1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
//! A SSA-building API that handles incomplete CFGs.
//!
//! The algorithm is based upon Braun M., Buchwald S., Hack S., Leißa R., Mallon C.,
//! Zwinkau A. (2013) Simple and Efficient Construction of Static Single Assignment Form.
//! In: Jhala R., De Bosschere K. (eds) Compiler Construction. CC 2013.
//! Lecture Notes in Computer Science, vol 7791. Springer, Berlin, Heidelberg
//!
//! <https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf>
use crate::Variable;
use alloc::vec::Vec;
use core::convert::TryInto;
use core::mem;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::{EntityList, EntitySet, ListPool, SecondaryMap};
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64};
use cranelift_codegen::ir::types::{F32, F64, I128, I64};
use cranelift_codegen::ir::{Block, Function, Inst, InstBuilder, Type, Value};
use cranelift_codegen::packed_option::PackedOption;
/// Structure containing the data relevant the construction of SSA for a given function.
///
/// The parameter struct `Variable` corresponds to the way variables are represented in the
/// non-SSA language you're translating from.
///
/// The SSA building relies on information about the variables used and defined.
///
/// This SSA building module allows you to def and use variables on the fly while you are
/// constructing the CFG, no need for a separate SSA pass after the CFG is completed.
///
/// A basic block is said _filled_ if all the instruction that it contains have been translated,
/// and it is said _sealed_ if all of its predecessors have been declared. Only filled predecessors
/// can be declared.
#[derive(Default)]
pub struct SSABuilder {
// TODO: Consider a sparse representation rather than SecondaryMap-of-SecondaryMap.
/// Records for every variable and for every relevant block, the last definition of
/// the variable in the block.
variables: SecondaryMap<Variable, SecondaryMap<Block, PackedOption<Value>>>,
/// Records the position of the basic blocks and the list of values used but not defined in the
/// block.
ssa_blocks: SecondaryMap<Block, SSABlockData>,
/// Call stack for use in the `use_var`/`predecessors_lookup` state machine.
calls: Vec<Call>,
/// Result stack for use in the `use_var`/`predecessors_lookup` state machine.
results: Vec<Value>,
/// Side effects accumulated in the `use_var`/`predecessors_lookup` state machine.
side_effects: SideEffects,
/// Reused storage for cycle-detection.
visited: EntitySet<Block>,
/// Storage for pending variable definitions.
variable_pool: ListPool<Variable>,
/// Storage for predecessor definitions.
inst_pool: ListPool<Inst>,
}
/// Side effects of a `use_var` or a `seal_block` method call.
#[derive(Default)]
pub struct SideEffects {
/// When a variable is used but has never been defined before (this happens in the case of
/// unreachable code), a placeholder `iconst` or `fconst` value is added to the right `Block`.
/// This field signals if it is the case and return the `Block` to which the initialization has
/// been added.
pub instructions_added_to_blocks: Vec<Block>,
}
impl SideEffects {
fn is_empty(&self) -> bool {
self.instructions_added_to_blocks.is_empty()
}
}
#[derive(Clone)]
enum Sealed {
No {
// List of current Block arguments for which an earlier def has not been found yet.
undef_variables: EntityList<Variable>,
},
Yes,
}
impl Default for Sealed {
fn default() -> Self {
Sealed::No {
undef_variables: EntityList::new(),
}
}
}
#[derive(Clone, Default)]
struct SSABlockData {
// The predecessors of the Block with the block and branch instruction.
predecessors: EntityList<Inst>,
// A block is sealed if all of its predecessors have been declared.
sealed: Sealed,
// If this block is sealed and it has exactly one predecessor, this is that predecessor.
single_predecessor: PackedOption<Block>,
}
impl SSABuilder {
/// Clears a `SSABuilder` from all its data, letting it in a pristine state without
/// deallocating memory.
pub fn clear(&mut self) {
self.variables.clear();
self.ssa_blocks.clear();
self.variable_pool.clear();
self.inst_pool.clear();
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
debug_assert!(self.side_effects.is_empty());
}
/// Tests whether an `SSABuilder` is in a cleared state.
pub fn is_empty(&self) -> bool {
self.variables.is_empty()
&& self.ssa_blocks.is_empty()
&& self.calls.is_empty()
&& self.results.is_empty()
&& self.side_effects.is_empty()
}
}
/// States for the `use_var`/`predecessors_lookup` state machine.
enum Call {
UseVar(Inst),
FinishPredecessorsLookup(Value, Block),
}
/// Emit instructions to produce a zero value in the given type.
