1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//! Computation of basic block order in emitted code.
//!
//! This module handles the translation from CLIF BBs to VCode BBs.
//!
//! The basic idea is that we compute a sequence of "lowered blocks" that
//! correspond to one or more blocks in the graph: (CLIF CFG) `union` (implicit
//! block on *every* edge). Conceptually, the lowering pipeline wants to insert
//! moves for phi-nodes on every block-to-block transfer; these blocks always
//! conceptually exist, but may be merged with an "original" CLIF block (and
//! hence not actually exist; this is equivalent to inserting the blocks only on
//! critical edges).
//!
//! In other words, starting from a CFG like this (where each "CLIF block" and
//! "(edge N->M)" is a separate basic block):
//!
//! ```plain
//!
//!              CLIF block 0
//!               /           \
//!       (edge 0->1)         (edge 0->2)
//!              |                |
//!       CLIF block 1         CLIF block 2
//!              \                /
//!           (edge 1->3)   (edge 2->3)
//!                   \      /
//!                 CLIF block 3
//! ```
//!
//! We can produce a CFG of lowered blocks like so:
//!
//! ```plain
//!            +--------------+
//!            | CLIF block 0 |
//!            +--------------+
//!               /           \
//!     +--------------+     +--------------+
//!     | (edge 0->1)  |     | (edge 0->2)  |
//!     | CLIF block 1 |     | CLIF block 2 |
//!     | (edge 1->3)  |     | (edge 2->3)  |
//!     +--------------+     +--------------+
//!                \           /
//!                 \         /
//!                +------------+
//!                |CLIF block 3|
//!                +------------+
//! ```
//!
//! Each `LoweredBlock` names just an original CLIF block, or just an edge block.
//!
//! To compute this lowering, we do a DFS over the CLIF-plus-edge-block graph
//! (never actually materialized, just defined by a "successors" function), and
//! compute the reverse postorder.
//!
//! This algorithm isn't perfect w.r.t. generated code quality: we don't, for
//! example, consider any information about whether edge blocks will actually
//! have content, because this computation happens as part of lowering *before*
//! regalloc, and regalloc may or may not insert moves/spills/reloads on any
//! particular edge. But it works relatively well and is conceptually simple.
//! Furthermore, the [MachBuffer] machine-code sink performs final peephole-like
//! branch editing that in practice elides empty blocks and simplifies some of
//! the other redundancies that this scheme produces.

use crate::dominator_tree::DominatorTree;
use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};
use crate::inst_predicates::visit_block_succs;
use crate::ir::{Block, Function, Inst, Opcode};
use crate::{machinst::*, trace};

use smallvec::SmallVec;

/// Mapping from CLIF BBs to VCode BBs.
#[derive(Debug)]
pub struct BlockLoweringOrder {
    /// Lowered blocks, in BlockIndex order. Each block is some combination of
    /// (i) a CLIF block, and (ii) inserted crit-edge blocks before or after;
    /// see [LoweredBlock] for details.
    lowered_order: Vec<LoweredBlock>,
    /// BlockIndex values for successors for all lowered blocks, indexing `lowered_order`.
    lowered_succ_indices: Vec<BlockIndex>,
    /// Ranges in `lowered_succ_indices` giving the successor lists for each lowered
    /// block. Indexed by lowering-order index (`BlockIndex`).
    lowered_succ_ranges: Vec<(Option<Inst>, std::ops::Range<usize>)>,
    /// Cold blocks. These blocks are not reordered in the
    /// `lowered_order` above; the lowered order must respect RPO
    /// (uses after defs) in order for lowering to be
    /// correct. Instead, this set is used to provide `is_cold()`,
    /// which is used by VCode emission to sink the blocks at the last
    /// moment (when we actually emit bytes into the MachBuffer).
    cold_blocks: FxHashSet<BlockIndex>,
    /// Lowered blocks that are indirect branch targets.
    indirect_branch_targets: FxHashSet<BlockIndex>,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum LoweredBlock {
    /// Block in original CLIF.
    Orig {
        /// Original CLIF block.
        block: Block,
    },

    /// Critical edge between two CLIF blocks.
    CriticalEdge {
        /// The predecessor block.
        pred: Block,

