1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 isis lovecruft and Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Jeff Burdges <jeff@web3.foundation>
//! ### Schnorr signatures on the 2-torsion free subgroup of ed25519, as provided by the Ristretto point compression.
use core::convert::AsRef;
use core::fmt::{Debug};
use rand_core::{RngCore,CryptoRng};
use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto,RistrettoPoint};
use curve25519_dalek::scalar::Scalar;
use subtle::{Choice,ConstantTimeEq};
use zeroize::Zeroize;
use crate::scalars;
use crate::points::RistrettoBoth;
use crate::errors::{SignatureError,SignatureResult};
/// The length of a Ristretto Schnorr `MiniSecretKey`, in bytes.
pub const MINI_SECRET_KEY_LENGTH: usize = 32;
/// The length of a Ristretto Schnorr `PublicKey`, in bytes.
pub const PUBLIC_KEY_LENGTH: usize = 32;
/// The length of the "key" portion of a Ristretto Schnorr secret key, in bytes.
const SECRET_KEY_KEY_LENGTH: usize = 32;
/// The length of the "nonce" portion of a Ristretto Schnorr secret key, in bytes.
const SECRET_KEY_NONCE_LENGTH: usize = 32;
/// The length of a Ristretto Schnorr key, `SecretKey`, in bytes.
pub const SECRET_KEY_LENGTH: usize = SECRET_KEY_KEY_LENGTH + SECRET_KEY_NONCE_LENGTH;
/// The length of an Ristretto Schnorr `Keypair`, in bytes.
pub const KEYPAIR_LENGTH: usize = SECRET_KEY_LENGTH + PUBLIC_KEY_LENGTH;
/// Methods for expanding a `MiniSecretKey` into a `SecretKey`.
///
/// Our `SecretKey`s consist of a scalar and nonce seed, both 32 bytes,
/// what EdDSA/Ed25519 calls an extended secret key. We normally create
/// `SecretKey`s by expanding a `MiniSecretKey`, what Esd25519 calls
/// a `SecretKey`. We provide two such methods, our suggested approach
/// produces uniformly distribted secret key scalars, but another
/// approach retains the bit clamping form Ed25519.
pub enum ExpansionMode {
/// Expand the `MiniSecretKey` into a uniformly distributed
/// `SecretKey`.
///
/// We produce the `SecretKey` using merlin and far more uniform
/// sampling, which might benefits some future protocols, and
/// might reduce binary size if used throughout.
///
/// We slightly prefer this method, but some existing code uses
/// `Ed25519` mode, so users cannot necessarily use this mode
/// if they require compatability with existing systems.
Uniform,
/// Expand this `MiniSecretKey` into a `SecretKey` using
/// ed25519-style bit clamping.
///
/// Ristretto points are represented by Ed25519 points internally
/// so conceivably some future standard might expose a mapping
/// from Ristretto to Ed25519, which makes this mode useful.
/// At present, there is no such exposed mapping however because
/// two such mappings actually exist, depending upon the branch of
/// the inverse square root chosen by a Ristretto implementation.
/// There is however a concern that such a mapping would remain
/// a second class citizen, meaning implementations differ and
/// create incompatibility.
///
/// We weakly recommend against employing this method. We include
/// it primarily because early Ristretto documentation touted the
/// relationship with Ed25519, which led to some deployments adopting
/// this expansion method.
Ed25519,
}
/// An EdDSA-like "secret" key seed.
///
/// These are seeds from which we produce a real `SecretKey`, which
/// EdDSA itself calls an extended secret key by hashing. We require
/// homomorphic properties unavailable from these seeds, so we renamed
/// these and reserve `SecretKey` for what EdDSA calls an extended
/// secret key.
#[derive(Clone,Zeroize)]
#[zeroize(drop)]
pub struct MiniSecretKey(pub (crate) [u8; MINI_SECRET_KEY_LENGTH]);
impl Debug for MiniSecretKey {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "MiniSecretKey: {:?}", &self.0[..])
}
}
impl Eq for MiniSecretKey {}
impl PartialEq for MiniSecretKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl ConstantTimeEq for MiniSecretKey {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl MiniSecretKey {
const DESCRIPTION : &'static str = "Analogous to ed25519 secret key as 32 bytes, see RFC8032.";
/// Avoids importing `ExpansionMode`
pub const UNIFORM_MODE : ExpansionMode = ExpansionMode::Uniform;
/// Avoids importing `ExpansionMode`
pub const ED25519_MODE : ExpansionMode = ExpansionMode::Ed25519;
/// Expand this `MiniSecretKey` into a `SecretKey`
///
/// We produce a secret keys using merlin and more uniformly
/// with this method, which reduces binary size and benefits
/// some future protocols.