fn emit_zero(ty: Type, mut cur: FuncCursor) -> Value {
if ty == I128 {
let zero = cur.ins().iconst(I64, 0);
cur.ins().uextend(I128, zero)
} else if ty.is_int() {
cur.ins().iconst(ty, 0)
} else if ty == F32 {
cur.ins().f32const(Ieee32::with_bits(0))
} else if ty == F64 {
cur.ins().f64const(Ieee64::with_bits(0))
} else if ty.is_ref() {
cur.ins().null(ty)
} else if ty.is_vector() {
let scalar_ty = ty.lane_type();
if scalar_ty.is_int() {
let zero = cur.func.dfg.constants.insert(
core::iter::repeat(0)
.take(ty.bytes().try_into().unwrap())
.collect(),
);
cur.ins().vconst(ty, zero)
} else if scalar_ty == F32 {
let scalar = cur.ins().f32const(Ieee32::with_bits(0));
cur.ins().splat(ty, scalar)
} else if scalar_ty == F64 {
let scalar = cur.ins().f64const(Ieee64::with_bits(0));
cur.ins().splat(ty, scalar)
} else {
panic!("unimplemented scalar type: {:?}", ty)
}
} else {
panic!("unimplemented type: {:?}", ty)
}
}
/// The following methods are the API of the SSA builder. Here is how it should be used when
/// translating to Cranelift IR:
///
/// - for each basic block, create a corresponding data for SSA construction with `declare_block`;
///
/// - while traversing a basic block and translating instruction, use `def_var` and `use_var`
/// to record definitions and uses of variables, these methods will give you the corresponding
/// SSA values;
///
/// - when all the instructions in a basic block have translated, the block is said _filled_ and
/// only then you can add it as a predecessor to other blocks with `declare_block_predecessor`;
///
/// - when you have constructed all the predecessor to a basic block,
/// call `seal_block` on it with the `Function` that you are building.
///
/// This API will give you the correct SSA values to use as arguments of your instructions,
/// as well as modify the jump instruction and `Block` parameters to account for the SSA
/// Phi functions.
///
impl SSABuilder {
/// Declares a new definition of a variable in a given basic block.
/// The SSA value is passed as an argument because it should be created with
/// `ir::DataFlowGraph::append_result`.
pub fn def_var(&mut self, var: Variable, val: Value, block: Block) {
self.variables[var][block] = PackedOption::from(val);
}
/// Declares a use of a variable in a given basic block. Returns the SSA value corresponding
/// to the current SSA definition of this variable and a list of newly created Blocks that
/// are the results of critical edge splitting for `br_table` with arguments.
///
/// If the variable has never been defined in this blocks or recursively in its predecessors,
/// this method will silently create an initializer with `iconst` or `fconst`. You are
/// responsible for making sure that you initialize your variables.
pub fn use_var(
&mut self,
func: &mut Function,
var: Variable,
ty: Type,
block: Block,
) -> (Value, SideEffects) {
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
debug_assert!(self.side_effects.is_empty());
// Prepare the 'calls' and 'results' stacks for the state machine.
self.use_var_nonlocal(func, var, ty, block);
let value = self.run_state_machine(func, var, ty);
let side_effects = mem::take(&mut self.side_effects);
(value, side_effects)
}
/// Resolve the minimal SSA Value of `var` in `block` by traversing predecessors.
///
/// This function sets up state for `run_state_machine()` but does not execute it.
fn use_var_nonlocal(&mut self, func: &mut Function, var: Variable, ty: Type, mut block: Block) {
// First, try Local Value Numbering (Algorithm 1 in the paper).
// If the variable already has a known Value in this block, use that.
if let Some(val) = self.variables[var][block].expand() {
self.results.push(val);
return;
}
// Otherwise, use Global Value Numbering (Algorithm 2 in the paper).
// This resolves the Value with respect to its predecessors.
// Find the most recent definition of `var`, and the block the definition comes from.
let (val, from) = self.find_var(func, var, ty, block);
// The `from` block returned from `find_var` is guaranteed to be on the path we follow by
// traversing only single-predecessor edges. It might be equal to `block` if there is no
// such path, but in that case `find_var` ensures that the variable is defined in this block
// by a new block parameter. It also might be somewhere in a cycle, but even then this loop
// will terminate the first time it encounters that block, rather than continuing around the
// cycle forever.
//
// Why is it okay to copy the definition to all intervening blocks? For the initial block,
// this may not be the final definition of this variable within this block, but if we've
// gotten here then we know there is no earlier definition in the block already.
//
// For the remaining blocks: Recall that a block is only allowed to be set as a predecessor
// after all its instructions have already been filled in, so when we follow a predecessor
// edge to a block, we know there will never be any more local variable definitions added to
// that block. We also know that `find_var` didn't find a definition for this variable in
// any of the blocks before `from`.