        /// The successor block.
        succ: Block,

        /// The index of this branch in the successor edges from `pred`, following the same
        /// indexing order as `inst_predicates::visit_block_succs`. This is used to distinguish
        /// multiple edges between the same CLIF blocks.
        succ_idx: u32,
    },
}

impl LoweredBlock {
    /// Unwrap an `Orig` block.
    pub fn orig_block(&self) -> Option<Block> {
        match self {
            &LoweredBlock::Orig { block } => Some(block),
            &LoweredBlock::CriticalEdge { .. } => None,
        }
    }

    /// The associated in-edge predecessor, if this is a critical edge.
    #[cfg(test)]
    pub fn in_edge(&self) -> Option<Block> {
        match self {
            &LoweredBlock::CriticalEdge { pred, .. } => Some(pred),
            &LoweredBlock::Orig { .. } => None,
        }
    }

    /// The associated out-edge successor, if this is a critical edge.
    #[cfg(test)]
    pub fn out_edge(&self) -> Option<Block> {
        match self {
            &LoweredBlock::CriticalEdge { succ, .. } => Some(succ),
            &LoweredBlock::Orig { .. } => None,
        }
    }
}

impl BlockLoweringOrder {
    /// Compute and return a lowered block order for `f`.
    pub fn new(f: &Function, domtree: &DominatorTree) -> BlockLoweringOrder {
        trace!("BlockLoweringOrder: function body {:?}", f);

        // Step 1: compute the in-edge and out-edge count of every block.
        let mut block_in_count = SecondaryMap::with_default(0);
        let mut block_out_count = SecondaryMap::with_default(0);

        // Block successors are stored as `LoweredBlocks` to simplify the construction of
        // `lowered_succs` in the final result. Initially, all entries are `Orig` values, and are
        // updated to be `CriticalEdge` when those cases are identified in step 2 below.
        let mut block_succs: SmallVec<[LoweredBlock; 128]> = SmallVec::new();
        let mut block_succ_range = SecondaryMap::with_default(0..0);

        let mut indirect_branch_target_clif_blocks = FxHashSet::default();

        for block in f.layout.blocks() {
            let start = block_succs.len();
            visit_block_succs(f, block, |_, succ, from_table| {
                block_out_count[block] += 1;
                block_in_count[succ] += 1;
                block_succs.push(LoweredBlock::Orig { block: succ });

                if from_table {
                    indirect_branch_target_clif_blocks.insert(succ);
                }
            });

            // Ensure that blocks terminated by br_table instructions with an empty jump table are
            // still treated like conditional blocks from the point of view of critical edge
            // splitting.
            if let Some(inst) = f.layout.last_inst(block) {
                if Opcode::BrTable == f.dfg.insts[inst].opcode() {
                    block_out_count[block] = block_out_count[block].max(2);
                }
            }

            let end = block_succs.len();
            block_succ_range[block] = start..end;
        }

        // Step 2: walk the postorder from the domtree in reverse to produce our desired node
        // lowering order, identifying critical edges to split along the way.

        let mut lb_to_bindex = FxHashMap::default();
        let mut lowered_order = Vec::new();

        for &block in domtree.cfg_postorder().iter().rev() {
            let lb = LoweredBlock::Orig { block };
            let bindex = BlockIndex::new(lowered_order.len());
            lb_to_bindex.insert(lb.clone(), bindex);
            lowered_order.push(lb);

            if block_out_count[block] > 1 {
                let range = block_succ_range[block].clone();
                for (succ_ix, lb) in block_succs[range].iter_mut().enumerate() {
                    let succ = lb.orig_block().unwrap();
                    if block_in_count[succ] > 1 {
                        // Mutate the successor to be a critical edge, as `block` has multiple
                        // edges leaving it, and `succ` has multiple edges entering it.
                        *lb = LoweredBlock::CriticalEdge {
                            pred: block,
                            succ,
                            succ_idx: succ_ix as u32,
                        };
                        let bindex = BlockIndex::new(lowered_order.len());
                        lb_to_bindex.insert(*lb, bindex);
                        lowered_order.push(*lb);
                    }
                }
            }
        }

