// According to the spec in RFC 2986, even if attributes are empty we need the empty attribute tag
			writer.next().write_tagged(Tag::context(0), |writer| {
				if !self.subject_alt_names.is_empty() {
					writer.write_sequence(|writer| {
						let oid = ObjectIdentifier::from_slice(OID_PKCS_9_AT_EXTENSION_REQUEST);
						writer.next().write_oid(&oid);
						writer.next().write_set(|writer| {
							writer.next().write_sequence(|writer| {
								// Write subject_alt_names
								self.write_subject_alt_names(writer.next());
							});
						});
					});
				}
			});

		});
	}
	fn write_cert<K: PublicKeyData>(&self, writer :DERWriter, pub_key: &K, ca :&Certificate) -> Result<(), RcgenError> {
		writer.write_sequence(|writer| {
			// Write version
			writer.next().write_tagged(Tag::context(0), |writer| {
				writer.write_u8(2);
			});
			// Write serialNumber
			let serial = self.serial_number.unwrap_or_else(|| {
				let hash = digest::digest(&digest::SHA256, pub_key.raw_bytes());
				let bytes: [u8; 8] = hash.as_ref()[0..8].try_into().unwrap();
				u64::from_le_bytes(bytes)
			});
			writer.next().write_u64(serial);
			// Write signature
			ca.params.alg.write_alg_ident(writer.next());
			// Write issuer
			write_distinguished_name(writer.next(), &ca.params.distinguished_name);
			// Write validity
			writer.next().write_sequence(|writer| {
				// Not before
				write_dt_utc_or_generalized(writer.next(), self.not_before);
				// Not after
				write_dt_utc_or_generalized(writer.next(), self.not_after);
				Ok::<(), RcgenError>(())
			})?;
			// Write subject
			write_distinguished_name(writer.next(), &self.distinguished_name);
			// Write subjectPublicKeyInfo
			pub_key.serialize_public_key_der(writer.next());
			// write extensions
			let not_self_signed = ca.key_pair.public_key_raw() != pub_key.raw_bytes();
			let should_write_exts = (not_self_signed && self.use_authority_key_identifier_extension) ||
				!self.subject_alt_names.is_empty() ||
				!self.extended_key_usages.is_empty() ||
				self.name_constraints.iter().any(|c| !c.is_empty()) ||
				matches!(self.is_ca, IsCa::ExplicitNoCa) ||
				matches!(self.is_ca, IsCa::Ca(_)) ||
				!self.custom_extensions.is_empty();
			if should_write_exts {
				writer.next().write_tagged(Tag::context(3), |writer| {
					writer.write_sequence(|writer| {
						if not_self_signed && self.use_authority_key_identifier_extension {
							// Write Authority Key Identifier (when issued by a CA)
							// RFC 5280 states:
							//   'The keyIdentifier field of the authorityKeyIdentifier extension MUST
							//    be included in all certificates generated by conforming CAs to
							//    facilitate certification path construction.  There is one exception;
							//    where a CA distributes its public key in the form of a "self-signed"
							//    certificate, the authority key identifier MAY be omitted.'
							Self::write_extension(writer.next(), OID_AUTHORITY_KEY_IDENTIFIER, false, |writer| {
								writer.write_sequence(|writer| {
									writer.next().write_tagged_implicit(Tag::context(0), |writer| {
										writer.write_bytes(ca.get_key_identifier().as_ref())
									})
								});
							});
						}
						// Write subject_alt_names
						if !self.subject_alt_names.is_empty() {
							self.write_subject_alt_names(writer.next());
						}

						// Write standard key usage
						if !self.key_usages.is_empty() {
							writer.next().write_sequence(|writer| {

								let oid = ObjectIdentifier::from_slice(OID_KEY_USAGE);
								writer.next().write_oid(&oid);
								writer.next().write_bool(true);

								let mut bits :u16 = 0;

								for entry in self.key_usages.iter() {
									// Map the index to a value
									let index = match entry {
										KeyUsagePurpose::DigitalSignature => 0,
										KeyUsagePurpose::ContentCommitment => 1,
										KeyUsagePurpose::KeyEncipherment => 2,
										KeyUsagePurpose::DataEncipherment => 3,
										KeyUsagePurpose::KeyAgreement => 4,
										KeyUsagePurpose::KeyCertSign => 5,
										KeyUsagePurpose::CrlSign => 6,
										KeyUsagePurpose::EncipherOnly => 7,
										KeyUsagePurpose::DecipherOnly => 8,
									};

									bits |= 1 << index;
								}

								// Compute the 1-based most significant bit
								let msb = 16 - bits.leading_zeros();
								let nb = if msb <= 8 {
									1
								} else {
									2
								};

								let bits = bits.reverse_bits().to_be_bytes();

								// Finally take only the bytes != 0
								let bits = &bits[..nb];

								let der = yasna::construct_der(|writer| {
									writer.write_bitvec_bytes(&bits, msb as usize)
								});

								// Write them
								writer.next().write_bytes(&der);

							});
						}

						// Write extended key usage
						if !self.extended_key_usages.is_empty() {
							Self::write_extension(writer.next(), OID_EXT_KEY_USAGE, false, |writer| {
								writer.write_sequence(|writer| {
									for usage in self.extended_key_usages.iter() {
										let oid = ObjectIdentifier::from_slice(usage.oid());
										writer.next().write_oid(&oid);
									}
								});
							});
						}
						if let Some(name_constraints) = &self.name_constraints {
							// If both trees are empty, the extension must be omitted.
							if !name_constraints.is_empty() {
								Self::write_extension(writer.next(), OID_NAME_CONSTRAINTS, true, |writer| {
									writer.write_sequence(|writer| {
										if !name_constraints.permitted_subtrees.is_empty() {
											write_general_subtrees(writer.next(), 0, &name_constraints.permitted_subtrees);
										}
										if !name_constraints.excluded_subtrees.is_empty() {
											write_general_subtrees(writer.next(), 1, &name_constraints.excluded_subtrees);
										}
									});
								});
							}
						}
						match self.is_ca {
							IsCa::Ca(ref constraint) => {
								// Write subject_key_identifier
								Self::write_extension(writer.next(), OID_SUBJECT_KEY_IDENTIFIER, false, |writer| {
									let key_identifier = self.key_identifier(pub_key);
									writer.write_bytes(key_identifier.as_ref());
								});
								// Write basic_constraints
								Self::write_extension(writer.next(), OID_BASIC_CONSTRAINTS, true, |writer| {
									writer.write_sequence(|writer| {
										writer.next().write_bool(true); // cA flag
										if let BasicConstraints::Constrained(path_len_constraint) = constraint {
											writer.next().write_u8(*path_len_constraint);
										}
									});
								});
							}
							IsCa::ExplicitNoCa => {
								// Write subject_key_identifier
								Self::write_extension(writer.next(), OID_SUBJECT_KEY_IDENTIFIER, false, |writer| {
									let key_identifier = self.key_identifier(pub_key);
									writer.write_bytes(key_identifier.as_ref());
								});
								// Write basic_constraints
								Self::write_extension(writer.next(), OID_BASIC_CONSTRAINTS, true, |writer| {
									writer.write_sequence(|writer| {
										writer.next().write_bool(false); // cA flag
									});
								});
							}
							IsCa::NoCa => {}
						}