///
/// # Examples
///
/// ```compile_fail
/// # fn main() {
/// use rand::{Rng, rngs::OsRng};
/// use schnorrkel::{MiniSecretKey, SecretKey};
///
/// let mini_secret_key: MiniSecretKey = MiniSecretKey::generate_with(OsRng);
/// let secret_key: SecretKey = mini_secret_key.expand_uniform();
/// # }
/// ```
fn expand_uniform(&self) -> SecretKey {
let mut t = merlin::Transcript::new(b"ExpandSecretKeys");
t.append_message(b"mini", &self.0[..]);
let mut scalar_bytes = [0u8; 64];
t.challenge_bytes(b"sk", &mut scalar_bytes);
let key = Scalar::from_bytes_mod_order_wide(&scalar_bytes);
let mut nonce = [0u8; 32];
t.challenge_bytes(b"no", &mut nonce);
SecretKey { key, nonce }
}
/// Expand this `MiniSecretKey` into a `SecretKey` using
/// ed25519-style bit clamping.
///
/// At present, there is no exposed mapping from Ristretto
/// to the underlying Edwards curve because Ristretto involves
/// an inverse square root, and thus two such mappings exist.
/// Ristretto could be made usable with Ed25519 keys by choosing
/// one mapping as standard, but doing so makes the standard more
/// complex, and possibly harder to implement. If anyone does
/// standardize the mapping to the curve then this method permits
/// compatible schnorrkel and ed25519 keys.
///
/// # Examples
///
/// ```compile_fail
/// # #[cfg(feature = "getrandom")]
/// # fn main() {
/// use rand::{Rng, rngs::OsRng};
/// use schnorrkel::{MiniSecretKey, SecretKey};
///
/// let mini_secret_key: MiniSecretKey = MiniSecretKey::generate_with(OsRng);
/// let secret_key: SecretKey = mini_secret_key.expand_ed25519();
/// # }
/// ```
fn expand_ed25519(&self) -> SecretKey {
use sha2::{Sha512, digest::{Update,FixedOutput}};
let mut h = Sha512::default();
h.update(self.as_bytes());
let r = h.finalize_fixed();
// We need not clamp in a Schnorr group like Ristretto, but here
// we do so to improve Ed25519 comparability.
let mut key = [0u8; 32];
key.copy_from_slice(&r.as_slice()[0..32]);
key[0] &= 248;
key[31] &= 63;
key[31] |= 64;
// We then divide by the cofactor to internally keep a clean
// representation mod l.
scalars::divide_scalar_bytes_by_cofactor(&mut key);
#[allow(deprecated)] // Scalar's always reduced here, so this is OK.
let key = Scalar::from_bits(key);
let mut nonce = [0u8; 32];
nonce.copy_from_slice(&r.as_slice()[32..64]);
SecretKey{ key, nonce }
}
/// Derive the `SecretKey` corresponding to this `MiniSecretKey`.
///
/// We caution that `mode` must always be chosen consistently.
/// We slightly prefer `ExpansionMode::Uniform` here, but both
/// remain secure under almost all situations. There exists
/// deployed code using `ExpansionMode::Ed25519`, so you might
/// require that for compatability.
///
/// ```
/// # fn main() {
/// use rand::{Rng, rngs::OsRng};
/// # #[cfg(feature = "getrandom")]
/// # {
/// use schnorrkel::{MiniSecretKey, SecretKey, ExpansionMode};
///
/// let mini_secret_key: MiniSecretKey = MiniSecretKey::generate_with(OsRng);
/// let secret_key: SecretKey = mini_secret_key.expand(ExpansionMode::Uniform);
/// # }
/// # }
/// ```
pub fn expand(&self, mode: ExpansionMode) -> SecretKey {
match mode {
ExpansionMode::Uniform => self.expand_uniform(),
ExpansionMode::Ed25519 => self.expand_ed25519(),
}
}
/// Derive the `Keypair` corresponding to this `MiniSecretKey`.
pub fn expand_to_keypair(&self, mode: ExpansionMode) -> Keypair {
self.expand(mode).into()
}
/// Derive the `PublicKey` corresponding to this `MiniSecretKey`.
pub fn expand_to_public(&self, mode: ExpansionMode) -> PublicKey {
self.expand(mode).to_public()
}
/// Convert this secret key to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; MINI_SECRET_KEY_LENGTH] {
self.0
}
/// View this secret key as a byte array.
#[inline]
pub fn as_bytes(&self) -> &[u8; MINI_SECRET_KEY_LENGTH] {
&self.0
}
/// Construct a `MiniSecretKey` from a slice of bytes.