//
// So in either case there is no definition in these blocks yet and we can blindly set one.
let var_defs = &mut self.variables[var];
while block != from {
debug_assert!(var_defs[block].is_none());
var_defs[block] = PackedOption::from(val);
block = self.ssa_blocks[block].single_predecessor.unwrap();
}
}
/// Find the most recent definition of this variable, returning both the definition and the
/// block in which it was found. If we can't find a definition that's provably the right one for
/// all paths to the current block, then append a block parameter to some block and use that as
/// the definition. Either way, also arrange that the definition will be on the `results` stack
/// when `run_state_machine` is done processing the current step.
///
/// If a block has exactly one predecessor, and the block is sealed so we know its predecessors
/// will never change, then its definition for this variable is the same as the definition from
/// that one predecessor. In this case it's easy to see that no block parameter is necessary,
/// but we need to look at the predecessor to see if a block parameter might be needed there.
/// That holds transitively across any chain of sealed blocks with exactly one predecessor each.
///
/// This runs into a problem, though, if such a chain has a cycle: Blindly following a cyclic
/// chain that never defines this variable would lead to an infinite loop in the compiler. It
/// doesn't really matter what code we generate in that case. Since each block in the cycle has
/// exactly one predecessor, there's no way to enter the cycle from the function's entry block;
/// and since all blocks in the cycle are sealed, the entire cycle is permanently dead code. But
/// we still have to prevent the possibility of an infinite loop.
///
/// To break cycles, we can pick any block within the cycle as the one where we'll add a block
/// parameter. It's convenient to pick the block at which we entered the cycle, because that's
/// the first place where we can detect that we just followed a cycle. Adding a block parameter
/// gives us a definition we can reuse throughout the rest of the cycle.
fn find_var(
&mut self,
func: &mut Function,
var: Variable,
ty: Type,
mut block: Block,
) -> (Value, Block) {
// Try to find an existing definition along single-predecessor edges first.
self.visited.clear();
let var_defs = &mut self.variables[var];
while let Some(pred) = self.ssa_blocks[block].single_predecessor.expand() {
if !self.visited.insert(block) {
break;
}
block = pred;
if let Some(val) = var_defs[block].expand() {
self.results.push(val);
return (val, block);
}
}
// We've promised to return the most recent block where `var` was defined, but we didn't
// find a usable definition. So create one.
let val = func.dfg.append_block_param(block, ty);
var_defs[block] = PackedOption::from(val);
// Now every predecessor needs to pass its definition of this variable to the newly added
// block parameter. To do that we have to "recursively" call `use_var`, but there are two
// problems with doing that. First, we need to keep a fixed bound on stack depth, so we
// can't actually recurse; instead we defer to `run_state_machine`. Second, if we don't
// know all our predecessors yet, we have to defer this work until the block gets sealed.
match &mut self.ssa_blocks[block].sealed {
// Once all the `calls` added here complete, this leaves either `val` or an equivalent
// definition on the `results` stack.
Sealed::Yes => self.begin_predecessors_lookup(val, block),
Sealed::No { undef_variables } => {
undef_variables.push(var, &mut self.variable_pool);
self.results.push(val);
}
}
(val, block)
}
/// Declares a new basic block to construct corresponding data for SSA construction.
/// No predecessors are declared here and the block is not sealed.
/// Predecessors have to be added with `declare_block_predecessor`.
pub fn declare_block(&mut self, block: Block) {
// Ensure the block exists so seal_all_blocks will see it even if no predecessors or
// variables get declared for this block. But don't assign anything to it:
// SecondaryMap automatically sets all blocks to `default()`.
let _ = &mut self.ssa_blocks[block];
}
/// Declares a new predecessor for a `Block` and record the branch instruction
/// of the predecessor that leads to it.
///
/// The precedent `Block` must be filled before added as predecessor.
/// Note that you must provide no jump arguments to the branch
/// instruction when you create it since `SSABuilder` will fill them for you.
///
/// Callers are expected to avoid adding the same predecessor more than once in the case
/// of a jump table.
pub fn declare_block_predecessor(&mut self, block: Block, inst: Inst) {
debug_assert!(!self.is_sealed(block));
self.ssa_blocks[block]
.predecessors
.push(inst, &mut self.inst_pool);
}
/// Remove a previously declared Block predecessor by giving a reference to the jump
/// instruction. Returns the basic block containing the instruction.