						// Write the custom extensions
						for ext in &self.custom_extensions {
							writer.next().write_sequence(|writer| {
								let oid = ObjectIdentifier::from_slice(&ext.oid);
								writer.next().write_oid(&oid);
								// If the extension is critical, we should signal this.
								// It's false by default so we don't need to write anything
								// if the extension is not critical.
								if ext.critical {
									writer.next().write_bool(true);
								}
								writer.next().write_bytes(&ext.content);
							});
						}
					});
				});
			}
			Ok(())
		})
	}
	/// Serializes an X.509v3 extension according to RFC 5280
	fn write_extension(writer :DERWriter, extension_oid :&[u64], is_critical :bool, value_serializer :impl FnOnce(DERWriter)) {
		// Extension specification:
		//    Extension  ::=  SEQUENCE  {
		//         extnID      OBJECT IDENTIFIER,
		//         critical    BOOLEAN DEFAULT FALSE,
		//         extnValue   OCTET STRING
		//                     -- contains the DER encoding of an ASN.1 value
		//                     -- corresponding to the extension type identified
		//                     -- by extnID
		//         }

		writer.write_sequence(|writer| {
			let oid = ObjectIdentifier::from_slice(extension_oid);
			writer.next().write_oid(&oid);
			if is_critical {
				writer.next().write_bool(true);
			}
			let bytes = yasna::construct_der(value_serializer);
			writer.next().write_bytes(&bytes);
		})
	}
	/// Calculates a subject key identifier for the certificate subject's public key.
	/// This key identifier is used in the SubjectKeyIdentifier X.509v3 extension.
	fn key_identifier<K: PublicKeyData>(&self, pub_key: &K) -> Vec<u8> {
		// Decide which method from RFC 7093 to use
		let digest_method = match self.key_identifier_method {
			KeyIdMethod::Sha256 => &digest::SHA256,
			KeyIdMethod::Sha384 => &digest::SHA384,
			KeyIdMethod::Sha512 => &digest::SHA512,
		};
		let digest = digest::digest(digest_method, pub_key.raw_bytes());
		let truncated_digest = &digest.as_ref()[0..20];
		truncated_digest.to_vec()
	}
	fn serialize_der_with_signer<K: PublicKeyData>(&self, pub_key: &K, ca :&Certificate) -> Result<Vec<u8>, RcgenError> {
		yasna::try_construct_der(|writer| {
			writer.write_sequence(|writer| {

				let tbs_cert_list_serialized = yasna::try_construct_der(|writer| {
					self.write_cert(writer, pub_key, ca)?;
					Ok::<(), RcgenError>(())
				})?;
				// Write tbsCertList
				writer.next().write_der(&tbs_cert_list_serialized);

				// Write signatureAlgorithm
				ca.params.alg.write_alg_ident(writer.next());

				// Write signature
				ca.key_pair.sign(&tbs_cert_list_serialized, writer.next())?;

				Ok(())
			})
		})
	}
}

/// Whether the certificate is allowed to sign other certificates
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum IsCa {
	/// The certificate can only sign itself
	NoCa,
	/// The certificate can only sign itself, adding the extension and `CA:FALSE`
	ExplicitNoCa,
	/// The certificate may be used to sign other certificates
	Ca(BasicConstraints),
}

/// The path length constraint (only relevant for CA certificates)
///
/// Sets an optional upper limit on the length of the intermediate certificate chain
/// length allowed for this CA certificate (not including the end entity certificate).
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum BasicConstraints {
	/// No constraint
	Unconstrained,
	/// Constrain to the contained number of intermediate certificates
	Constrained(u8),
}

impl CertificateParams {
	/// Generate certificate parameters with reasonable defaults
	pub fn new(subject_alt_names :impl Into<Vec<String>>) -> Self {
		let subject_alt_names = subject_alt_names.into()
			.into_iter()
			.map(|s| SanType::DnsName(s))
			.collect::<Vec<_>>();
		CertificateParams {
			subject_alt_names,
			.. Default::default()
		}
	}
}

/// The [NameConstraints extension](https://tools.ietf.org/html/rfc5280#section-4.2.1.10)
/// (only relevant for CA certificates)
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct NameConstraints {
	/// If non-empty, a whitelist of subtrees that the
	/// domain has to match.
	pub permitted_subtrees :Vec<GeneralSubtree>,
	/// A list of excluded subtrees.
	///
	/// Any name matching an excluded subtree is invalid
	/// even if it also matches a permitted subtree.
	pub excluded_subtrees :Vec<GeneralSubtree>,
}

impl NameConstraints {
	fn is_empty(&self) -> bool {
		self.permitted_subtrees.is_empty() && self.excluded_subtrees.is_empty()
	}
}

/// One of the purposes contained in the [key usage](https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.3) extension
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub enum KeyUsagePurpose {
	/// digitalSignature
	DigitalSignature,
	/// contentCommitment / nonRepudiation
	ContentCommitment,
	/// keyEncipherment
	KeyEncipherment,
	/// dataEncipherment
	DataEncipherment,
	/// keyAgreement
	KeyAgreement,
	/// keyCertSign
	KeyCertSign,
	/// cRLSign
	CrlSign,
	/// encipherOnly
	EncipherOnly,
	/// decipherOnly
	DecipherOnly,
}

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
/// One of the purposes contained in the [extended key usage extension](https://tools.ietf.org/html/rfc5280#section-4.2.1.12)
pub enum ExtendedKeyUsagePurpose {
	/// anyExtendedKeyUsage
	Any,
	/// id-kp-serverAuth
	ServerAuth,
	/// id-kp-clientAuth
	ClientAuth,
	/// id-kp-codeSigning
	CodeSigning,
	/// id-kp-emailProtection
	EmailProtection,
	/// id-kp-timeStamping
	TimeStamping,
	/// id-kp-OCSPSigning
	OcspSigning,
}

impl ExtendedKeyUsagePurpose {
	fn oid(&self) -> &'static [u64] {
		use ExtendedKeyUsagePurpose::*;
		match self {
			// anyExtendedKeyUsage
			Any => &[2, 5, 29, 37],
			// id-kp-*
			ServerAuth => &[1, 3, 6, 1, 5, 5, 7, 3, 1],
			ClientAuth => &[1, 3, 6, 1, 5, 5, 7, 3, 2],
			CodeSigning => &[1, 3, 6, 1, 5, 5, 7, 3, 3],
			EmailProtection => &[1, 3, 6, 1, 5, 5, 7, 3, 4],
			TimeStamping => &[1, 3, 6, 1, 5, 5, 7, 3, 8],
			OcspSigning => &[1, 3, 6, 1, 5, 5, 7, 3, 9],
		}
	}
}

/// A custom extension of a certificate, as specified in
/// [RFC 5280](https://tools.ietf.org/html/rfc5280#section-4.2)
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct CustomExtension {
	oid :Vec<u64>,
	critical :bool,

