1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
//! Small lists of entity references.
use crate::packed_option::ReservedValue;
use crate::EntityRef;
use alloc::vec::Vec;
use core::marker::PhantomData;
use core::mem;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
/// A small list of entity references allocated from a pool.
///
/// An `EntityList<T>` type provides similar functionality to `Vec<T>`, but with some important
/// differences in the implementation:
///
/// 1. Memory is allocated from a `ListPool<T>` instead of the global heap.
/// 2. The footprint of an entity list is 4 bytes, compared with the 24 bytes for `Vec<T>`.
/// 3. An entity list doesn't implement `Drop`, leaving it to the pool to manage memory.
///
/// The list pool is intended to be used as a LIFO allocator. After building up a larger data
/// structure with many list references, the whole thing can be discarded quickly by clearing the
/// pool.
///
/// # Safety
///
/// Entity lists are not as safe to use as `Vec<T>`, but they never jeopardize Rust's memory safety
/// guarantees. These are the problems to be aware of:
///
/// - If you lose track of an entity list, its memory won't be recycled until the pool is cleared.
/// This can cause the pool to grow very large with leaked lists.
/// - If entity lists are used after their pool is cleared, they may contain garbage data, and
/// modifying them may corrupt other lists in the pool.
/// - If an entity list is used with two different pool instances, both pools are likely to become
/// corrupted.
///
/// Entity lists can be cloned, but that operation should only be used as part of cloning the whole
/// function they belong to. *Cloning an entity list does not allocate new memory for the clone*.
/// It creates an alias of the same memory.
///
/// Entity lists cannot be hashed and compared for equality because it's not possible to compare the
/// contents of the list without the pool reference.
///
/// # Implementation
///
/// The `EntityList` itself is designed to have the smallest possible footprint. This is important
/// because it is used inside very compact data structures like `InstructionData`. The list
/// contains only a 32-bit index into the pool's memory vector, pointing to the first element of
/// the list.
///
/// The pool is just a single `Vec<T>` containing all of the allocated lists. Each list is
/// represented as three contiguous parts:
///
/// 1. The number of elements in the list.
/// 2. The list elements.
/// 3. Excess capacity elements.
///
/// The total size of the three parts is always a power of two, and the excess capacity is always
/// as small as possible. This means that shrinking a list may cause the excess capacity to shrink
/// if a smaller power-of-two size becomes available.
///
/// Both growing and shrinking a list may cause it to be reallocated in the pool vector.
///
/// The index stored in an `EntityList` points to part 2, the list elements. The value 0 is
/// reserved for the empty list which isn't allocated in the vector.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct EntityList<T: EntityRef + ReservedValue> {
index: u32,
unused: PhantomData<T>,
}
/// Create an empty list.
impl<T: EntityRef + ReservedValue> Default for EntityList<T> {
fn default() -> Self {
Self {
index: 0,
unused: PhantomData,
}
}
}
/// A memory pool for storing lists of `T`.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct ListPool<T: EntityRef + ReservedValue> {
// The main array containing the lists.
data: Vec<T>,
// Heads of the free lists, one for each size class.
free: Vec<usize>,
}
impl<T: EntityRef + ReservedValue> PartialEq for ListPool<T> {
fn eq(&self, other: &Self) -> bool {
// ignore the free list
self.data == other.data
}
}
impl<T: core::hash::Hash + EntityRef + ReservedValue> core::hash::Hash for ListPool<T> {
fn hash<H: __core::hash::Hasher>(&self, state: &mut H) {
// ignore the free list
self.data.hash(state);
}
}
impl<T: EntityRef + ReservedValue> Default for ListPool<T> {
fn default() -> Self {
Self::new()
}
}
/// Lists are allocated in sizes that are powers of two, starting from 4.
/// Each power of two is assigned a size class number, so the size is `4 << SizeClass`.
type SizeClass = u8;
/// Get the size of a given size class. The size includes the length field, so the maximum list
/// length is one less than the class size.
#[inline]
fn sclass_size(sclass: SizeClass) -> usize {
4 << sclass
}
/// Get the size class to use for a given list length.
/// This always leaves room for the length element in addition to the list elements.
#[inline]
fn sclass_for_length(len: usize) -> SizeClass {
30 - (len as u32 | 3).leading_zeros() as SizeClass
}
/// Is `len` the minimum length in its size class?