///
/// Note: use only when you know what you are doing, this might break the SSA building problem
pub fn remove_block_predecessor(&mut self, block: Block, inst: Inst) {
debug_assert!(!self.is_sealed(block));
let data = &mut self.ssa_blocks[block];
let pred = data
.predecessors
.as_slice(&self.inst_pool)
.iter()
.position(|&branch| branch == inst)
.expect("the predecessor you are trying to remove is not declared");
data.predecessors.swap_remove(pred, &mut self.inst_pool);
}
/// Completes the global value numbering for a `Block`, all of its predecessors having been
/// already sealed.
///
/// This method modifies the function's `Layout` by adding arguments to the `Block`s to
/// take into account the Phi function placed by the SSA algorithm.
///
/// Returns the list of newly created blocks for critical edge splitting.
pub fn seal_block(&mut self, block: Block, func: &mut Function) -> SideEffects {
debug_assert!(
!self.is_sealed(block),
"Attempting to seal {} which is already sealed.",
block
);
self.seal_one_block(block, func);
mem::take(&mut self.side_effects)
}
/// Completes the global value numbering for all unsealed `Block`s in `func`.
///
/// It's more efficient to seal `Block`s as soon as possible, during
/// translation, but for frontends where this is impractical to do, this
/// function can be used at the end of translating all blocks to ensure
/// that everything is sealed.
pub fn seal_all_blocks(&mut self, func: &mut Function) -> SideEffects {
// Seal all `Block`s currently in the function. This can entail splitting
// and creation of new blocks, however such new blocks are sealed on
// the fly, so we don't need to account for them here.
for block in self.ssa_blocks.keys() {
self.seal_one_block(block, func);
}
mem::take(&mut self.side_effects)
}
/// Helper function for `seal_block` and `seal_all_blocks`.
fn seal_one_block(&mut self, block: Block, func: &mut Function) {
// For each undef var we look up values in the predecessors and create a block parameter
// only if necessary.
let mut undef_variables =
match mem::replace(&mut self.ssa_blocks[block].sealed, Sealed::Yes) {
Sealed::No { undef_variables } => undef_variables,
Sealed::Yes => return,
};
let ssa_params = undef_variables.len(&self.variable_pool);
let predecessors = self.predecessors(block);
if predecessors.len() == 1 {
let pred = func.layout.inst_block(predecessors[0]).unwrap();
self.ssa_blocks[block].single_predecessor = PackedOption::from(pred);
}
// Note that begin_predecessors_lookup requires visiting these variables in the same order
// that they were defined by find_var, because it appends arguments to the jump instructions
// in all the predecessor blocks one variable at a time.
for idx in 0..ssa_params {
let var = undef_variables.get(idx, &self.variable_pool).unwrap();
// We need the temporary Value that was assigned to this Variable. If that Value shows
// up as a result from any of our predecessors, then it never got assigned on the loop
// through that block. We get the value from the next block param, where it was first
// allocated in find_var.
let block_params = func.dfg.block_params(block);
// On each iteration through this loop, there are (ssa_params - idx) undefined variables
// left to process. Previous iterations through the loop may have removed earlier block
// parameters, but the last (ssa_params - idx) block parameters always correspond to the
// remaining undefined variables. So index from the end of the current block params.
let val = block_params[block_params.len() - (ssa_params - idx)];
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
// self.side_effects may be non-empty here so that callers can
// accumulate side effects over multiple calls.
self.begin_predecessors_lookup(val, block);
self.run_state_machine(func, var, func.dfg.value_type(val));
}
undef_variables.clear(&mut self.variable_pool);
}
/// Given the local SSA Value of a Variable in a Block, perform a recursive lookup on
/// predecessors to determine if it is redundant with another Value earlier in the CFG.
///
/// If such a Value exists and is redundant, the local Value is replaced by the
/// corresponding non-local Value. If the original Value was a Block parameter,
/// the parameter may be removed if redundant. Parameters are placed eagerly by callers
/// to avoid infinite loops when looking up a Value for a Block that is in a CFG loop.
///
/// Doing this lookup for each Value in each Block preserves SSA form during construction.
///
/// ## Arguments
///
/// `sentinel` is a dummy Block parameter inserted by `use_var_nonlocal()`.