	/// The content must be DER-encoded
	content :Vec<u8>,
}

impl CustomExtension {
	/// Creates a new acmeIdentifier extension for ACME TLS-ALPN-01
	/// as specified in [RFC 8737](https://tools.ietf.org/html/rfc8737#section-3)
	///
	/// Panics if the passed `sha_digest` parameter doesn't hold 32 bytes (256 bits).
	pub fn new_acme_identifier(sha_digest :&[u8]) -> Self {
		assert_eq!(sha_digest.len(), 32, "wrong size of sha_digest");
		let content = yasna::construct_der(|writer| {
			writer.write_bytes(sha_digest);
		});
		Self {
			oid : OID_PE_ACME.to_owned(),
			critical : true,
			content,
		}
	}
	/// Create a new custom extension with the specified content
	pub fn from_oid_content(oid :&[u64], content :Vec<u8>) -> Self {
		Self {
			oid : oid.to_owned(),
			critical : false,
			content,
		}
	}
	/// Sets the criticality flag of the extension.
	pub fn set_criticality(&mut self, criticality :bool) {
		self.critical = criticality;
	}
	/// Obtains the criticality flag of the extension.
	pub fn criticality(&self) -> bool {
		self.critical
	}
	/// Obtains the content of the extension.
	pub fn content(&self) -> &[u8] {
		&self.content
	}
	/// Obtains the OID components of the extensions, as u64 pieces
	pub fn oid_components(&self) -> impl Iterator<Item = u64> + '_ {
		self.oid.iter().copied()
	}
}

/// Method to generate key identifiers from public keys.
///
/// This allows choice over methods to generate key identifiers
/// as specified in RFC 7093 section 2.
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
#[non_exhaustive]
pub enum KeyIdMethod {
	/// RFC 7093 method 1
	Sha256,
	/// RFC 7093 method 2
	Sha384,
	/// RFC 7093 method 3
	Sha512,
}

/// Helper to obtain an `OffsetDateTime` from year, month, day values
///
/// The year, month, day values are assumed to be in UTC.
///
/// This helper function serves two purposes: first, so that you don't
/// have to import the time crate yourself in order to specify date
/// information, second so that users don't have to type unproportionately
/// long code just to generate an instance of [`OffsetDateTime`].
pub fn date_time_ymd(year :i32, month :u8, day :u8) -> OffsetDateTime {
	let month = Month::try_from(month).expect("out-of-range month");
	let primitive_dt = PrimitiveDateTime::new(
		Date::from_calendar_date(year, month, day).expect("invalid or out-of-range date"),
		Time::MIDNIGHT
	);
	primitive_dt.assume_utc()
}

fn dt_strip_nanos(dt :OffsetDateTime) -> OffsetDateTime {
	// Set nanoseconds to zero
	// This is needed because the GeneralizedTime serializer would otherwise
	// output fractional values which RFC 5280 explicitly forbode [1].
	// UTCTime cannot express fractional seconds or leap seconds
	// therefore, it needs to be stripped of nanoseconds fully.
	// [1]: https://tools.ietf.org/html/rfc5280#section-4.1.2.5.2
	// TODO: handle leap seconds if dt becomes leap second aware
	let time = Time::from_hms(dt.hour(), dt.minute(), dt.second())
		.expect("invalid or out-of-range time");
	dt.replace_time(time)
}

fn dt_to_generalized(dt :OffsetDateTime) -> GeneralizedTime {
	let date_time = dt_strip_nanos(dt);
	GeneralizedTime::from_datetime(date_time)
}

fn write_dt_utc_or_generalized(writer :DERWriter, dt :OffsetDateTime) {
	// RFC 5280 requires CAs to write certificate validity dates
	// below 2050 as UTCTime, and anything starting from 2050
	// as GeneralizedTime [1]. The RFC doesn't say anything
	// about dates before 1950, but as UTCTime can't represent
	// them, we have to use GeneralizedTime if we want to or not.
	// [1]: https://tools.ietf.org/html/rfc5280#section-4.1.2.5
	if (1950..2050).contains(&dt.year()) {
		let date_time = dt_strip_nanos(dt);
		let ut = UTCTime::from_datetime(date_time);
		writer.write_utctime(&ut);
	} else {
		let gt = dt_to_generalized(dt);
		writer.write_generalized_time(&gt);
	}
}

fn write_distinguished_name(writer :DERWriter, dn :&DistinguishedName) {
		writer.write_sequence(|writer| {
			for (ty, content) in dn.iter() {
				writer.next().write_set(|writer| {
					writer.next().write_sequence(|writer| {
						writer.next().write_oid(&ty.to_oid());
						match content {
							DnValue::TeletexString(s) => writer.next().write_tagged_implicit(TAG_TELETEXSTRING, |writer| {
								writer.write_bytes(s)
							}),
							DnValue::PrintableString(s) => writer.next().write_printable_string(s),
							DnValue::UniversalString(s) => writer.next().write_tagged_implicit(TAG_UNIVERSALSTRING, |writer| {
								writer.write_bytes(s)
							}),
							DnValue::Utf8String(s) => writer.next().write_utf8_string(s),
							DnValue::BmpString(s) => writer.next().write_tagged_implicit(TAG_BMPSTRING, |writer| {
								writer.write_bytes(s)
							}),
						}
					});
				});
			}
		});
}

fn write_general_subtrees(writer :DERWriter, tag :u64, general_subtrees :&[GeneralSubtree]) {
	writer.write_tagged_implicit(Tag::context(tag), |writer| {
		writer.write_sequence(|writer| {
			for subtree in general_subtrees.iter() {
				writer.next().write_sequence(|writer| {
					writer.next().write_tagged_implicit(Tag::context(subtree.tag()), |writer| {
						match subtree {
							GeneralSubtree::Rfc822Name(name) |
							GeneralSubtree::DnsName(name) => writer.write_ia5_string(name),
							GeneralSubtree::DirectoryName(name) => write_distinguished_name(writer, name),
							GeneralSubtree::IpAddress(subnet) => writer.write_bytes(&subnet.to_bytes()),
						}
					});
					// minimum must be 0 (the default) and maximum must be absent
				});
			}
		});
	});
}

impl Certificate {
	/// Generates a new certificate from the given parameters
	pub fn from_params(mut params :CertificateParams) -> Result<Self, RcgenError> {
		let key_pair = if let Some(key_pair) = params.key_pair.take() {
			if !key_pair.is_compatible(&params.alg) {
				return Err(RcgenError::CertificateKeyPairMismatch);
			}
			key_pair
		} else {
			KeyPair::generate(&params.alg)?
		};