///
/// # Example
///
/// ```
/// use schnorrkel::{MiniSecretKey, MINI_SECRET_KEY_LENGTH};
///
/// let secret_key_bytes: [u8; MINI_SECRET_KEY_LENGTH] = [
/// 157, 097, 177, 157, 239, 253, 090, 096,
/// 186, 132, 074, 244, 146, 236, 044, 196,
/// 068, 073, 197, 105, 123, 050, 105, 025,
/// 112, 059, 172, 003, 028, 174, 127, 096, ];
///
/// let secret_key: MiniSecretKey = MiniSecretKey::from_bytes(&secret_key_bytes).unwrap();
/// ```
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `MiniSecretKey` or whose error value
/// is an `SignatureError` wrapping the internal error that occurred.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<MiniSecretKey> {
if bytes.len() != MINI_SECRET_KEY_LENGTH {
return Err(SignatureError::BytesLengthError {
name: "MiniSecretKey",
description: MiniSecretKey::DESCRIPTION,
length: MINI_SECRET_KEY_LENGTH
});
}
let mut bits: [u8; 32] = [0u8; 32];
bits.copy_from_slice(&bytes[..32]);
Ok(MiniSecretKey(bits))
}
/// Generate a `MiniSecretKey` from a `csprng`.
///
/// # Example
///
/// ```
/// use rand::{Rng, rngs::OsRng};
/// use schnorrkel::{PublicKey, MiniSecretKey, Signature};
///
/// let secret_key: MiniSecretKey = MiniSecretKey::generate_with(OsRng);
/// ```
///
/// # Input
///
/// A CSPRNG with a `fill_bytes()` method, e.g. `rand_chacha::ChaChaRng`
pub fn generate_with<R>(mut csprng: R) -> MiniSecretKey
where R: CryptoRng + RngCore,
{
let mut sk: MiniSecretKey = MiniSecretKey([0u8; 32]);
csprng.fill_bytes(&mut sk.0);
sk
}
/// Generate a `MiniSecretKey` from rand's `thread_rng`.
///
/// # Example
///
/// ```
/// use schnorrkel::{PublicKey, MiniSecretKey, Signature};
///
/// let secret_key: MiniSecretKey = MiniSecretKey::generate();
/// ```
///
/// Afterwards, you can generate the corresponding public key.
///
/// ```
/// # use rand::{Rng, SeedableRng};
/// # use rand_chacha::ChaChaRng;
/// # use schnorrkel::{PublicKey, MiniSecretKey, ExpansionMode, Signature};
/// #
/// # let mut csprng: ChaChaRng = ChaChaRng::from_seed([0u8; 32]);
/// # let secret_key: MiniSecretKey = MiniSecretKey::generate_with(&mut csprng);
///
/// let public_key: PublicKey = secret_key.expand_to_public(ExpansionMode::Ed25519);
/// ```
#[cfg(feature = "getrandom")]
pub fn generate() -> MiniSecretKey {
Self::generate_with(super::getrandom_or_panic())
}
}
serde_boilerplate!(MiniSecretKey);
/// A secret key for use with Ristretto Schnorr signatures.
///
/// Internally, these consist of a scalar mod l along with a seed for
/// nonce generation. In this way, we ensure all scalar arithmetic
/// works smoothly in operations like threshold or multi-signatures,
/// or hierarchical deterministic key derivations.
///
/// We keep our secret key serializaion "almost" compatable with EdDSA
/// "expanded" secret key serializaion by multiplying the scalar by the
/// cofactor 8, as integers, and dividing on deserializaion.
/// We do not however attempt to keep the scalar's high bit set, especially
/// not during hierarchical deterministic key derivations, so some Ed25519
/// libraries might compute the public key incorrectly from our secret key.
#[derive(Clone,Zeroize)]
#[zeroize(drop)]
pub struct SecretKey {
/// Actual public key represented as a scalar.
pub (crate) key: Scalar,
/// Seed for deriving the nonces used in signing.
///
/// We require this be random and secret or else key compromise attacks will ensue.