/// Its purpose is to allow detection of CFG cycles while traversing predecessors.
fn begin_predecessors_lookup(&mut self, sentinel: Value, dest_block: Block) {
self.calls
.push(Call::FinishPredecessorsLookup(sentinel, dest_block));
// Iterate over the predecessors.
self.calls.extend(
self.ssa_blocks[dest_block]
.predecessors
.as_slice(&self.inst_pool)
.iter()
.rev()
.copied()
.map(Call::UseVar),
);
}
/// Examine the values from the predecessors and compute a result value, creating
/// block parameters as needed.
fn finish_predecessors_lookup(
&mut self,
func: &mut Function,
sentinel: Value,
dest_block: Block,
) -> Value {
// Determine how many predecessors are yielding unique, non-temporary Values. If a variable
// is live and unmodified across several control-flow join points, earlier blocks will
// introduce aliases for that variable's definition, so we resolve aliases eagerly here to
// ensure that we can tell when the same definition has reached this block via multiple
// paths. Doing so also detects cyclic references to the sentinel, which can occur in
// unreachable code.
let num_predecessors = self.predecessors(dest_block).len();
// When this `Drain` is dropped, these elements will get truncated.
let results = self.results.drain(self.results.len() - num_predecessors..);
let pred_val = {
let mut iter = results
.as_slice()
.iter()
.map(|&val| func.dfg.resolve_aliases(val))
.filter(|&val| val != sentinel);
if let Some(val) = iter.next() {
// This variable has at least one non-temporary definition. If they're all the same
// value, we can remove the block parameter and reference that value instead.
if iter.all(|other| other == val) {
Some(val)
} else {
None
}
} else {
// The variable is used but never defined before. This is an irregularity in the
// code, but rather than throwing an error we silently initialize the variable to
// 0. This will have no effect since this situation happens in unreachable code.
if !func.layout.is_block_inserted(dest_block) {
func.layout.append_block(dest_block);
}
self.side_effects
.instructions_added_to_blocks
.push(dest_block);
let zero = emit_zero(
func.dfg.value_type(sentinel),
FuncCursor::new(func).at_first_insertion_point(dest_block),
);
Some(zero)
}
};
if let Some(pred_val) = pred_val {
// Here all the predecessors use a single value to represent our variable
// so we don't need to have it as a block argument.
// We need to replace all the occurrences of val with pred_val but since
// we can't afford a re-writing pass right now we just declare an alias.
func.dfg.remove_block_param(sentinel);
func.dfg.change_to_alias(sentinel, pred_val);
pred_val
} else {
// There is disagreement in the predecessors on which value to use so we have
// to keep the block argument.
let mut preds = self.ssa_blocks[dest_block].predecessors;
let dfg = &mut func.stencil.dfg;
for (idx, &val) in results.as_slice().iter().enumerate() {
let pred = preds.get_mut(idx, &mut self.inst_pool).unwrap();
let branch = *pred;
let dests = dfg.insts[branch].branch_destination_mut(&mut dfg.jump_tables);
assert!(
!dests.is_empty(),
"you have declared a non-branch instruction as a predecessor to a block!"
);
for block in dests {
if block.block(&dfg.value_lists) == dest_block {
block.append_argument(val, &mut dfg.value_lists);
}
}
}
sentinel
}
}
/// Returns the list of `Block`s that have been declared as predecessors of the argument.
fn predecessors(&self, block: Block) -> &[Inst] {
self.ssa_blocks[block]
.predecessors
.as_slice(&self.inst_pool)
}
/// Returns whether the given Block has any predecessor or not.
pub fn has_any_predecessors(&self, block: Block) -> bool {
!self.predecessors(block).is_empty()
}
/// Returns `true` if and only if `seal_block` has been called on the argument.
pub fn is_sealed(&self, block: Block) -> bool {
matches!(self.ssa_blocks[block].sealed, Sealed::Yes)
}
/// The main algorithm is naturally recursive: when there's a `use_var` in a
/// block with no corresponding local defs, it recurses and performs a
/// `use_var` in each predecessor. To avoid risking running out of callstack
/// space, we keep an explicit stack and use a small state machine rather
/// than literal recursion.
fn run_state_machine(&mut self, func: &mut Function, var: Variable, ty: Type) -> Value {
// Process the calls scheduled in `self.calls` until it is empty.