		Ok(Certificate {
			params,
			key_pair,
		})
	}
	/// Calculates a subject key identifier for the certificate subject's public key.
	/// This key identifier is used in the SubjectKeyIdentifier X.509v3 extension.
	pub fn get_key_identifier(&self) -> Vec<u8> {
		self.params.key_identifier(&self.key_pair)
	}
	/// Serializes the certificate to the binary DER format
	pub fn serialize_der(&self) -> Result<Vec<u8>, RcgenError> {
		self.serialize_der_with_signer(&self)
	}
	/// Serializes the certificate, signed with another certificate's key, in binary DER format
	pub fn serialize_der_with_signer(&self, ca :&Certificate) -> Result<Vec<u8>, RcgenError> {
		self.params.serialize_der_with_signer(&self.key_pair, ca)
	}
	/// Serializes a certificate signing request in binary DER format
	pub fn serialize_request_der(&self) -> Result<Vec<u8>, RcgenError> {
		yasna::try_construct_der(|writer| {
			writer.write_sequence(|writer| {
				let cert_data = yasna::construct_der(|writer| {
					self.params.write_request(&self.key_pair, writer);
				});
				writer.next().write_der(&cert_data);

				// Write signatureAlgorithm
				self.params.alg.write_alg_ident(writer.next());

				// Write signature
				self.key_pair.sign(&cert_data, writer.next())?;

				Ok(())
			})
		})
	}
	/// Return the certificate's key pair
	pub fn get_key_pair(&self) -> &KeyPair {
		&self.key_pair
	}
	/// Serializes the certificate to the ASCII PEM format
	///
	/// *This function is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn serialize_pem(&self) -> Result<String, RcgenError> {
		let p = Pem {
			tag : "CERTIFICATE".to_string(),
			contents : self.serialize_der()?,
		};
		Ok(pem::encode(&p))
	}
	/// Serializes the certificate, signed with another certificate's key, to the ASCII PEM format
	///
	/// *This function is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn serialize_pem_with_signer(&self, ca :&Certificate) -> Result<String, RcgenError> {
		let p = Pem {
			tag : "CERTIFICATE".to_string(),
			contents : self.serialize_der_with_signer(ca)?,
		};
		Ok(pem::encode(&p))
	}
	/// Serializes the certificate signing request to the ASCII PEM format
	///
	/// *This function is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn serialize_request_pem(&self) -> Result<String, RcgenError> {
		let p = Pem {
			tag : "CERTIFICATE REQUEST".to_string(),
			contents : self.serialize_request_der()?,
		};
		Ok(pem::encode(&p))
	}
	/// Serializes the private key in PKCS#8 format
	///
	/// Panics if called on a remote key pair.
	pub fn serialize_private_key_der(&self) -> Vec<u8> {
		self.key_pair.serialize_der()
	}
	/// Serializes the private key in PEM format
	///
	/// Panics if called on a remote key pair.
	///
	/// *This function is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn serialize_private_key_pem(&self) -> String {
		self.key_pair.serialize_pem()
	}
}

enum SignAlgo {
	EcDsa(&'static EcdsaSigningAlgorithm),
	EdDsa(&'static EdDSAParameters),
	Rsa(),
}

/// A key pair vairant
#[allow(clippy::large_enum_variant)]
enum KeyPairKind {
	/// A Ecdsa key pair
	Ec(EcdsaKeyPair),
	/// A Ed25519 key pair
	Ed(Ed25519KeyPair),
	/// A RSA key pair
	Rsa(RsaKeyPair, &'static dyn RsaEncoding),
	/// A remote key pair
	Remote(Box<dyn RemoteKeyPair + Send + Sync>),
}

impl fmt::Debug for KeyPairKind {
	fn fmt(&self, f :&mut fmt::Formatter) -> fmt::Result {
		match self {
			Self::Ec(key_pair) => write!(f, "{:?}", key_pair),
			Self::Ed(key_pair) => write!(f, "{:?}", key_pair),
			Self::Rsa(key_pair, _) => write!(f, "{:?}", key_pair),
			Self::Remote(_) => write!(f, "Box<dyn RemotePrivateKey>"),
		}
	}
}

/// A key pair used to sign certificates and CSRs
///
/// Note that ring, the underlying library to handle RSA keys
/// requires them to be in a special format, meaning that
/// `openssl genrsa` doesn't work. See ring's [documentation](ring::signature::RsaKeyPair::from_pkcs8)
/// for how to generate RSA keys in the wanted format
/// and conversion between the formats.
#[derive(Debug)]
pub struct KeyPair {
	kind :KeyPairKind,
	alg :&'static SignatureAlgorithm,
	serialized_der :Vec<u8>,
}

impl KeyPair {
	/// Parses the key pair from the DER format
	///
	/// Equivalent to using the [`TryFrom`] implementation.
	pub fn from_der(der :&[u8]) -> Result<Self, RcgenError> {
		Ok(der.try_into()?)
	}
	/// Parses the key pair from the ASCII PEM format
	///
	/// *This constructor is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn from_pem(pem_str :&str) -> Result<Self, RcgenError> {
		let private_key = pem::parse(pem_str)?;
		let private_key_der :&[_] = &private_key.contents;
		Ok(private_key_der.try_into()?)
	}

	/// Obtains the key pair from a raw public key and a remote private key
	pub fn from_remote(key_pair :Box<dyn RemoteKeyPair + Send + Sync>) -> Result<Self, RcgenError> {
		Ok(Self {
			alg : key_pair.algorithm(),
			kind : KeyPairKind::Remote(key_pair),
			serialized_der : Vec::new(),
		})
	}


	/// Obtains the key pair from a DER formatted key
	/// using the specified [`SignatureAlgorithm`](SignatureAlgorithm)
	///
	/// Same as [from_pem_and_sign_algo](Self::from_pem_and_sign_algo).
	///
	/// *This constructor is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn from_pem_and_sign_algo(pem_str :&str, alg :&'static SignatureAlgorithm) -> Result<Self, RcgenError> {
		let private_key = pem::parse(pem_str)?;
		let private_key_der :&[_] = &private_key.contents;
		Ok(Self::from_der_and_sign_algo(private_key_der, alg)?)
	}

	/// Obtains the key pair from a DER formatted key
	/// using the specified [`SignatureAlgorithm`](SignatureAlgorithm)
	///
	/// Usually, calling this function is not neccessary and you can just call
	/// [`from_der`](Self::from_der) instead. That function will try to figure
	/// out a fitting [`SignatureAlgorithm`](SignatureAlgorithm) for the given
	/// key pair. However sometimes multiple signature algorithms fit for the
	/// same der key. In that instance, you can use this function to precisely
	/// specify the `SignatureAlgorithm`.
	pub fn from_der_and_sign_algo(pkcs8 :&[u8], alg :&'static SignatureAlgorithm) -> Result<Self, RcgenError> {
		let pkcs8_vec = pkcs8.to_vec();