#[inline]
fn is_sclass_min_length(len: usize) -> bool {
len > 3 && len.is_power_of_two()
}
impl<T: EntityRef + ReservedValue> ListPool<T> {
/// Create a new list pool.
pub fn new() -> Self {
Self {
data: Vec::new(),
free: Vec::new(),
}
}
/// Create a new list pool with the given capacity for data pre-allocated.
pub fn with_capacity(len: usize) -> Self {
Self {
data: Vec::with_capacity(len),
free: Vec::new(),
}
}
/// Get the capacity of this pool. This will be somewhat higher
/// than the total length of lists that can be stored without
/// reallocating, because of internal metadata overheads. It is
/// mostly useful to allow another pool to be allocated that is
/// likely to hold data transferred from this one without the need
/// to grow.
pub fn capacity(&self) -> usize {
self.data.capacity()
}
/// Clear the pool, forgetting about all lists that use it.
///
/// This invalidates any existing entity lists that used this pool to allocate memory.
///
/// The pool's memory is not released to the operating system, but kept around for faster
/// allocation in the future.
pub fn clear(&mut self) {
self.data.clear();
self.free.clear();
}
/// Read the length of a list field, if it exists.
fn len_of(&self, list: &EntityList<T>) -> Option<usize> {
let idx = list.index as usize;
// `idx` points at the list elements. The list length is encoded in the element immediately
// before the list elements.
//
// The `wrapping_sub` handles the special case 0, which is the empty list. This way, the
// cost of the bounds check that we have to pay anyway is co-opted to handle the special
// case of the empty list.
self.data.get(idx.wrapping_sub(1)).map(|len| len.index())
}
/// Allocate a storage block with a size given by `sclass`.
///
/// Returns the first index of an available segment of `self.data` containing
/// `sclass_size(sclass)` elements. The allocated memory is filled with reserved
/// values.
fn alloc(&mut self, sclass: SizeClass) -> usize {
// First try the free list for this size class.
match self.free.get(sclass as usize).cloned() {
Some(head) if head > 0 => {
// The free list pointers are offset by 1, using 0 to terminate the list.
// A block on the free list has two entries: `[ 0, next ]`.
// The 0 is where the length field would be stored for a block in use.
// The free list heads and the next pointer point at the `next` field.
self.free[sclass as usize] = self.data[head].index();
head - 1
}
_ => {
// Nothing on the free list. Allocate more memory.
let offset = self.data.len();
self.data
.resize(offset + sclass_size(sclass), T::reserved_value());
offset
}
}
}
/// Free a storage block with a size given by `sclass`.
///
/// This must be a block that was previously allocated by `alloc()` with the same size class.
fn free(&mut self, block: usize, sclass: SizeClass) {
let sclass = sclass as usize;
// Make sure we have a free-list head for `sclass`.
if self.free.len() <= sclass {
self.free.resize(sclass + 1, 0);
}
// Make sure the length field is cleared.
self.data[block] = T::new(0);
// Insert the block on the free list which is a single linked list.
self.data[block + 1] = T::new(self.free[sclass]);
self.free[sclass] = block + 1
}
/// Returns two mutable slices representing the two requested blocks.
///
/// The two returned slices can be longer than the blocks. Each block is located at the front
/// of the respective slice.
fn mut_slices(&mut self, block0: usize, block1: usize) -> (&mut [T], &mut [T]) {
if block0 < block1 {
let (s0, s1) = self.data.split_at_mut(block1);
(&mut s0[block0..], s1)
} else {
let (s1, s0) = self.data.split_at_mut(block0);
(s0, &mut s1[block1..])
}
}
/// Reallocate a block to a different size class.
///
/// Copy `elems_to_copy` elements from the old to the new block.
fn realloc(
&mut self,
block: usize,
from_sclass: SizeClass,
to_sclass: SizeClass,
elems_to_copy: usize,
) -> usize {
debug_assert!(elems_to_copy <= sclass_size(from_sclass));
debug_assert!(elems_to_copy <= sclass_size(to_sclass));
let new_block = self.alloc(to_sclass);
if elems_to_copy > 0 {
let (old, new) = self.mut_slices(block, new_block);
(&mut new[0..elems_to_copy]).copy_from_slice(&old[0..elems_to_copy]);
}
self.free(block, from_sclass);
new_block
}
}
impl<T: EntityRef + ReservedValue> EntityList<T> {
/// Create a new empty list.