while let Some(call) = self.calls.pop() {
match call {
Call::UseVar(branch) => {
let block = func.layout.inst_block(branch).unwrap();
self.use_var_nonlocal(func, var, ty, block);
}
Call::FinishPredecessorsLookup(sentinel, dest_block) => {
let val = self.finish_predecessors_lookup(func, sentinel, dest_block);
self.results.push(val);
}
}
}
debug_assert_eq!(self.results.len(), 1);
self.results.pop().unwrap()
}
}
#[cfg(test)]
mod tests {
use crate::ssa::SSABuilder;
use crate::Variable;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir;
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{Function, Inst, InstBuilder, JumpTableData, Opcode};
use cranelift_codegen::settings;
use cranelift_codegen::verify_function;
#[test]
fn simple_block() {
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
// Here is the pseudo-program we want to translate:
// block0:
// x = 1;
// y = 2;
// z = x + y;
// z = x + z;
ssa.declare_block(block0);
let x_var = Variable::new(0);
let x_ssa = {
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x_ssa, block0);
let y_var = Variable::new(1);
let y_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y_ssa, block0);
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);
let z_var = Variable::new(2);
let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
let z1_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x_use1, y_use1)
};
ssa.def_var(z_var, z1_ssa, block0);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);
let x_use2 = ssa.use_var(&mut func, x_var, I32, block0).0;
let z_use1 = ssa.use_var(&mut func, z_var, I32, block0).0;
let z2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x_use2, z_use1)
};
ssa.def_var(z_var, z2_ssa, block0);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z2_ssa);
}
#[test]
fn sequence_of_blocks() {
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
// Here is the pseudo-program we want to translate:
// block0:
// x = 1;
// y = 2;
// z = x + y;
// brif y, block1, block1;
// block1:
// z = x + z;
// jump block2;
// block2:
// y = x + y;
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
}
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
let x_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x_ssa, block0);
let y_var = Variable::new(1);
let y_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y_ssa, block0);
let z_var = Variable::new(2);
let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
let z1_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x_use1, y_use1)
};
ssa.def_var(z_var, z1_ssa, block0);
let y_use2 = ssa.use_var(&mut func, y_var, I32, block0).0;
let brif_block0_block2_block1: Inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().brif(y_use2, block2, &[], block1, &[])
};
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, brif_block0_block2_block1);
ssa.seal_block(block1, &mut func);
let x_use2 = ssa.use_var(&mut func, x_var, I32, block1).0;
let z_use1 = ssa.use_var(&mut func, z_var, I32, block1).0;
let z2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iadd(x_use2, z_use1)
};
ssa.def_var(z_var, z2_ssa, block1);
let jump_block1_block2: Inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().jump(block2, &[])
};
assert_eq!(x_use2, x_ssa);
assert_eq!(z_use1, z1_ssa);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block1).0, z2_ssa);
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block2, brif_block0_block2_block1);
ssa.declare_block_predecessor(block2, jump_block1_block2);
ssa.seal_block(block2, &mut func);
let x_use3 = ssa.use_var(&mut func, x_var, I32, block2).0;
let y_use3 = ssa.use_var(&mut func, y_var, I32, block2).0;
let y2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().iadd(x_use3, y_use3)
};
ssa.def_var(y_var, y2_ssa, block2);
assert_eq!(x_ssa, x_use3);
assert_eq!(y_ssa, y_use3);
match func.dfg.insts[brif_block0_block2_block1] {
ir::InstructionData::Brif {
blocks: [block_then, block_else],
..
} => {
assert_eq!(block_then.block(&func.dfg.value_lists), block2);
assert_eq!(block_then.args_slice(&func.dfg.value_lists).len(), 0);
assert_eq!(block_else.block(&func.dfg.value_lists), block1);
assert_eq!(block_else.args_slice(&func.dfg.value_lists).len(), 0);
}
_ => assert!(false),
};
match func.dfg.insts[brif_block0_block2_block1] {
ir::InstructionData::Brif {
blocks: [block_then, block_else],
..
} => {
assert_eq!(block_then.block(&func.dfg.value_lists), block2);
assert_eq!(block_then.args_slice(&func.dfg.value_lists).len(), 0);
assert_eq!(block_else.block(&func.dfg.value_lists), block1);
assert_eq!(block_else.args_slice(&func.dfg.value_lists).len(), 0);
}
_ => assert!(false),
};
match func.dfg.insts[jump_block1_block2] {
ir::InstructionData::Jump {
destination: dest, ..