        // Step 3: build the successor tables given the lowering order. We can't perform this step
        // during the creation of `lowering_order`, as we need `lb_to_bindex` to be fully populated
        // first.
        let mut lowered_succ_indices = Vec::new();
        let mut cold_blocks = FxHashSet::default();
        let mut indirect_branch_targets = FxHashSet::default();
        let lowered_succ_ranges =
            Vec::from_iter(lowered_order.iter().enumerate().map(|(ix, lb)| {
                let bindex = BlockIndex::new(ix);
                let start = lowered_succ_indices.len();
                let opt_inst = match lb {
                    // Block successors are pulled directly over, as they'll have been mutated when
                    // determining the block order already.
                    &LoweredBlock::Orig { block } => {
                        let range = block_succ_range[block].clone();
                        lowered_succ_indices
                            .extend(block_succs[range].iter().map(|lb| lb_to_bindex[lb]));

                        if f.layout.is_cold(block) {
                            cold_blocks.insert(bindex);
                        }

                        if indirect_branch_target_clif_blocks.contains(&block) {
                            indirect_branch_targets.insert(bindex);
                        }

                        let last = f.layout.last_inst(block).unwrap();
                        let opcode = f.dfg.insts[last].opcode();

                        assert!(opcode.is_terminator());

                        opcode.is_branch().then_some(last)
                    }

                    // Critical edges won't have successor information in block_succ_range, but
                    // they only have a single known successor to record anyway.
                    &LoweredBlock::CriticalEdge { succ, .. } => {
                        let succ_index = lb_to_bindex[&LoweredBlock::Orig { block: succ }];
                        lowered_succ_indices.push(succ_index);

                        // Edges inherit indirect branch and cold block metadata from their
                        // successor.

                        if f.layout.is_cold(succ) {
                            cold_blocks.insert(bindex);
                        }

                        if indirect_branch_target_clif_blocks.contains(&succ) {
                            indirect_branch_targets.insert(bindex);
                        }

                        None
                    }
                };
                let end = lowered_succ_indices.len();
                (opt_inst, start..end)
            }));

        let result = BlockLoweringOrder {
            lowered_order,
            lowered_succ_indices,
            lowered_succ_ranges,
            cold_blocks,
            indirect_branch_targets,
        };

        trace!("BlockLoweringOrder: {:#?}", result);
        result
    }

    /// Get the lowered order of blocks.
    pub fn lowered_order(&self) -> &[LoweredBlock] {
        &self.lowered_order[..]
    }

    /// Get the successor indices for a lowered block.
    pub fn succ_indices(&self, block: BlockIndex) -> (Option<Inst>, &[BlockIndex]) {
        let (opt_inst, range) = &self.lowered_succ_ranges[block.index()];
        (opt_inst.clone(), &self.lowered_succ_indices[range.clone()])
    }

    /// Determine whether the given lowered-block index is cold.
    pub fn is_cold(&self, block: BlockIndex) -> bool {
        self.cold_blocks.contains(&block)
    }

    /// Determine whether the given lowered block index is an indirect branch
    /// target.
    pub fn is_indirect_branch_target(&self, block: BlockIndex) -> bool {
        self.indirect_branch_targets.contains(&block)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::cursor::{Cursor, FuncCursor};
    use crate::flowgraph::ControlFlowGraph;
    use crate::ir::types::*;
    use crate::ir::UserFuncName;
    use crate::ir::{AbiParam, Function, InstBuilder, Signature};
    use crate::isa::CallConv;

    fn build_test_func(n_blocks: usize, edges: &[(usize, usize)]) -> BlockLoweringOrder {
        assert!(n_blocks > 0);

        let name = UserFuncName::testcase("test0");
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(I32));
        let mut func = Function::with_name_signature(name, sig);
        let blocks = (0..n_blocks)
            .map(|i| {
                let bb = func.dfg.make_block();
                assert!(bb.as_u32() == i as u32);
                bb
            })
            .collect::<Vec<_>>();

        let arg0 = func.dfg.append_block_param(blocks[0], I32);

        let mut pos = FuncCursor::new(&mut func);