/// Any modification here may disrupt some non-public key derivation techniques.
pub (crate) nonce: [u8; 32],
}
impl Debug for SecretKey {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "SecretKey {{ key: {:?} nonce: {:?} }}", &self.key, &self.nonce)
}
}
impl Eq for SecretKey {}
impl PartialEq for SecretKey {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl ConstantTimeEq for SecretKey {
fn ct_eq(&self, other: &Self) -> Choice {
self.key.ct_eq(&other.key)
}
}
/*
impl From<&MiniSecretKey> for SecretKey {
/// Construct an `SecretKey` from a `MiniSecretKey`.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "getrandom")
/// # fn main() {
/// use rand::{Rng, rngs::OsRng};
/// use schnorrkel::{MiniSecretKey, SecretKey};
///
/// let mini_secret_key: MiniSecretKey = MiniSecretKey::generate_with(OsRng);
/// let secret_key: SecretKey = SecretKey::from(&mini_secret_key);
/// # }
/// ```
fn from(msk: &MiniSecretKey) -> SecretKey {
msk.expand(ExpansionMode::Ed25519)
}
}
*/
impl SecretKey {
const DESCRIPTION : &'static str = "An ed25519-like expanded secret key as 64 bytes, as specified in RFC8032.";
/// Convert this `SecretKey` into an array of 64 bytes with.
///
/// Returns an array of 64 bytes, with the first 32 bytes being
/// the secret scalar represented canonically, and the last
/// 32 bytes being the seed for nonces.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "getrandom")]
/// # {
/// use schnorrkel::{MiniSecretKey, SecretKey};
///
/// let mini_secret_key: MiniSecretKey = MiniSecretKey::generate();
/// let secret_key: SecretKey = mini_secret_key.expand(MiniSecretKey::UNIFORM_MODE);
/// # // was SecretKey::from(&mini_secret_key);
/// let secret_key_bytes: [u8; 64] = secret_key.to_bytes();
/// let bytes: [u8; 64] = secret_key.to_bytes();
/// let secret_key_again: SecretKey = SecretKey::from_bytes(&bytes[..]).unwrap();
/// assert_eq!(&bytes[..], & secret_key_again.to_bytes()[..]);
/// # }
/// ```
#[inline]
pub fn to_bytes(&self) -> [u8; SECRET_KEY_LENGTH] {
let mut bytes: [u8; 64] = [0u8; 64];
bytes[..32].copy_from_slice(&self.key.to_bytes()[..]);
bytes[32..].copy_from_slice(&self.nonce[..]);
bytes
}
/// Construct an `SecretKey` from a slice of bytes.
///
/// # Examples
///
/// ```
/// use schnorrkel::{MiniSecretKey, SecretKey, ExpansionMode, SignatureError};
///
/// # #[cfg(feature = "getrandom")]
/// # {
/// let mini_secret_key: MiniSecretKey = MiniSecretKey::generate();
/// let secret_key: SecretKey = mini_secret_key.expand(MiniSecretKey::ED25519_MODE);
/// # // was SecretKey::from(&mini_secret_key);
/// let bytes: [u8; 64] = secret_key.to_bytes();
/// let secret_key_again: SecretKey = SecretKey::from_bytes(&bytes[..]).unwrap();
/// assert_eq!(secret_key_again, secret_key);
/// # }
/// ```
#[inline]
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<SecretKey> {
if bytes.len() != SECRET_KEY_LENGTH {
return Err(SignatureError::BytesLengthError{
name: "SecretKey",
description: SecretKey::DESCRIPTION,
length: SECRET_KEY_LENGTH,
});
}
let mut key: [u8; 32] = [0u8; 32];
key.copy_from_slice(&bytes[00..32]);
let key = crate::scalar_from_canonical_bytes(key).ok_or(SignatureError::ScalarFormatError) ?;
let mut nonce: [u8; 32] = [0u8; 32];
nonce.copy_from_slice(&bytes[32..64]);
Ok(SecretKey{ key, nonce })
}
/// Convert this `SecretKey` into an array of 64 bytes, corresponding to
/// an Ed25519 expanded secret key.
///
/// Returns an array of 64 bytes, with the first 32 bytes being
/// the secret scalar shifted ed25519 style, and the last 32 bytes
/// being the seed for nonces.
#[inline]
pub fn to_ed25519_bytes(&self) -> [u8; SECRET_KEY_LENGTH] {
let mut bytes: [u8; 64] = [0u8; 64];
let mut key = self.key.to_bytes();
// We multiply by the cofactor to improve ed25519 compatability,
// while our internally using a scalar mod l.
scalars::multiply_scalar_bytes_by_cofactor(&mut key);
bytes[..32].copy_from_slice(&key[..]);
bytes[32..].copy_from_slice(&self.nonce[..]);
bytes
}
/* Unused tooling removed to reduce dependencies.
/// Convert this `SecretKey` into an Ed25519 expanded secret key.
#[cfg(feature = "ed25519_dalek")]
pub fn to_ed25519_expanded_secret_key(&self) -> ed25519_dalek::ExpandedSecretKey {
ed25519_dalek::ExpandedSecretKey::from_bytes(&self.to_ed25519_bytes()[..])