		let kind = if alg == &PKCS_ED25519 {
			KeyPairKind::Ed(Ed25519KeyPair::from_pkcs8_maybe_unchecked(pkcs8)?)
		} else if alg == &PKCS_ECDSA_P256_SHA256 {
			KeyPairKind::Ec(EcdsaKeyPair::from_pkcs8(&signature::ECDSA_P256_SHA256_ASN1_SIGNING, pkcs8)?)
		} else if alg == &PKCS_ECDSA_P384_SHA384 {
			KeyPairKind::Ec(EcdsaKeyPair::from_pkcs8(&signature::ECDSA_P384_SHA384_ASN1_SIGNING, pkcs8)?)
		} else if alg == &PKCS_RSA_SHA256 {
			let rsakp = RsaKeyPair::from_pkcs8(pkcs8)?;
			KeyPairKind::Rsa(rsakp, &signature::RSA_PKCS1_SHA256)
		} else if alg == &PKCS_RSA_SHA384 {
			let rsakp = RsaKeyPair::from_pkcs8(pkcs8)?;
			KeyPairKind::Rsa(rsakp, &signature::RSA_PKCS1_SHA384)
		} else if alg == &PKCS_RSA_SHA512 {
			let rsakp = RsaKeyPair::from_pkcs8(pkcs8)?;
			KeyPairKind::Rsa(rsakp, &signature::RSA_PKCS1_SHA512)
		} else if alg == &PKCS_RSA_PSS_SHA256 {
			let rsakp = RsaKeyPair::from_pkcs8(pkcs8)?;
			KeyPairKind::Rsa(rsakp, &signature::RSA_PSS_SHA256)
		} else {
			panic!("Unknown SignatureAlgorithm specified!");
		};

		Ok(KeyPair {
			kind,
			alg,
			serialized_der : pkcs8_vec,
		})
	}

	fn from_raw(pkcs8: &[u8]) -> Result<(KeyPairKind, &'static SignatureAlgorithm), RcgenError> {
		let (kind, alg) = if let Ok(edkp) = Ed25519KeyPair::from_pkcs8_maybe_unchecked(pkcs8) {
			(KeyPairKind::Ed(edkp), &PKCS_ED25519)
		} else if let Ok(eckp) = EcdsaKeyPair::from_pkcs8(&signature::ECDSA_P256_SHA256_ASN1_SIGNING, pkcs8) {
			(KeyPairKind::Ec(eckp), &PKCS_ECDSA_P256_SHA256)
		} else if let Ok(eckp) = EcdsaKeyPair::from_pkcs8(&signature::ECDSA_P384_SHA384_ASN1_SIGNING, pkcs8) {
			(KeyPairKind::Ec(eckp), &PKCS_ECDSA_P384_SHA384)
		} else if let Ok(rsakp) = RsaKeyPair::from_pkcs8(pkcs8) {
			(KeyPairKind::Rsa(rsakp, &signature::RSA_PKCS1_SHA256), &PKCS_RSA_SHA256)
		} else {
			return Err(RcgenError::CouldNotParseKeyPair);
		};
		Ok((kind, alg))
	}
}

/// A private key that is not directly accessible, but can be used to sign messages
///
/// Trait objects based on this trait can be passed to the [`KeyPair::from_remote`] function to generating certificates
/// from a remote and raw private key, for example an HSM.
pub trait RemoteKeyPair {
	/// Returns the public key of this key pair in the binary format as in [`KeyPair::public_key_raw`]
	fn public_key(&self) -> &[u8];

	/// Signs `msg` using the selected algorithm
	fn sign(&self, msg :&[u8]) -> Result<Vec<u8>, RcgenError>;

	/// Reveals which algorithm will be used when you call `sign()`
	fn algorithm(&self) -> &'static SignatureAlgorithm;
}

#[derive(Debug, PartialEq, Eq)]
#[non_exhaustive]
/// The error type of the rcgen crate
pub enum RcgenError {
	/// The given certificate couldn't be parsed
	CouldNotParseCertificate,
	/// The given certificate signing request couldn't be parsed
	CouldNotParseCertificationRequest,
	/// The given key pair couldn't be parsed
	CouldNotParseKeyPair,
	#[cfg(feature = "x509-parser")]
	/// Invalid subject alternative name type
	InvalidNameType,
	/// There is no support for generating
	/// keys for the given algorithm
	KeyGenerationUnavailable,
	#[cfg(feature = "x509-parser")]
	/// Unsupported extension requested in CSR
	UnsupportedExtension,
	/// The requested signature algorithm is not supported
	UnsupportedSignatureAlgorithm,
	/// Unspecified `ring` error
	RingUnspecified,
	/// The `ring` library rejected the key upon loading
	RingKeyRejected(&'static str),
	/// The provided certificate's signature algorithm
	/// is incompatible with the given key pair
	CertificateKeyPairMismatch,
	/// Time conversion related errors
	Time,
	#[cfg(feature = "pem")]
	/// Error from the pem crate
	///
	/// *This variant is only available if rcgen is built with the "pem" feature*
	PemError(pem::PemError),
	/// Error generated by a remote key operation
	RemoteKeyError,
}

impl fmt::Display for RcgenError {
	fn fmt(&self, f :&mut fmt::Formatter) -> fmt::Result {
		use self::RcgenError::*;
		match self {
			CouldNotParseCertificate => write!(f, "Could not parse certificate")?,
			CouldNotParseCertificationRequest => write!(f, "Could not parse certificate signing \
				request")?,
			CouldNotParseKeyPair => write!(f, "Could not parse key pair")?,
			#[cfg(feature = "x509-parser")]
			InvalidNameType => write!(f, "Invalid subject alternative name type")?,
			KeyGenerationUnavailable => write!(f, "There is no support for generating \
				keys for the given algorithm")?,
			UnsupportedSignatureAlgorithm => write!(f, "The requested signature algorithm \
				is not supported")?,
			#[cfg(feature = "x509-parser")]
			UnsupportedExtension => write!(f, "Unsupported extension requested in CSR")?,
			RingUnspecified => write!(f, "Unspecified ring error")?,
			RingKeyRejected(e) => write!(f, "Key rejected by ring: {}", e)?,
			CertificateKeyPairMismatch => write!(f, "The provided certificate's signature \
				algorithm is incompatible with the given key pair")?,

			Time => write!(f, "Time error")?,
			RemoteKeyError => write!(f, "Remote key error")?,
			#[cfg(feature = "pem")]
			PemError(e) => write!(f, "PEM error: {}", e)?,
		};
		Ok(())
	}
}

impl Error for RcgenError {}

impl From<ring::error::Unspecified> for RcgenError {
	fn from(_unspecified :ring::error::Unspecified) -> Self {
		RcgenError::RingUnspecified
	}
}

impl From<ring::error::KeyRejected> for RcgenError {
	fn from(err :ring::error::KeyRejected) -> Self {
		RcgenError::RingKeyRejected(err.description_())
	}
}