} => {
assert_eq!(dest.block(&func.dfg.value_lists), block2);
assert_eq!(dest.args_slice(&func.dfg.value_lists).len(), 0);
}
_ => assert!(false),
};
}
#[test]
fn program_with_loop() {
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let block3 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
cur.insert_block(block3);
}
// Here is the pseudo-program we want to translate:
// block0:
// x = 1;
// y = 2;
// z = x + y;
// jump block1
// block1:
// z = z + y;
// brif y, block3, block2;
// block2:
// z = z - x;
// return y
// block3:
// y = y - x
// jump block1
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
let x1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x1, block0);
let y_var = Variable::new(1);
let y1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y1, block0);
let z_var = Variable::new(2);
let x2 = ssa.use_var(&mut func, x_var, I32, block0).0;
let y2 = ssa.use_var(&mut func, y_var, I32, block0).0;
let z1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x2, y2)
};
ssa.def_var(z_var, z1, block0);
let jump_block0_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().jump(block1, &[])
};
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x1);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y1);
assert_eq!(x2, x1);
assert_eq!(y2, y1);
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, jump_block0_block1);
let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
let z3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iadd(z2, y3)
};
ssa.def_var(z_var, z3, block1);
let y4 = ssa.use_var(&mut func, y_var, I32, block1).0;
assert_eq!(y4, y3);
let brif_block1_block3_block2 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().brif(y4, block3, &[], block2, &[])
};
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block2, brif_block1_block3_block2);
ssa.seal_block(block2, &mut func);
let z4 = ssa.use_var(&mut func, z_var, I32, block2).0;
assert_eq!(z4, z3);
let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
let z5 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().isub(z4, x3)
};
ssa.def_var(z_var, z5, block2);
let y5 = ssa.use_var(&mut func, y_var, I32, block2).0;
assert_eq!(y5, y3);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().return_(&[y5])
};
// block3
ssa.declare_block(block3);
ssa.declare_block_predecessor(block3, brif_block1_block3_block2);
ssa.seal_block(block3, &mut func);
let y6 = ssa.use_var(&mut func, y_var, I32, block3).0;
assert_eq!(y6, y3);
let x4 = ssa.use_var(&mut func, x_var, I32, block3).0;
assert_eq!(x4, x3);
let y7 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
cur.ins().isub(y6, x4)
};
ssa.def_var(y_var, y7, block3);
let jump_block3_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
cur.ins().jump(block1, &[])
};
// block1 after all predecessors have been visited.
ssa.declare_block_predecessor(block1, jump_block3_block1);
ssa.seal_block(block1, &mut func);
assert_eq!(func.dfg.block_params(block1)[0], z2);
assert_eq!(func.dfg.block_params(block1)[1], y3);
assert_eq!(func.dfg.resolve_aliases(x3), x1);
}
#[test]
fn br_table_with_args() {
// This tests the on-demand splitting of critical edges for br_table with jump arguments
//
// Here is the pseudo-program we want to translate:
//
// function %f {
// block0:
// x = 1;
// br_table x, block2, [block2, block1]
// block1:
// x = 2
// jump block2
// block2:
// x = x + 1
// return
// }
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
}
// block0
let x1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
ssa.def_var(x_var, x1, block0);
ssa.use_var(&mut func, x_var, I32, block0).0;
let br_table = {
let jump_table = JumpTableData::new(
func.dfg.block_call(block2, &[]),
&[
func.dfg.block_call(block2, &[]),
func.dfg.block_call(block1, &[]),
],
);
let jt = func.create_jump_table(jump_table);
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().br_table(x1, jt)
};
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, br_table);
ssa.seal_block(block1, &mut func);
let x2 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iconst(I32, 2)
};
ssa.def_var(x_var, x2, block1);
let jump_block1_block2 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().jump(block2, &[])
};
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block2, jump_block1_block2);
ssa.declare_block_predecessor(block2, br_table);
ssa.seal_block(block2, &mut func);
let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
let x4 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().iadd_imm(x3, 1)
};
ssa.def_var(x_var, x4, block2);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().return_(&[])
};
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_errors) => {
#[cfg(feature = "std")]
panic!("{}", _errors);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn undef_values_reordering() {
// Here is the pseudo-program we want to translate:
// block0:
// x = 0;
// y = 1;
// z = 2;
// jump block1;
// block1:
// x = z + x;
// y = y - x;
// jump block1;
//
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
}
// block0
ssa.declare_block(block0);
let x_var = Variable::new(0);
ssa.seal_block(block0, &mut func);
let x1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 0)
};
ssa.def_var(x_var, x1, block0);
let y_var = Variable::new(1);
let y1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(y_var, y1, block0);
let z_var = Variable::new(2);
let z1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(z_var, z1, block0);
let jump_block0_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().jump(block1, &[])
};
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, jump_block0_block1);
let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
assert_eq!(func.dfg.block_params(block1)[0], z2);
let x2 = ssa.use_var(&mut func, x_var, I32, block1).0;
assert_eq!(func.dfg.block_params(block1)[1], x2);
let x3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iadd(x2, z2)
};
ssa.def_var(x_var, x3, block1);
let x4 = ssa.use_var(&mut func, x_var, I32, block1).0;
let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
assert_eq!(func.dfg.block_params(block1)[2], y3);
let y4 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().isub(y3, x4)
};
ssa.def_var(y_var, y4, block1);
let jump_block1_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().jump(block1, &[])
};
ssa.declare_block_predecessor(block1, jump_block1_block1);
ssa.seal_block(block1, &mut func);
// At sealing the "z" argument disappear but the remaining "x" and "y" args have to be
// in the right order.
assert_eq!(func.dfg.block_params(block1)[1], y3);
assert_eq!(func.dfg.block_params(block1)[0], x2);
}
#[test]
fn undef() {
// Use vars of various types which have not been defined.