.expect("Improper serialisation of Ed25519 secret key!")
}
*/
/// Construct an `SecretKey` from a slice of bytes, corresponding to
/// an Ed25519 expanded secret key.
///
/// # Example
///
/// ```
/// use schnorrkel::{SecretKey, SECRET_KEY_LENGTH};
/// use hex_literal::hex;
///
/// let secret = hex!("28b0ae221c6bb06856b287f60d7ea0d98552ea5a16db16956849aa371db3eb51fd190cce74df356432b410bd64682309d6dedb27c76845daf388557cbac3ca34");
/// let public = hex!("46ebddef8cd9bb167dc30878d7113b7e168e6f0646beffd77d69d39bad76b47a");
/// let secret_key = SecretKey::from_ed25519_bytes(&secret[..]).unwrap();
/// assert_eq!(secret_key.to_public().to_bytes(), public);
/// ```
#[inline]
pub fn from_ed25519_bytes(bytes: &[u8]) -> SignatureResult<SecretKey> {
if bytes.len() != SECRET_KEY_LENGTH {
return Err(SignatureError::BytesLengthError{
name: "SecretKey",
description: SecretKey::DESCRIPTION,
length: SECRET_KEY_LENGTH,
});
}
let mut key: [u8; 32] = [0u8; 32];
key.copy_from_slice(&bytes[00..32]);
// We divide by the cofactor to internally keep a clean
// representation mod l.
scalars::divide_scalar_bytes_by_cofactor(&mut key);
let key = Scalar::from_canonical_bytes(key);
if bool::from(key.is_none()) {
// This should never trigger for keys which come from `to_ed25519_bytes`.
return Err(SignatureError::InvalidKey);
}
let key = key.unwrap();
let mut nonce: [u8; 32] = [0u8; 32];
nonce.copy_from_slice(&bytes[32..64]);
Ok(SecretKey{ key, nonce })
}
/// Generate an "unbiased" `SecretKey` directly from a user
/// suplied `csprng` uniformly, bypassing the `MiniSecretKey`
/// layer.
pub fn generate_with<R>(mut csprng: R) -> SecretKey
where R: CryptoRng + RngCore,
{
let mut key: [u8; 64] = [0u8; 64];
csprng.fill_bytes(&mut key);
let mut nonce: [u8; 32] = [0u8; 32];
csprng.fill_bytes(&mut nonce);
SecretKey { key: Scalar::from_bytes_mod_order_wide(&key), nonce }
}
/// Generate an "unbiased" `SecretKey` directly,
/// bypassing the `MiniSecretKey` layer.
#[cfg(feature = "getrandom")]
pub fn generate() -> SecretKey {
Self::generate_with(super::getrandom_or_panic())
}
/// Derive the `PublicKey` corresponding to this `SecretKey`.
pub fn to_public(&self) -> PublicKey {
// No clamping necessary in the ristretto255 group
PublicKey::from_point(&self.key * constants::RISTRETTO_BASEPOINT_TABLE)
}
/// Derive the `PublicKey` corresponding to this `SecretKey`.
pub fn to_keypair(self) -> Keypair {
let public = self.to_public();
Keypair { secret: self, public }
}
}
serde_boilerplate!(SecretKey);
/// A Ristretto Schnorr public key.
///
/// Internally, these are represented as a `RistrettoPoint`, meaning
/// an Edwards point with a static guarantee to be 2-torsion free.
///
/// At present, we decompress `PublicKey`s into this representation
/// during deserialization, which improves error handling, but costs
/// a compression during signing and verification.
#[derive(Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey(pub (crate) RistrettoBoth);
impl Debug for PublicKey {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "PublicKey( {:?} )", self.0)
}
}
impl ConstantTimeEq for PublicKey {
fn ct_eq(&self, other: &PublicKey) -> Choice {
self.0.ct_eq(&other.0)
}
}
/*
impl Zeroize for PublicKey {
fn zeroize(&mut self) {
self.0.zeroize()
}
}
*/
// We should imho drop this impl but it benifits users who start with ring.
impl AsRef<[u8]> for PublicKey {
fn as_ref(&self) -> &[u8] {
self.as_compressed().as_bytes()
}
}
impl PublicKey {
const DESCRIPTION : &'static str = "A Ristretto Schnorr public key represented as a 32-byte Ristretto compressed point";
/// Access the compressed Ristretto form
pub fn as_compressed(&self) -> &CompressedRistretto { self.0.as_compressed() }
/// Extract the compressed Ristretto form
pub fn into_compressed(self) -> CompressedRistretto { self.0.into_compressed() }
/// Access the point form
pub fn as_point(&self) -> &RistrettoPoint { self.0.as_point() }
/// Extract the point form
pub fn into_point(self) -> RistrettoPoint { self.0.into_point() }
/// Decompress into the `PublicKey` format that also retains the
/// compressed form.
pub fn from_compressed(compressed: CompressedRistretto) -> SignatureResult<PublicKey> {
Ok(PublicKey(RistrettoBoth::from_compressed(compressed) ?))