#[cfg(feature = "pem")]
impl From<pem::PemError> for RcgenError {
	fn from(e :pem::PemError) -> Self {
		RcgenError::PemError(e)
	}
}

impl TryFrom<&[u8]> for KeyPair {
	type Error = RcgenError;

	fn try_from(pkcs8: &[u8]) -> Result<KeyPair, RcgenError> {
		let (kind, alg) = KeyPair::from_raw(pkcs8)?;
		Ok(KeyPair {
			kind,
			alg,
			serialized_der: pkcs8.to_vec(),
		})
	}
}

impl TryFrom<Vec<u8>> for KeyPair {
	type Error = RcgenError;

	fn try_from(pkcs8: Vec<u8>) -> Result<KeyPair, RcgenError> {
		let (kind, alg) = KeyPair::from_raw(pkcs8.as_slice())?;
		Ok(KeyPair {
			kind,
			alg,
			serialized_der: pkcs8,
		})
	}
}

impl KeyPair {
	/// Generate a new random key pair for the specified signature algorithm
	pub fn generate(alg :&'static SignatureAlgorithm) -> Result<Self, RcgenError> {
		let system_random = SystemRandom::new();
		match alg.sign_alg {
			SignAlgo::EcDsa(sign_alg) => {
				let key_pair_doc = EcdsaKeyPair::generate_pkcs8(sign_alg, &system_random)?;
				let key_pair_serialized = key_pair_doc.as_ref().to_vec();

				let key_pair = EcdsaKeyPair::from_pkcs8(&sign_alg, &&key_pair_doc.as_ref()).unwrap();
				Ok(KeyPair {
					kind : KeyPairKind::Ec(key_pair),
					alg,
					serialized_der : key_pair_serialized,
				})
			},
			SignAlgo::EdDsa(_sign_alg) => {
				let key_pair_doc = Ed25519KeyPair::generate_pkcs8(&system_random)?;
				let key_pair_serialized = key_pair_doc.as_ref().to_vec();

				let key_pair = Ed25519KeyPair::from_pkcs8(&&key_pair_doc.as_ref()).unwrap();
				Ok(KeyPair {
					kind : KeyPairKind::Ed(key_pair),
					alg,
					serialized_der : key_pair_serialized,
				})
			},
			// Ring doesn't have RSA key generation yet:
			// https://github.com/briansmith/ring/issues/219
			// https://github.com/briansmith/ring/pull/733
			SignAlgo::Rsa() => Err(RcgenError::KeyGenerationUnavailable),
		}
	}
	/// Get the raw public key of this key pair
	///
	/// The key is in raw format, as how [`ring::signature::KeyPair::public_key`]
	/// would output, and how [`ring::signature::UnparsedPublicKey::verify`]
	/// would accept.
	pub fn public_key_raw(&self) -> &[u8] {
		self.raw_bytes()
	}
	/// Check if this key pair can be used with the given signature algorithm
	pub fn is_compatible(&self, signature_algorithm :&SignatureAlgorithm) -> bool {
		self.alg == signature_algorithm
	}
	/// Returns (possibly multiple) compatible [`SignatureAlgorithm`]'s
	/// that the key can be used with
	pub fn compatible_algs(&self)
			-> impl Iterator<Item=&'static SignatureAlgorithm> {
		std::iter::once(self.alg)
	}
	fn sign(&self, msg :&[u8], writer :DERWriter) -> Result<(), RcgenError> {
		match &self.kind {
			KeyPairKind::Ec(kp) => {
				let system_random = SystemRandom::new();
				let signature = kp.sign(&system_random, msg)?;
				let sig = &signature.as_ref();
				writer.write_bitvec_bytes(&sig, &sig.len() * 8);
			},
			KeyPairKind::Ed(kp) => {
				let signature = kp.sign(msg);
				let sig = &signature.as_ref();
				writer.write_bitvec_bytes(&sig, &sig.len() * 8);
			},
			KeyPairKind::Rsa(kp, padding_alg) => {
				let system_random = SystemRandom::new();
				let mut signature = vec![0; kp.public_modulus_len()];
				kp.sign(*padding_alg, &system_random,
					msg, &mut signature)?;
				let sig = &signature.as_ref();
				writer.write_bitvec_bytes(&sig, &sig.len() * 8);
			},
			KeyPairKind::Remote(kp) => {
				let signature = kp.sign(msg)?;
				writer.write_bitvec_bytes(&signature, &signature.len() * 8);
			},
		}
		Ok(())
	}
	/// Return the key pair's public key in DER format
	///
	/// The key is formatted according to the SubjectPublicKeyInfo struct of
	/// X.509.
	/// See [RFC 5280 section 4.1](https://tools.ietf.org/html/rfc5280#section-4.1).
	pub fn public_key_der(&self) -> Vec<u8> {
		yasna::construct_der(|writer| self.serialize_public_key_der(writer))
	}
	/// Return the key pair's public key in PEM format
	///
	/// The returned string can be interpreted with `openssl pkey --inform PEM -pubout -pubin -text`
	///
	/// *This function is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn public_key_pem(&self) -> String {
		let p = Pem {
			tag : "PUBLIC KEY".to_string(),
			contents : self.public_key_der(),
		};
		pem::encode(&p)
	}
	/// Serializes the key pair (including the private key) in PKCS#8 format in DER
	///
	/// Panics if called on a remote key pair.
	pub fn serialize_der(&self) -> Vec<u8> {
		if let KeyPairKind::Remote(_) = self.kind {
			panic!("Serializing a remote key pair is not supported")
		}

		self.serialized_der.clone()
	}

	/// Returns a reference to the serialized key pair (including the private key)
	/// in PKCS#8 format in DER
	///
	/// Panics if called on a remote key pair.
	pub fn serialized_der(&self) -> &[u8] {
		if let KeyPairKind::Remote(_) = self.kind {
			panic!("Serializing a remote key pair is not supported")
		}

		&self.serialized_der
	}

	/// Serializes the key pair (including the private key) in PKCS#8 format in PEM
	///
	/// *This function is only available if rcgen is built with the "pem" feature*
	#[cfg(feature = "pem")]
	pub fn serialize_pem(&self) -> String {
		let p = Pem {
			tag : "PRIVATE KEY".to_string(),
			contents : self.serialize_der(),
		};
		pem::encode(&p)
	}
}

impl PublicKeyData for KeyPair {
	fn alg(&self) -> &SignatureAlgorithm {
		self.alg
	}
	fn raw_bytes(&self) -> &[u8] {
		match &self.kind {
			KeyPairKind::Ec(kp) => kp.public_key().as_ref(),
			KeyPairKind::Ed(kp) => kp.public_key().as_ref(),
			KeyPairKind::Rsa(kp, _) => kp.public_key().as_ref(),
			KeyPairKind::Remote(kp) => kp.public_key(),
		}
	}
}

trait PublicKeyData {
	fn alg(&self) -> &SignatureAlgorithm;
	fn raw_bytes(&self) -> &[u8];
	fn serialize_public_key_der(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			self.alg().write_oids_sign_alg(writer.next());
			let pk = self.raw_bytes();
			writer.next().write_bitvec_bytes(&pk, pk.len() * 8);
		})
	}
}

#[derive(PartialEq, Eq)]
enum SignatureAlgorithmParams {
	/// Omit the parameters
	None,
	/// Write null parameters
	Null,
	/// RSASSA-PSS-params as per RFC 4055
	RsaPss {
		hash_algorithm :&'static [u64],
		salt_length :u64,
	},
}