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let i32_var = Variable::new(0);
let f32_var = Variable::new(1);
let f64_var = Variable::new(2);
let i8_var = Variable::new(3);
let f32x4_var = Variable::new(4);
ssa.use_var(&mut func, i32_var, I32, block0);
ssa.use_var(&mut func, f32_var, F32, block0);
ssa.use_var(&mut func, f64_var, F64, block0);
ssa.use_var(&mut func, i8_var, I8, block0);
ssa.use_var(&mut func, f32x4_var, F32X4, block0);
assert_eq!(func.dfg.num_block_params(block0), 0);
}
#[test]
fn undef_in_entry() {
// Use a var which has not been defined. The search should hit the
// top of the entry block, and then fall back to inserting an iconst.
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
assert_eq!(func.dfg.num_block_params(block0), 0);
ssa.use_var(&mut func, x_var, I32, block0);
assert_eq!(func.dfg.num_block_params(block0), 0);
assert_eq!(
func.dfg.insts[func.layout.first_inst(block0).unwrap()].opcode(),
Opcode::Iconst
);
}
#[test]
fn undef_in_entry_sealed_after() {
// Use a var which has not been defined, but the block is not sealed
// until afterward. Before sealing, the SSA builder should insert an
// block param; after sealing, it should be removed.
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
ssa.declare_block(block0);
let x_var = Variable::new(0);
assert_eq!(func.dfg.num_block_params(block0), 0);
ssa.use_var(&mut func, x_var, I32, block0);
assert_eq!(func.dfg.num_block_params(block0), 1);
ssa.seal_block(block0, &mut func);
assert_eq!(func.dfg.num_block_params(block0), 0);
assert_eq!(
func.dfg.insts[func.layout.first_inst(block0).unwrap()].opcode(),
Opcode::Iconst
);
}
#[test]
fn unreachable_use() {
// Here is the pseudo-program we want to translate:
// block0:
// return;
// block1:
// brif x, block1, block1;
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
}
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().return_(&[]);
}
// block1
ssa.declare_block(block1);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
let x_var = Variable::new(0);
let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
let brif = cur.ins().brif(x_val, block1, &[], block1, &[]);
ssa.declare_block_predecessor(block1, brif);
}
ssa.seal_block(block1, &mut func);
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_errors) => {
#[cfg(feature = "std")]
panic!("{}", _errors);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn unreachable_use_with_multiple_preds() {
// Here is the pseudo-program we want to translate:
// block0:
// return;
// block1:
// brif x, block1, block2;
// block2:
// jump block1;
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
}
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().return_(&[]);
}
// block1
ssa.declare_block(block1);
let brif = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
let x_var = Variable::new(0);
let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
cur.ins().brif(x_val, block2, &[], block1, &[])
};
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block1, brif);
ssa.declare_block_predecessor(block2, brif);
ssa.seal_block(block2, &mut func);
let jump_block2_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().jump(block1, &[])
};
// seal block1
ssa.declare_block_predecessor(block1, jump_block2_block1);
ssa.seal_block(block1, &mut func);
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_errors) => {
#[cfg(feature = "std")]
panic!("{}", _errors);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn reassign_with_predecessor_loop_hangs() {
// Here is the pseudo-program we want to translate:
// block0:
// var0 = iconst 0
// return;
// block1:
// jump block2;
// block2:
// ; phantom use of var0
// var0 = iconst 1
// jump block1;
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let var0 = Variable::new(0);
{
let mut cur = FuncCursor::new(&mut func);
for block in [block0, block1, block2] {
cur.insert_block(block);
ssa.declare_block(block);
}
}
// block0
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
let var0_iconst = cur.ins().iconst(I32, 0);
ssa.def_var(var0, var0_iconst, block0);
cur.ins().return_(&[]);
}
// block1
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
let jump = cur.ins().jump(block2, &[]);
ssa.declare_block_predecessor(block2, jump);
}
// block2
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
let _ = ssa.use_var(&mut cur.func, var0, I32, block2).0;
let var0_iconst = cur.ins().iconst(I32, 1);
ssa.def_var(var0, var0_iconst, block2);
let jump = cur.ins().jump(block1, &[]);
ssa.declare_block_predecessor(block1, jump);
}
// The sealing algorithm would enter a infinite loop here
ssa.seal_all_blocks(&mut func);
}
}