pub fn new() -> Self {
Default::default()
}
/// Create a new list with the contents initialized from a slice.
pub fn from_slice(slice: &[T], pool: &mut ListPool<T>) -> Self {
let len = slice.len();
if len == 0 {
return Self::new();
}
let block = pool.alloc(sclass_for_length(len));
pool.data[block] = T::new(len);
pool.data[block + 1..=block + len].copy_from_slice(slice);
Self {
index: (block + 1) as u32,
unused: PhantomData,
}
}
/// Returns `true` if the list has a length of 0.
pub fn is_empty(&self) -> bool {
// 0 is a magic value for the empty list. Any list in the pool array must have a positive
// length.
self.index == 0
}
/// Get the number of elements in the list.
pub fn len(&self, pool: &ListPool<T>) -> usize {
// Both the empty list and any invalidated old lists will return `None`.
pool.len_of(self).unwrap_or(0)
}
/// Returns `true` if the list is valid
pub fn is_valid(&self, pool: &ListPool<T>) -> bool {
// We consider an empty list to be valid
self.is_empty() || pool.len_of(self) != None
}
/// Get the list as a slice.
pub fn as_slice<'a>(&self, pool: &'a ListPool<T>) -> &'a [T] {
let idx = self.index as usize;
match pool.len_of(self) {
None => &[],
Some(len) => &pool.data[idx..idx + len],
}
}
/// Get a single element from the list.
pub fn get(&self, index: usize, pool: &ListPool<T>) -> Option<T> {
self.as_slice(pool).get(index).cloned()
}
/// Get the first element from the list.
pub fn first(&self, pool: &ListPool<T>) -> Option<T> {
if self.is_empty() {
None
} else {
Some(pool.data[self.index as usize])
}
}
/// Get the list as a mutable slice.
pub fn as_mut_slice<'a>(&'a mut self, pool: &'a mut ListPool<T>) -> &'a mut [T] {
let idx = self.index as usize;
match pool.len_of(self) {
None => &mut [],
Some(len) => &mut pool.data[idx..idx + len],
}
}
/// Get a mutable reference to a single element from the list.
pub fn get_mut<'a>(&'a mut self, index: usize, pool: &'a mut ListPool<T>) -> Option<&'a mut T> {
self.as_mut_slice(pool).get_mut(index)
}
/// Create a deep clone of the list, which does not alias the original list.
pub fn deep_clone(&self, pool: &mut ListPool<T>) -> Self {
match pool.len_of(self) {
None => return Self::new(),
Some(len) => {
let src = self.index as usize;
let block = pool.alloc(sclass_for_length(len));
pool.data[block] = T::new(len);
pool.data.copy_within(src..src + len, block + 1);
Self {
index: (block + 1) as u32,
unused: PhantomData,
}
}
}
}
/// Removes all elements from the list.
///
/// The memory used by the list is put back in the pool.
pub fn clear(&mut self, pool: &mut ListPool<T>) {
let idx = self.index as usize;
match pool.len_of(self) {
None => debug_assert_eq!(idx, 0, "Invalid pool"),
Some(len) => pool.free(idx - 1, sclass_for_length(len)),
}
// Switch back to the empty list representation which has no storage.
self.index = 0;
}
/// Take all elements from this list and return them as a new list. Leave this list empty.
///
/// This is the equivalent of `Option::take()`.
pub fn take(&mut self) -> Self {
mem::replace(self, Default::default())
}
/// Appends an element to the back of the list.
/// Returns the index where the element was inserted.
pub fn push(&mut self, element: T, pool: &mut ListPool<T>) -> usize {
let idx = self.index as usize;
match pool.len_of(self) {
None => {
// This is an empty list. Allocate a block and set length=1.
debug_assert_eq!(idx, 0, "Invalid pool");
let block = pool.alloc(sclass_for_length(1));
pool.data[block] = T::new(1);
pool.data[block + 1] = element;
self.index = (block + 1) as u32;
0
}
Some(len) => {
// Do we need to reallocate?
let new_len = len + 1;
let block;
if is_sclass_min_length(new_len) {
// Reallocate, preserving length + all old elements.
let sclass = sclass_for_length(len);
block = pool.realloc(idx - 1, sclass, sclass + 1, len + 1);
self.index = (block + 1) as u32;
} else {
block = idx - 1;
}
pool.data[block + new_len] = element;
pool.data[block] = T::new(new_len);
len
}
}
}
/// Grow list by adding `count` reserved-value elements at the end.