/// Signature algorithm type
pub struct SignatureAlgorithm {
	oids_sign_alg :&'static [&'static [u64]],
	sign_alg :SignAlgo,
	oid_components :&'static [u64],
	params :SignatureAlgorithmParams,
}

impl fmt::Debug for SignatureAlgorithm {
	fn fmt(&self, f :&mut fmt::Formatter) -> fmt::Result {
		if self == &PKCS_RSA_SHA256 {
			write!(f, "PKCS_RSA_SHA256")
		} else if self == &PKCS_RSA_SHA384 {
			write!(f, "PKCS_RSA_SHA384")
		} else if self == &PKCS_RSA_SHA512 {
			write!(f, "PKCS_RSA_SHA512")
		} else if self == &PKCS_RSA_PSS_SHA256 {
			write!(f, "PKCS_RSA_PSS_SHA256")
		} else if self == &PKCS_ECDSA_P256_SHA256 {
			write!(f, "PKCS_ECDSA_P256_SHA256")
		} else if self == &PKCS_ECDSA_P384_SHA384 {
			write!(f, "PKCS_ECDSA_P384_SHA384")
		} else if self == &PKCS_ED25519 {
			write!(f, "PKCS_ED25519")
		} else {
			write!(f, "Unknown")
		}
	}
}

impl PartialEq for SignatureAlgorithm {
	fn eq(&self, other :&Self) -> bool {
		(self.oids_sign_alg, self.oid_components) == (other.oids_sign_alg, other.oid_components)
	}
}

impl Eq for SignatureAlgorithm {}

/// The `Hash` trait is not derived, but implemented according to impl of the `PartialEq` trait
impl Hash for SignatureAlgorithm {
	fn hash<H: Hasher>(&self, state: &mut H) {
		// see SignatureAlgorithm::eq(), just this field is compared
		self.oids_sign_alg.hash(state);
	}
}

impl SignatureAlgorithm {
	fn iter() -> std::slice::Iter<'static, &'static SignatureAlgorithm> {
		static ALGORITHMS :&[&SignatureAlgorithm] = &[
			&PKCS_RSA_SHA256,
			&PKCS_RSA_SHA384,
			&PKCS_RSA_SHA512,
			//&PKCS_RSA_PSS_SHA256,
			&PKCS_ECDSA_P256_SHA256,
			&PKCS_ECDSA_P384_SHA384,
			&PKCS_ED25519
		];
		ALGORITHMS.iter()
	}

	/// Retrieve the SignatureAlgorithm for the provided OID
	pub fn from_oid(oid :&[u64]) -> Result<&'static SignatureAlgorithm, RcgenError> {
		for algo in Self::iter() {
			if algo.oid_components == oid {
				return Ok(algo);
			}
		}
		Err(RcgenError::UnsupportedSignatureAlgorithm)
	}
}


/// RSA signing with PKCS#1 1.5 padding and SHA-256 hashing as per [RFC 4055](https://tools.ietf.org/html/rfc4055)
pub static PKCS_RSA_SHA256 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_RSA_ENCRYPTION],
	sign_alg :SignAlgo::Rsa(),
	// sha256WithRSAEncryption in RFC 4055
	oid_components : &[1, 2, 840, 113549, 1, 1, 11],
	params : SignatureAlgorithmParams::Null,
};

/// RSA signing with PKCS#1 1.5 padding and SHA-256 hashing as per [RFC 4055](https://tools.ietf.org/html/rfc4055)
pub static PKCS_RSA_SHA384 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_RSA_ENCRYPTION],
	sign_alg :SignAlgo::Rsa(),
	// sha384WithRSAEncryption in RFC 4055
	oid_components : &[1, 2, 840, 113549, 1, 1, 12],
	params : SignatureAlgorithmParams::Null,
};

/// RSA signing with PKCS#1 1.5 padding and SHA-512 hashing as per [RFC 4055](https://tools.ietf.org/html/rfc4055)
pub static PKCS_RSA_SHA512 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_RSA_ENCRYPTION],
	sign_alg :SignAlgo::Rsa(),
	// sha512WithRSAEncryption in RFC 4055
	oid_components : &[1, 2, 840, 113549, 1, 1, 13],
	params : SignatureAlgorithmParams::Null,
};

// TODO: not really sure whether the certs we generate actually work.
// Both openssl and webpki reject them. It *might* be possible that openssl
// accepts the certificate if the key is a proper RSA-PSS key, but ring doesn't
// support those: https://github.com/briansmith/ring/issues/1353
//
/// RSA signing with PKCS#1 2.1 RSASSA-PSS padding and SHA-256 hashing as per [RFC 4055](https://tools.ietf.org/html/rfc4055)
static PKCS_RSA_PSS_SHA256 :SignatureAlgorithm = SignatureAlgorithm {
	// We could also use OID_RSA_ENCRYPTION here, but it's recommended
	// to use ID-RSASSA-PSS if possible.
	oids_sign_alg :&[&OID_RSASSA_PSS],
	sign_alg :SignAlgo::Rsa(),
	oid_components : &OID_RSASSA_PSS,//&[1, 2, 840, 113549, 1, 1, 13],
	// rSASSA-PSS-SHA256-Params in RFC 4055
	params : SignatureAlgorithmParams::RsaPss {
		// id-sha256 in https://datatracker.ietf.org/doc/html/rfc4055#section-2.1
		hash_algorithm : &[2, 16, 840, 1, 101, 3, 4, 2, 1],
		salt_length : 20,
	},
};

/// ECDSA signing using the P-256 curves and SHA-256 hashing as per [RFC 5758](https://tools.ietf.org/html/rfc5758#section-3.2)
pub static PKCS_ECDSA_P256_SHA256 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_EC_PUBLIC_KEY, &OID_EC_SECP_256_R1],
	sign_alg :SignAlgo::EcDsa(&signature::ECDSA_P256_SHA256_ASN1_SIGNING),
	/// ecdsa-with-SHA256 in RFC 5758
	oid_components : &[1, 2, 840, 10045, 4, 3, 2],
	params : SignatureAlgorithmParams::None,
};

/// ECDSA signing using the P-384 curves and SHA-384 hashing as per [RFC 5758](https://tools.ietf.org/html/rfc5758#section-3.2)
pub static PKCS_ECDSA_P384_SHA384 :SignatureAlgorithm = SignatureAlgorithm {
	oids_sign_alg :&[&OID_EC_PUBLIC_KEY, &OID_EC_SECP_384_R1],
	sign_alg :SignAlgo::EcDsa(&signature::ECDSA_P384_SHA384_ASN1_SIGNING),
	/// ecdsa-with-SHA384 in RFC 5758
	oid_components : &[1, 2, 840, 10045, 4, 3, 3],
	params : SignatureAlgorithmParams::None,
};

// TODO PKCS_ECDSA_P521_SHA512 https://github.com/briansmith/ring/issues/824

/// ED25519 curve signing as per [RFC 8410](https://tools.ietf.org/html/rfc8410)
pub static PKCS_ED25519 :SignatureAlgorithm = SignatureAlgorithm {
	/// id-Ed25519 in RFC 8410
	oids_sign_alg :&[&[1, 3, 101, 112]],
	sign_alg :SignAlgo::EdDsa(&signature::ED25519),
	/// id-Ed25519 in RFC 8410
	oid_components : &[1, 3, 101, 112],
	params : SignatureAlgorithmParams::None,
};