}
/// Compress into the `PublicKey` format that also retains the
/// uncompressed form.
pub fn from_point(point: RistrettoPoint) -> PublicKey {
PublicKey(RistrettoBoth::from_point(point))
}
/// Convert this public key to a byte array.
/// # Example
///
/// ```
/// # #[cfg(feature = "getrandom")]
/// # {
/// use schnorrkel::{SecretKey, PublicKey, PUBLIC_KEY_LENGTH, SignatureError};
///
/// let public_key: PublicKey = SecretKey::generate().to_public();
/// let public_key_bytes = public_key.to_bytes();
/// let public_key_again: PublicKey = PublicKey::from_bytes(&public_key_bytes[..]).unwrap();
/// assert_eq!(public_key_bytes, public_key_again.to_bytes());
/// # }
/// ```
#[inline]
pub fn to_bytes(&self) -> [u8; PUBLIC_KEY_LENGTH] {
self.as_compressed().to_bytes()
}
/// Construct a `PublicKey` from a slice of bytes.
///
/// # Example
///
/// ```
/// use schnorrkel::{PublicKey, PUBLIC_KEY_LENGTH, SignatureError};
///
/// let public_key_bytes: [u8; PUBLIC_KEY_LENGTH] = [
/// 208, 120, 140, 129, 177, 179, 237, 159,
/// 252, 160, 028, 013, 206, 005, 211, 241,
/// 192, 218, 001, 097, 130, 241, 020, 169,
/// 119, 046, 246, 029, 079, 080, 077, 084];
///
/// let public_key = PublicKey::from_bytes(&public_key_bytes).unwrap();
/// assert_eq!(public_key.to_bytes(), public_key_bytes);
/// ```
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `PublicKey` or whose error value
/// is an `SignatureError` describing the error that occurred.
#[inline]
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<PublicKey> {
Ok(PublicKey(RistrettoBoth::from_bytes_ser("PublicKey",PublicKey::DESCRIPTION,bytes) ?))
}
}
impl From<SecretKey> for PublicKey {
fn from(source: SecretKey) -> PublicKey {
source.to_public()
}
}
serde_boilerplate!(PublicKey);
/// A Ristretto Schnorr keypair.
#[derive(Clone,Debug)]
// #[derive(Clone,Zeroize)]
// #[zeroize(drop)]
pub struct Keypair {
/// The secret half of this keypair.
pub secret: SecretKey,
/// The public half of this keypair.
pub public: PublicKey,
}
impl Zeroize for Keypair {
fn zeroize(&mut self) {
self.secret.zeroize();
}
}
impl Drop for Keypair {
fn drop(&mut self) {
self.zeroize();
}
}
impl From<SecretKey> for Keypair {
fn from(secret: SecretKey) -> Keypair {
let public = secret.to_public();
Keypair{ secret, public }
}
}
impl Keypair {
const DESCRIPTION : &'static str = "A 96 bytes Ristretto Schnorr keypair";
/*
const DESCRIPTION_LONG : &'static str =
"An ristretto schnorr keypair, 96 bytes in total, where the \
first 64 bytes contains the secret key represented as an \
ed25519 expanded secret key, as specified in RFC8032, and \
the subsequent 32 bytes gives the public key as a compressed \
ristretto point.";
*/
/// Serialize `Keypair` to bytes.
///
/// # Returns
///
/// A byte array `[u8; KEYPAIR_LENGTH]` consisting of first a
/// `SecretKey` serialized canonically, and next the Ristterro
/// `PublicKey`
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "getrandom")]
/// # {
/// use schnorrkel::{Keypair, KEYPAIR_LENGTH};
///
/// let keypair: Keypair = Keypair::generate();
/// let bytes: [u8; KEYPAIR_LENGTH] = keypair.to_bytes();
/// let keypair_too = Keypair::from_bytes(&bytes[..]).unwrap();
/// assert_eq!(&bytes[..], & keypair_too.to_bytes()[..]);
/// # }
/// ```
pub fn to_bytes(&self) -> [u8; KEYPAIR_LENGTH] {
let mut bytes: [u8; KEYPAIR_LENGTH] = [0u8; KEYPAIR_LENGTH];
bytes[..SECRET_KEY_LENGTH].copy_from_slice(& self.secret.to_bytes());
bytes[SECRET_KEY_LENGTH..].copy_from_slice(& self.public.to_bytes());
bytes
}
/// Deserialize a `Keypair` from bytes.