///
/// Returns a mutable slice representing the whole list.
fn grow<'a>(&'a mut self, count: usize, pool: &'a mut ListPool<T>) -> &'a mut [T] {
let idx = self.index as usize;
let new_len;
let block;
match pool.len_of(self) {
None => {
// This is an empty list. Allocate a block.
debug_assert_eq!(idx, 0, "Invalid pool");
if count == 0 {
return &mut [];
}
new_len = count;
block = pool.alloc(sclass_for_length(new_len));
self.index = (block + 1) as u32;
}
Some(len) => {
// Do we need to reallocate?
let sclass = sclass_for_length(len);
new_len = len + count;
let new_sclass = sclass_for_length(new_len);
if new_sclass != sclass {
block = pool.realloc(idx - 1, sclass, new_sclass, len + 1);
self.index = (block + 1) as u32;
} else {
block = idx - 1;
}
}
}
pool.data[block] = T::new(new_len);
&mut pool.data[block + 1..block + 1 + new_len]
}
/// Constructs a list from an iterator.
pub fn from_iter<I>(elements: I, pool: &mut ListPool<T>) -> Self
where
I: IntoIterator<Item = T>,
{
let mut list = Self::new();
list.extend(elements, pool);
list
}
/// Appends multiple elements to the back of the list.
pub fn extend<I>(&mut self, elements: I, pool: &mut ListPool<T>)
where
I: IntoIterator<Item = T>,
{
let iterator = elements.into_iter();
let (len, upper) = iterator.size_hint();
// On most iterators this check is optimized down to `true`.
if upper == Some(len) {
let data = self.grow(len, pool);
let offset = data.len() - len;
for (src, dst) in iterator.zip(data[offset..].iter_mut()) {
*dst = src;
}
} else {
for x in iterator {
self.push(x, pool);
}
}
}
/// Inserts an element as position `index` in the list, shifting all elements after it to the
/// right.
pub fn insert(&mut self, index: usize, element: T, pool: &mut ListPool<T>) {
// Increase size by 1.
self.push(element, pool);
// Move tail elements.
let seq = self.as_mut_slice(pool);
if index < seq.len() {
let tail = &mut seq[index..];
for i in (1..tail.len()).rev() {
tail[i] = tail[i - 1];
}
tail[0] = element;
} else {
debug_assert_eq!(index, seq.len());
}
}
/// Removes the last element from the list.
fn remove_last(&mut self, len: usize, pool: &mut ListPool<T>) {
// Check if we deleted the last element.
if len == 1 {
self.clear(pool);
return;
}
// Do we need to reallocate to a smaller size class?
let mut block = self.index as usize - 1;
if is_sclass_min_length(len) {
let sclass = sclass_for_length(len);
block = pool.realloc(block, sclass, sclass - 1, len);
self.index = (block + 1) as u32;
}
// Finally adjust the length.
pool.data[block] = T::new(len - 1);
}
/// Removes the element at position `index` from the list. Potentially linear complexity.
pub fn remove(&mut self, index: usize, pool: &mut ListPool<T>) {
let len;
{
let seq = self.as_mut_slice(pool);
len = seq.len();
debug_assert!(index < len);
// Copy elements down.
for i in index..len - 1 {
seq[i] = seq[i + 1];
}
}
self.remove_last(len, pool);
}
/// Removes the element at `index` in constant time by switching it with the last element of
/// the list.
pub fn swap_remove(&mut self, index: usize, pool: &mut ListPool<T>) {
let seq = self.as_mut_slice(pool);
let len = seq.len();
debug_assert!(index < len);
if index != len - 1 {
seq.swap(index, len - 1);
}
self.remove_last(len, pool);
}
/// Shortens the list down to `len` elements.
///
/// Does nothing if the list is already shorter than `len`.
pub fn truncate(&mut self, new_len: usize, pool: &mut ListPool<T>) {
if new_len == 0 {
self.clear(pool);
return;
}
match pool.len_of(self) {
None => return,
Some(len) => {
if len <= new_len {
return;
}
let block;
let idx = self.index as usize;
let sclass = sclass_for_length(len);
let new_sclass = sclass_for_length(new_len);
if sclass != new_sclass {
block = pool.realloc(idx - 1, sclass, new_sclass, new_len + 1);
self.index = (block + 1) as u32;
} else {
block = idx - 1;
}
pool.data[block] = T::new(new_len);
}
}
}
/// Grow the list by inserting `count` elements at `index`.