// Signature algorithm IDs as per https://tools.ietf.org/html/rfc4055
impl SignatureAlgorithm {
	fn alg_ident_oid(&self) -> ObjectIdentifier {
		ObjectIdentifier::from_slice(self.oid_components)
	}
	fn write_params(&self, writer :&mut yasna::DERWriterSeq) {
		match self.params {
			SignatureAlgorithmParams::None => (),
			SignatureAlgorithmParams::Null => {
				writer.next().write_null();
			},
			SignatureAlgorithmParams::RsaPss {
				hash_algorithm, salt_length,
			} => {
				writer.next().write_sequence(|writer| {
					// https://datatracker.ietf.org/doc/html/rfc4055#section-3.1

					let oid = ObjectIdentifier::from_slice(hash_algorithm);
					// hashAlgorithm
					writer.next().write_tagged(Tag::context(0), |writer| {
						writer.write_sequence(|writer| {
							writer.next().write_oid(&oid);
						});
					});
					// maskGenAlgorithm
					writer.next().write_tagged(Tag::context(1), |writer| {
						writer.write_sequence(|writer| {
							// id-mgf1 in RFC 4055
							const ID_MGF1 :&[u64] = &[1, 2, 840, 113549, 1, 1, 8];
							let oid = ObjectIdentifier::from_slice(ID_MGF1);
							writer.next().write_oid(&oid);
							writer.next().write_sequence(|writer| {
								let oid = ObjectIdentifier::from_slice(hash_algorithm);
								writer.next().write_oid(&oid);
								writer.next().write_null();
							});
						});
					});
					// saltLength
					writer.next().write_tagged(Tag::context(2), |writer| {
						writer.write_u64(salt_length);
					});
					// We *must* omit the trailerField element as per RFC 4055 section 3.1
				})
			},
		}
	}
	/// Writes the algorithm identifier as it appears inside a signature
	fn write_alg_ident(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			writer.next().write_oid(&self.alg_ident_oid());
			self.write_params(writer);
		});
	}
	/// Writes the algorithm identifier as it appears inside subjectPublicKeyInfo
	fn write_oids_sign_alg(&self, writer :DERWriter) {
		writer.write_sequence(|writer| {
			for oid in self.oids_sign_alg {
				let oid = ObjectIdentifier::from_slice(oid);
				writer.next().write_oid(&oid);
			}
			self.write_params(writer);
		});
	}
}

#[cfg(feature = "zeroize")]
impl zeroize::Zeroize for KeyPair {
	fn zeroize(&mut self) {
		self.serialized_der.zeroize();
	}
}

#[cfg(feature = "zeroize")]
impl zeroize::Zeroize for Certificate {
	fn zeroize(&mut self) {
		self.params.zeroize();
		self.key_pair.zeroize();
	}
}

#[cfg(feature = "zeroize")]
impl zeroize::Zeroize for CertificateSigningRequest {
	fn zeroize(&mut self) {
		self.params.zeroize();
	}
}

#[cfg(feature = "zeroize")]
impl zeroize::Zeroize for CertificateParams {
	fn zeroize(&mut self) {
		self.key_pair.zeroize();
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	use std::panic::catch_unwind;

	fn get_times() -> [OffsetDateTime; 2] {
		let dt_nanos = {
			let date = Date::from_calendar_date(2020, Month::December, 3).unwrap();
			let time = Time::from_hms_nano(0, 0, 1, 444).unwrap();
			PrimitiveDateTime::new(date, time).assume_utc()
		};
		let dt_zero = {
			let date = Date::from_calendar_date(2020, Month::December, 3).unwrap();
			let time = Time::from_hms_nano(0, 0, 1, 0).unwrap();
			PrimitiveDateTime::new(date, time).assume_utc()
		};
		// TODO: include leap seconds if time becomes leap second aware
		[dt_nanos, dt_zero]
	}

	#[test]
	fn test_dt_utc_strip_nanos() {
		let times = get_times();

		// No stripping - OffsetDateTime with nanos
		let res = catch_unwind(|| UTCTime::from_datetime(times[0]));
		assert!(res.is_err());

		// Stripping
		for dt in times {
			let date_time = dt_strip_nanos(dt);
			assert_eq!(date_time.time().nanosecond(), 0);
			let _ut = UTCTime::from_datetime(date_time);
		}
	}

	#[test]
	fn test_dt_to_generalized() {
		let times = get_times();

		for dt in times {
			let _gt = dt_to_generalized(dt);
		}
	}

	#[test]
	fn test_with_key_usages() {
		let mut params: CertificateParams = Default::default();

		// Set key_usages
		params.key_usages = vec![
			KeyUsagePurpose::DigitalSignature,
			KeyUsagePurpose::KeyEncipherment,
			KeyUsagePurpose::ContentCommitment,
		];

		// This can sign things!
		params.is_ca = IsCa::Ca(BasicConstraints::Constrained(0));

		// Make the cert
		let cert = Certificate::from_params(params).unwrap();

		// Serialize it
		let der = cert.serialize_der().unwrap();

		// Parse it
		let (_rem, cert) = x509_parser::parse_x509_certificate(&der).unwrap();

		// Check oid
		let key_usage_oid_str= "2.5.29.15";

		// Found flag
		let mut found = false;

		for ext in cert.extensions() {
			if key_usage_oid_str == ext.oid.to_id_string() {
				match ext.parsed_extension() {
					x509_parser::extensions::ParsedExtension::KeyUsage(usage) =>{
						assert!(usage.flags == 7);
						found = true;
					}
					_ => {}
				}
			}
		}

		assert!(found);
	}

	#[test]
	fn test_with_key_usages_decipheronly_only() {
		let mut params: CertificateParams = Default::default();

		// Set key_usages
		params.key_usages = vec![KeyUsagePurpose::DecipherOnly];

		// This can sign things!
		params.is_ca = IsCa::Ca(BasicConstraints::Constrained(0));

		// Make the cert
		let cert = Certificate::from_params(params).unwrap();

		// Serialize it
		let der = cert.serialize_der().unwrap();

		// Parse it
		let (_rem, cert) = x509_parser::parse_x509_certificate(&der).unwrap();

		// Check oid
		let key_usage_oid_str= "2.5.29.15";

		// Found flag
		let mut found = false;

		for ext in cert.extensions() {
			if key_usage_oid_str == ext.oid.to_id_string() {
				match ext.parsed_extension() {
					x509_parser::extensions::ParsedExtension::KeyUsage(usage) =>{
						assert!(usage.flags == 256);
						found = true;
					}
					_ => {}
				}
			}
		}

		assert!(found);
	}

	#[test]
	fn signature_algos_different() {
		// TODO unify this with test_key_params_mismatch.
		// Note that that test doesn't have a full list of signature
		// algorithms, as it has no access to the iter function.
		for (i, alg_i) in SignatureAlgorithm::iter().enumerate() {
			for (j, alg_j) in SignatureAlgorithm::iter().enumerate() {
				assert_eq!(alg_i == alg_j, i == j,
					"Algorighm relationship mismatch for algorithm index pair {} and {}", i, j);
			}
		}
	}
}