///
/// # Inputs
///
/// * `bytes`: an `&[u8]` consisting of byte representations of
/// first a `SecretKey` and then the corresponding ristretto
/// `PublicKey`.
///
/// # Examples
///
/// ```
/// use schnorrkel::{Keypair, KEYPAIR_LENGTH};
/// use hex_literal::hex;
///
/// // TODO: Fix test vector
/// // let keypair_bytes = hex!("28b0ae221c6bb06856b287f60d7ea0d98552ea5a16db16956849aa371db3eb51fd190cce74df356432b410bd64682309d6dedb27c76845daf388557cbac3ca3446ebddef8cd9bb167dc30878d7113b7e168e6f0646beffd77d69d39bad76b47a");
/// // let keypair: Keypair = Keypair::from_bytes(&keypair_bytes[..]).unwrap();
/// // assert_eq!(&keypair_bytes[..], & keypair.to_bytes()[..]);
/// ```
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `Keypair` or whose error value
/// is an `SignatureError` describing the error that occurred.
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<Keypair> {
if bytes.len() != KEYPAIR_LENGTH {
return Err(SignatureError::BytesLengthError {
name: "Keypair",
description: Keypair::DESCRIPTION,
length: KEYPAIR_LENGTH
});
}
let secret = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH]) ?;
let public = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..]) ?;
Ok(Keypair{ secret, public })
}
/// Serialize `Keypair` to bytes with Ed25519 secret key format.
///
/// # Returns
///
/// A byte array `[u8; KEYPAIR_LENGTH]` consisting of first a
/// `SecretKey` serialized like Ed25519, and next the Ristterro
/// `PublicKey`
///
///
pub fn to_half_ed25519_bytes(&self) -> [u8; KEYPAIR_LENGTH] {
let mut bytes: [u8; KEYPAIR_LENGTH] = [0u8; KEYPAIR_LENGTH];
bytes[..SECRET_KEY_LENGTH].copy_from_slice(& self.secret.to_ed25519_bytes());
bytes[SECRET_KEY_LENGTH..].copy_from_slice(& self.public.to_bytes());
bytes
}
/// Deserialize a `Keypair` from bytes with Ed25519 style `SecretKey` format.
///
/// # Inputs
///
/// * `bytes`: an `&[u8]` representing the scalar for the secret key, and a
/// compressed Ristretto point, both as bytes.
///
/// # Examples
///
/// ```
/// use schnorrkel::{Keypair, KEYPAIR_LENGTH};
/// use hex_literal::hex;
///
/// let keypair_bytes = hex!("28b0ae221c6bb06856b287f60d7ea0d98552ea5a16db16956849aa371db3eb51fd190cce74df356432b410bd64682309d6dedb27c76845daf388557cbac3ca3446ebddef8cd9bb167dc30878d7113b7e168e6f0646beffd77d69d39bad76b47a");
/// let keypair: Keypair = Keypair::from_half_ed25519_bytes(&keypair_bytes[..]).unwrap();
/// assert_eq!(&keypair_bytes[..], & keypair.to_half_ed25519_bytes()[..]);
/// ```
///
/// # Returns
///
/// A `Result` whose okay value is an EdDSA `Keypair` or whose error value
/// is an `SignatureError` describing the error that occurred.
pub fn from_half_ed25519_bytes(bytes: &[u8]) -> SignatureResult<Keypair> {
if bytes.len() != KEYPAIR_LENGTH {
return Err(SignatureError::BytesLengthError {
name: "Keypair",
description: Keypair::DESCRIPTION,
length: KEYPAIR_LENGTH
});
}
let secret = SecretKey::from_ed25519_bytes(&bytes[..SECRET_KEY_LENGTH]) ?;
let public = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..]) ?;
Ok(Keypair{ secret, public })
}
/// Generate a Ristretto Schnorr `Keypair` directly,
/// bypassing the `MiniSecretKey` layer.
///
/// # Example
///
/// ```
/// # fn main() {
///
/// use rand::{Rng, rngs::OsRng};
/// # #[cfg(feature = "getrandom")]
/// use schnorrkel::Keypair;
/// use schnorrkel::Signature;
///
/// # #[cfg(feature = "getrandom")]
/// let keypair: Keypair = Keypair::generate_with(OsRng);
///
/// # }
/// ```
///
/// # Input
///
/// A CSPRNG with a `fill_bytes()` method, e.g. `rand_chacha::ChaChaRng`.