///
/// The new elements are not initialized, they will contain whatever happened to be in memory.
/// Since the memory comes from the pool, this will be either zero entity references or
/// whatever where in a previously deallocated list.
pub fn grow_at(&mut self, index: usize, count: usize, pool: &mut ListPool<T>) {
let data = self.grow(count, pool);
// Copy elements after `index` up.
for i in (index + count..data.len()).rev() {
data[i] = data[i - count];
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::{sclass_for_length, sclass_size};
use crate::EntityRef;
/// An opaque reference to an instruction in a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Inst(u32);
entity_impl!(Inst, "inst");
#[test]
fn size_classes() {
assert_eq!(sclass_size(0), 4);
assert_eq!(sclass_for_length(0), 0);
assert_eq!(sclass_for_length(1), 0);
assert_eq!(sclass_for_length(2), 0);
assert_eq!(sclass_for_length(3), 0);
assert_eq!(sclass_for_length(4), 1);
assert_eq!(sclass_for_length(7), 1);
assert_eq!(sclass_for_length(8), 2);
assert_eq!(sclass_size(1), 8);
for l in 0..300 {
assert!(sclass_size(sclass_for_length(l)) >= l + 1);
}
}
#[test]
fn block_allocator() {
let mut pool = ListPool::<Inst>::new();
let b1 = pool.alloc(0);
let b2 = pool.alloc(1);
let b3 = pool.alloc(0);
assert_ne!(b1, b2);
assert_ne!(b1, b3);
assert_ne!(b2, b3);
pool.free(b2, 1);
let b2a = pool.alloc(1);
let b2b = pool.alloc(1);
assert_ne!(b2a, b2b);
// One of these should reuse the freed block.
assert!(b2a == b2 || b2b == b2);
// Check the free lists for a size class smaller than the largest seen so far.
pool.free(b1, 0);
pool.free(b3, 0);
let b1a = pool.alloc(0);
let b3a = pool.alloc(0);
assert_ne!(b1a, b3a);
assert!(b1a == b1 || b1a == b3);
assert!(b3a == b1 || b3a == b3);
}
#[test]
fn empty_list() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
{
let ilist = &list;
assert!(ilist.is_empty());
assert_eq!(ilist.len(pool), 0);
assert_eq!(ilist.as_slice(pool), &[]);
assert_eq!(ilist.get(0, pool), None);
assert_eq!(ilist.get(100, pool), None);
}
assert_eq!(list.as_mut_slice(pool), &[]);
assert_eq!(list.get_mut(0, pool), None);
assert_eq!(list.get_mut(100, pool), None);
list.clear(pool);
assert!(list.is_empty());
assert_eq!(list.len(pool), 0);
assert_eq!(list.as_slice(pool), &[]);
assert_eq!(list.first(pool), None);
}
#[test]
fn from_slice() {
let pool = &mut ListPool::<Inst>::new();
let list = EntityList::<Inst>::from_slice(&[Inst(0), Inst(1)], pool);
assert!(!list.is_empty());
assert_eq!(list.len(pool), 2);
assert_eq!(list.as_slice(pool), &[Inst(0), Inst(1)]);
assert_eq!(list.get(0, pool), Some(Inst(0)));
assert_eq!(list.get(100, pool), None);
let list = EntityList::<Inst>::from_slice(&[], pool);
assert!(list.is_empty());
assert_eq!(list.len(pool), 0);
assert_eq!(list.as_slice(pool), &[]);
assert_eq!(list.get(0, pool), None);
assert_eq!(list.get(100, pool), None);
}
#[test]
fn push() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
assert_eq!(list.push(i1, pool), 0);
assert_eq!(list.len(pool), 1);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), None);
assert_eq!(list.push(i2, pool), 1);
assert_eq!(list.len(pool), 2);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1, i2]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), Some(i2));
assert_eq!(list.get(2, pool), None);
assert_eq!(list.push(i3, pool), 2);
assert_eq!(list.len(pool), 3);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1, i2, i3]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), Some(i2));
assert_eq!(list.get(2, pool), Some(i3));
assert_eq!(list.get(3, pool), None);
// This triggers a reallocation.