        let mut edge = 0;
        for i in 0..n_blocks {
            pos.insert_block(blocks[i]);
            let mut succs = vec![];
            while edge < edges.len() && edges[edge].0 == i {
                succs.push(edges[edge].1);
                edge += 1;
            }
            if succs.len() == 0 {
                pos.ins().return_(&[arg0]);
            } else if succs.len() == 1 {
                pos.ins().jump(blocks[succs[0]], &[]);
            } else if succs.len() == 2 {
                pos.ins()
                    .brif(arg0, blocks[succs[0]], &[], blocks[succs[1]], &[]);
            } else {
                panic!("Too many successors");
            }
        }

        let mut cfg = ControlFlowGraph::new();
        cfg.compute(&func);
        let dom_tree = DominatorTree::with_function(&func, &cfg);

        BlockLoweringOrder::new(&func, &dom_tree)
    }

    #[test]
    fn test_blockorder_diamond() {
        let order = build_test_func(4, &[(0, 1), (0, 2), (1, 3), (2, 3)]);

        // This test case doesn't need to introduce any critical edges, as all regalloc allocations
        // can sit on either the entry or exit of blocks 1 and 2.
        assert_eq!(order.lowered_order.len(), 4);
    }

    #[test]
    fn test_blockorder_critedge() {
        //            0
        //          /   \
        //         1     2
        //        /  \     \
        //       3    4    |
        //       |\  _|____|
        //       | \/ |
        //       | /\ |
        //       5    6
        //
        // (3 -> 5, and 3 -> 6 are critical edges and must be split)
        //
        let order = build_test_func(
            7,
            &[
                (0, 1),
                (0, 2),
                (1, 3),
                (1, 4),
                (2, 5),
                (3, 5),
                (3, 6),
                (4, 6),
            ],
        );

        assert_eq!(order.lowered_order.len(), 9);
        println!("ordered = {:?}", order.lowered_order);

        // block 0
        assert_eq!(order.lowered_order[0].orig_block().unwrap().as_u32(), 0);
        assert!(order.lowered_order[0].in_edge().is_none());
        assert!(order.lowered_order[0].out_edge().is_none());

        // block 2
        assert_eq!(order.lowered_order[1].orig_block().unwrap().as_u32(), 2);
        assert!(order.lowered_order[1].in_edge().is_none());
        assert!(order.lowered_order[1].out_edge().is_none());

        // block 1
        assert_eq!(order.lowered_order[2].orig_block().unwrap().as_u32(), 1);
        assert!(order.lowered_order[2].in_edge().is_none());
        assert!(order.lowered_order[2].out_edge().is_none());

        // block 4
        assert_eq!(order.lowered_order[3].orig_block().unwrap().as_u32(), 4);
        assert!(order.lowered_order[3].in_edge().is_none());
        assert!(order.lowered_order[3].out_edge().is_none());

        // block 3
        assert_eq!(order.lowered_order[4].orig_block().unwrap().as_u32(), 3);
        assert!(order.lowered_order[4].in_edge().is_none());
        assert!(order.lowered_order[4].out_edge().is_none());

        // critical edge 3 -> 5
        assert!(order.lowered_order[5].orig_block().is_none());
        assert_eq!(order.lowered_order[5].in_edge().unwrap().as_u32(), 3);
        assert_eq!(order.lowered_order[5].out_edge().unwrap().as_u32(), 5);

        // critical edge 3 -> 6
        assert!(order.lowered_order[6].orig_block().is_none());
        assert_eq!(order.lowered_order[6].in_edge().unwrap().as_u32(), 3);
        assert_eq!(order.lowered_order[6].out_edge().unwrap().as_u32(), 6);

        // block 6
        assert_eq!(order.lowered_order[7].orig_block().unwrap().as_u32(), 6);
        assert!(order.lowered_order[7].in_edge().is_none());
        assert!(order.lowered_order[7].out_edge().is_none());

        // block 5
        assert_eq!(order.lowered_order[8].orig_block().unwrap().as_u32(), 5);
        assert!(order.lowered_order[8].in_edge().is_none());
        assert!(order.lowered_order[8].out_edge().is_none());
    }
}