///
/// We generate a `SecretKey` directly bypassing `MiniSecretKey`,
/// so our secret keys do not satisfy the high bit "clamping"
/// imposed on Ed25519 keys.
pub fn generate_with<R>(csprng: R) -> Keypair
where R: CryptoRng + RngCore,
{
let secret: SecretKey = SecretKey::generate_with(csprng);
let public: PublicKey = secret.to_public();
Keypair{ public, secret }
}
/// Generate a Ristretto Schnorr `Keypair` directly, from a user
/// suplied `csprng`, bypassing the `MiniSecretKey` layer.
#[cfg(feature = "getrandom")]
pub fn generate() -> Keypair {
Self::generate_with(super::getrandom_or_panic())
}
}
serde_boilerplate!(Keypair);
#[cfg(test)]
mod test {
// use std::vec::Vec;
use super::*;
/*
TODO: Use some Ristretto point to do this test correctly.
use curve25519_dalek::edwards::{CompressedEdwardsY}; // EdwardsPoint
#[test]
fn public_key_from_bytes() {
static ED25519_PUBLIC_KEY : CompressedEdwardsY = CompressedEdwardsY([
215, 090, 152, 001, 130, 177, 010, 183,
213, 075, 254, 211, 201, 100, 007, 058,
014, 225, 114, 243, 218, 166, 035, 037,
175, 002, 026, 104, 247, 007, 081, 026, ]);
let pk = ED25519_PUBLIC_KEY.decompress().unwrap();
// let pk = unsafe { std::mem::transmute::<EdwardsPoint,RistrettoPoint>(pk) };
let point = super::super::ed25519::edwards_to_ristretto(pk).unwrap();
let ristretto_public_key = PublicKey::from_point(point);
assert_eq!(
ristretto_public_key.to_ed25519_public_key_bytes(),
pk.mul_by_cofactor().compress().0
);
// Make another function so that we can test the ? operator.
fn do_the_test(s: &[u8]) -> Result<PublicKey, SignatureError> {
let public_key = PublicKey::from_bytes(s) ?;
Ok(public_key)
}
assert_eq!(
do_the_test(ristretto_public_key.as_ref()),
Ok(ristretto_public_key)
);
assert_eq!(
do_the_test(&ED25519_PUBLIC_KEY.0), // Not a Ristretto public key
Err(SignatureError::PointDecompressionError)
);
}
*/
#[test]
fn derives_from_core() {
let pk_d = PublicKey::default();
debug_assert_eq!(
pk_d.as_point().compress(),
CompressedRistretto::default()
);
debug_assert_eq!(
pk_d.as_compressed().decompress().unwrap(),
RistrettoPoint::default()
);
}
#[cfg(feature = "getrandom")]
#[test]
fn keypair_zeroize() {
let mut csprng = rand_core::OsRng;
let mut keypair = Keypair::generate_with(&mut csprng);
keypair.zeroize();
fn as_bytes<T>(x: &T) -> &[u8] {
use core::mem;
use core::slice;
unsafe {
slice::from_raw_parts(x as *const T as *const u8, mem::size_of_val(x))
}
}
assert!(!as_bytes(&keypair).iter().all(|x| *x == 0u8));
}
#[cfg(feature = "getrandom")]
#[test]
fn pubkey_from_mini_secret_and_expanded_secret() {
let mut csprng = rand_core::OsRng;
let mini_secret: MiniSecretKey = MiniSecretKey::generate_with(&mut csprng);
let secret: SecretKey = mini_secret.expand(ExpansionMode::Ed25519);
let public_from_mini_secret: PublicKey = mini_secret.expand_to_public(ExpansionMode::Ed25519);
let public_from_secret: PublicKey = secret.to_public();
assert!(public_from_mini_secret == public_from_secret);
let secret: SecretKey = mini_secret.expand(ExpansionMode::Uniform);
let public_from_mini_secret: PublicKey = mini_secret.expand_to_public(ExpansionMode::Uniform);
let public_from_secret: PublicKey = secret.to_public();
assert!(public_from_mini_secret == public_from_secret);
}
#[cfg(feature = "getrandom")]
#[test]
fn secret_key_can_be_converted_to_ed25519_bytes_and_back() {
let count = if cfg!(debug_assertions) {
200000
} else {
2000000
};
for _ in 0..count {
let key = SecretKey::generate();
let bytes = key.to_ed25519_bytes();
let key_deserialized = SecretKey::from_ed25519_bytes(&bytes).unwrap();
assert_eq!(key_deserialized, key);
}
}
}