assert_eq!(list.push(i4, pool), 3);
assert_eq!(list.len(pool), 4);
assert!(!list.is_empty());
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4]);
assert_eq!(list.first(pool), Some(i1));
assert_eq!(list.get(0, pool), Some(i1));
assert_eq!(list.get(1, pool), Some(i2));
assert_eq!(list.get(2, pool), Some(i3));
assert_eq!(list.get(3, pool), Some(i4));
assert_eq!(list.get(4, pool), None);
list.extend([i1, i1, i2, i2, i3, i3, i4, i4].iter().cloned(), pool);
assert_eq!(list.len(pool), 12);
assert_eq!(
list.as_slice(pool),
&[i1, i2, i3, i4, i1, i1, i2, i2, i3, i3, i4, i4]
);
let list2 = EntityList::from_iter([i1, i1, i2, i2, i3, i3, i4, i4].iter().cloned(), pool);
assert_eq!(list2.len(pool), 8);
assert_eq!(list2.as_slice(pool), &[i1, i1, i2, i2, i3, i3, i4, i4]);
}
#[test]
fn insert_remove() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
list.insert(0, i4, pool);
assert_eq!(list.as_slice(pool), &[i4]);
list.insert(0, i3, pool);
assert_eq!(list.as_slice(pool), &[i3, i4]);
list.insert(2, i2, pool);
assert_eq!(list.as_slice(pool), &[i3, i4, i2]);
list.insert(2, i1, pool);
assert_eq!(list.as_slice(pool), &[i3, i4, i1, i2]);
list.remove(3, pool);
assert_eq!(list.as_slice(pool), &[i3, i4, i1]);
list.remove(2, pool);
assert_eq!(list.as_slice(pool), &[i3, i4]);
list.remove(0, pool);
assert_eq!(list.as_slice(pool), &[i4]);
list.remove(0, pool);
assert_eq!(list.as_slice(pool), &[]);
assert!(list.is_empty());
}
#[test]
fn growing() {
let pool = &mut ListPool::<Inst>::new();
let mut list = EntityList::<Inst>::default();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
// This is not supposed to change the list.
list.grow_at(0, 0, pool);
assert_eq!(list.len(pool), 0);
assert!(list.is_empty());
list.grow_at(0, 2, pool);
assert_eq!(list.len(pool), 2);
list.as_mut_slice(pool).copy_from_slice(&[i2, i3]);
list.grow_at(1, 0, pool);
assert_eq!(list.as_slice(pool), &[i2, i3]);
list.grow_at(1, 1, pool);
list.as_mut_slice(pool)[1] = i1;
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
// Append nothing at the end.
list.grow_at(3, 0, pool);
assert_eq!(list.as_slice(pool), &[i2, i1, i3]);
// Append something at the end.
list.grow_at(3, 1, pool);
list.as_mut_slice(pool)[3] = i4;
assert_eq!(list.as_slice(pool), &[i2, i1, i3, i4]);
}
#[test]
fn deep_clone() {
let pool = &mut ListPool::<Inst>::new();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
let mut list1 = EntityList::from_slice(&[i1, i2, i3], pool);
let list2 = list1.deep_clone(pool);
assert_eq!(list1.as_slice(pool), &[i1, i2, i3]);
assert_eq!(list2.as_slice(pool), &[i1, i2, i3]);
list1.as_mut_slice(pool)[0] = i4;
assert_eq!(list1.as_slice(pool), &[i4, i2, i3]);
assert_eq!(list2.as_slice(pool), &[i1, i2, i3]);
}
#[test]
fn truncate() {
let pool = &mut ListPool::<Inst>::new();
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let i4 = Inst::new(4);
let mut list = EntityList::from_slice(&[i1, i2, i3, i4, i1, i2, i3, i4], pool);
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4, i1, i2, i3, i4]);
list.truncate(6, pool);
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4, i1, i2]);
list.truncate(9, pool);
assert_eq!(list.as_slice(pool), &[i1, i2, i3, i4, i1, i2]);
list.truncate(2, pool);
assert_eq!(list.as_slice(pool), &[i1, i2]);
list.truncate(0, pool);
assert!(list.is_empty());
}
}